
Received August 29, 2020, accepted September 28, 2020, date of publication October 8, 2020, date of current version October 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029634

Convolutional Neural Network Based
Classification of App Reviews
NAILA ASLAM1, WAHEED YOUSUF RAMAY 2,
KEWEN XIA 1, AND NADEEM SARWAR3
1School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
2COMSATS University Islamabad, Islamabad 45550, Pakistan
3Bahria University, Lahore 54000, Pakistan

Corresponding author: Kewen Xia (kwxia@hebut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant U1813222,
in part by the Tianjin Natural Science Foundation under Grant 18JCYBJC16500, and in part by
the Key Research and Development Project from Hebei Province under Grant 19210404D.

ABSTRACT An app store (i.e., Google Play) is a platform for mobile apps for almost every software and
service. App stores allow users to browse and download apps and facilitate developers to keep an eye on
their apps by providing ratings and reviews of the apps. App reviews may include the user’s experience,
information about bugs, request for new features, or rating of the app in word. The manual categorization of
app reviews is critical and time-consuming for developers. Automatic classification of app reviews may help
developers especially for fixing bugs on time. In this perspective, several approaches have been proposed
for the automatic classification of reviews. However, none of them exploits the non-textual information of
app reviews. In this paper, we propose a deep learning based approach for the classification of app reviews.
It does not only leverage non-textual information of app reviews but also exploits a deep learning technique
that has proved more accurate for the text classification in various domains. The approach first extracts
textual and non-textual information of each app review, preprocesses the textual information, computes the
sentiment of app reviews using Senti4SD, and determines the history of the reviewer includes the total number
of reviews posted by the reviewer, and his submission rate (i.e., what percentages of his review have been
submitted for the associated app). Second, we create a digital vector against each app review. Finally, we train
a deep learning based multi-class classifier to classify app reviews. The proposed approach is evaluated on a
public dataset, and the results suggest that it significantly improves the state of the art. It improves average
precision from 75.72% to 95.49%, average recall from 69.40% to 93.94%, and f-measure from 72.41% to
94.71%, respectively.

INDEX TERMS Classification, convolutional neural network, machine learning, sentiment, user feedback,
mobile app reviews.

I. INTRODUCTION
In this digital world, softwares are moved from computers to
mobile phones. App stores (i.e.,Google Play Store and Apple
AppStore) provide mobile apps (noted as apps for short in the
rest of this paper) almost for every field of life. In the fourth
quarter of 2019, Google’s Play Store and Apple’s AppStore
were the top two largest app stores with 2.57 million and
1.84 million apps, respectively1. Such app stores enable users
to browse and download apps, and collect users’ reviews
(i.e., star rating and textual feedback) for developers to
improve their apps.

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

1https://www.statista.com/statistics/276623/number-of-apps-available-in
-leading-app-stores/

The existing study [1] also indicates the importance of
app reviews (noted as reviews for short in the rest of the paper)
for the success of any mobile app. The ranking of apps may
increasewith better reviews, better visibility, higher sales, and
download numbers [2]. In addition, recent researches indicate
the importance of reviews for developers. They notice that
reviews may include users’ experience [3], information about
bugs [4], request for new features [5], or textual information
for rating [3], [6]. Moreover, many reviews are low-quality
that include meaningless information, spam, or star rating
in words. Developers manually categorize such reviews that
is critical and time-consuming. Automatic classification of
reviews helps developers for adding new features to increase
the popularity of their apps and/or resolving bugs on time for
the maintenance of their apps [7].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 185619

https://orcid.org/0000-0003-0188-6424
https://orcid.org/0000-0003-3968-481X


N. Aslam et al.: CNN Based Classification of App Reviews

FIGURE 1. Overview of the proposed approach.

To this end, a number of automated approaches have been
proposed for automatic classification of reviews [7]–[10].
Such approaches consider app reviews as plain texts, their
metadata (e.g., length of text) and sentiment, and employ
traditional machine learning techniques to make the predic-
tion. To further improve their performance, in this paper,
we propose a Convolutional Neural Network (CNN) based
approach for the classification of app reviews. On one hand,
it leverages non-textual information of app reviews that have
not yet been employed by existing approaches. On the other
hand, it exploits a deep learning based classifier that has
proved more accurate for the text classification in various
domains.

The approach works as follows: 1) it extracts textual
(i.e., the textual information, and the sentiment of the textual
information computed by Senti4SD) and non-textual features
(i.e., the statistics of the reviewer (the total number of reviews
posted by the reviewer, and his submission rate, i.e., what per-
centages of his review have been submitted for the associated
app), and the statistics (metadata) of each app review; 2), it
preprocesses the textual information and transforms it into
a digital vector; and 3) it trains a CNN classifier to classify
multi-class reviews. The proposed approach is evaluated on
a public dataset, and the results suggest that it significantly
improves the state of the art. It improves average precision
from 75, 72% to 95.49%, average recall from 69.40% to
93.94%, and f-measure from 72.41% to 94.71%, respectively.

The rest of the paper is organized as follows: Section II
provides the details of the proposed approach. Section III
presents the evaluation of the proposed approach.
Section IV introduces related work, and Section V concludes
the paper and indicates future interests.

II. APPROACH
A. OVERVIEW
Identification of the associated class of app reviews (noted
as reviews) is essentially a multi-class classification. All the
submitted reviews are automatically classified into four
classes, i.e., bug reports, enhancement reports, user
experiences, and ratings.

Fig. 1 illustrates an overview of the proposed approach.
A brief introduction is presented as follows:

1) For each review r , we extract its textual information
(noted as tr ), i.e., the text of the review.

2) We extract non-textual features (noted as ntr ) of the
review, e.g., the statistical data of the app, i.e., app size,
the number of app installations, and the statistical data
of the reviewer.

3) The textual information tr is preprocessed with natural
language processing techniques, and convert it into
numerical vectors.

4) We calculate the sentiment (noted as sr ) of each
review. We compute the sentiment based on the textual
information tr of the review.

5) We extract the labels of the reviews, i.e., whether
they belong to bug reports, feature requests, user
experiences, or ratings.

6) We train a multi-class classifier with the labeled data
that are collected in the previous steps.

7) Finally, for new reviews, we extract their tr and ntr
(as mentioned in Steps 1-4), and input to the trained
multi-class classifier to generate the label (bug reports,
enhancement reports, user experiences, or ratings) of
the new reviews.

Details of the proposed approach are presented in the
following sections.

B. DATA EXTRACTION
A review r from a set of reviews R can be defined as follows:

r =< tr , ntr , l > (1)

where tr is the textual information (i.e., text) of the review,
ntr is the non-textual information of the review, and l is the
category (label) of r , i.e., whether it belongs to bug reports,
enhancement report, user-experience, or rating.
Non-textual information holds statistics of the reviewer

who committed the review and statistics of the app associated
with the review:

ntr = < SRev, SApp > (2)

SRev = < Revn,Revr > (3)

SApp = < Apps,Appi > (4)

ntr consists of two metrics (SRev and SApp), where SRev
further consists of two metrics: Revn and Revr . Revn is the

185620 VOLUME 8, 2020



N. Aslam et al.: CNN Based Classification of App Reviews

FIGURE 2. Overview of the preprocessing.

TABLE 1. Top keywords for categorization of reviews.

number of reviews (either bug reports, enhancement reports,
user experience, or rating) associated with the given app, and
Revr is the average rate for review (correspond to same review
category) associated with the app.
SApp also consists of two metrics (Apps and Appi) where

Apps is the size of the app and Appi is the number of instal-
lation of the app. SApp is collected from the metadata of the
app.

Labels (bug report, enhancement report, user experience,
and rating) are defined using the most trivial technique that
checks the particular list of words within each review to
automatically classify it. In this regard, we use SQL queries,
i.e., LIKE. Table 1 shows a list of words (the complete
list can not be represented, therefore we only represent the
most influential word) for each category of review. These
lists are formed based on the existing researches [3], [5],
[11]. The existing researches consider nouns (aspects), adjec-
tives, verbs, and adverbs as keywords. Note that, one review
may belong to one or more categories, e.g., ‘‘Doesn’t work
at the moment. Was quite satisfied before the last update.
Will change the rating once it’s functional again’’ can be
categorized as a bug report or rating review.

C. PREPROCESSING
We preprocess the textual information tr to convert it
into a digital vector. Fig. 3 illustrates an overview of the
preprocessing. The details of the preprocessing are as follows.

First, we apply the spelling check on each review. Then,
we extract and remove the stop-words, e.g., special characters
from reviews and convert the remaining text into lowercase
to improve the comparison. After that, we tokenize each
review into tokens (words) using Python NLTK [12]. Next,
we lemmatize the tokens to turn the comparative and superla-
tive words into their base words, e.g., liked turns into like).
Finally, we convert the preprocessed text into vectors (embed-
ding). In this regard, we leverage word2vec [13] that takes
each token from the preprocessed text and converts it into
a fixed-length numeric vector. Notably, we exploit standard
libraries Gensim and TensorFlow to implement word2vec.
We implement the Skip-gram architecture of word2vec
for the given dataset with settings: window_size = 2,
n=300 (dimensions of word embeddings), epoch=50, and

FIGURE 3. Overview of the classifier.

learning_rate=0.01. A concatenated vector WVr is created
for each from the vectors of each token of the review.

D. SENTIMENT ANALYSIS
The existing studies [14], [15] and the word-list of each
category (as shown in Table 1) motivate and suggest that
sentiment related words may help in the classification of
reviews. For example, 79.6% of the rating reviews contains
the keywords ‘‘good’’ and ‘‘bad’’.
We compute the sentiment RSen of each review and

consider it as one of the key feature of the reviews. It can
be represented as:

RSen(r) = CalRSen(r .tr ) (5)

where r is a review, r .tr is the textual feature of the review,
and RSen(r) is the sentiment of the review.
The function CalRSen computes the sentiment of each

review r using Senti4SD [16]. It exploits three different kinds
of features: 1) sentiment lexicon; 2) n-grams extracted from
the given dataset (uni-gram and bi-gram in our case); and
3) semantic features. Semantic features are dependent on
word representation in a distributional semantic model. The
semantic features capture the similarity between the vector
representations of the Stack Overflow documents and pro-
totype vectors representing the polarity classes in a distri-
butional semantic model, built using positive, negative, and
neutral words from the sentiment lexicon. Senti4SD considers
the emotion-words, modifiers, and negation in the review for
calculation and returns the sentiment of the review. Note that,
we leverage Senti4SD because of its significant performance
for software engineering text in contrast to most commonly
used repositories, e.g., SentiWordNet [17].

E. CONVOLUTIONAL NEURAL NETWORK BASED
CLASSIFIER
The proposed Convolutional Neural Network (CNN) based
classifier first extracts the features from preprocessed textual
informationWVr and combines the extracted textual features
and non-textual features ntr , and predicts labels based on the
combined features. The details of both steps are as follows.

VOLUME 8, 2020 185621



N. Aslam et al.: CNN Based Classification of App Reviews

1) EXTRACTION OF TEXTUAL FEATURES
The CNN based classifier takes WVr and returns a feature
map of c that contains the maximum values of the features.
The classifier exploits the three convolution layers for the
extraction of textual features. We apply filter sizes 3, 4, and 5,
respectively. Each filter improves feature vectors by perform-
ing a convolution on the corresponding layer and create a
feature map for the next layer.

The initial convolution layer takes a word WVi from WVr
of a k-dimensional vector, where k is equal to 300. Assume
xiεX k be the k-dimensional vector corresponding toWVi and
Xi:i+j is the concatenation of feature vectors xi - Xi+j. A filter
wεXdk is applied to a window of d words creates a new
feature map ci that can be defined as,

ci = f (w ·WVi,i+d−1) (6)

where b represents a bias and f represents the tangent
non-linear function. The filter creates a feature map c using
the given window of features that can be defined as

c =< c1, c2, . . . , ci > (7)

Notably, we pass the numerical vectors into a CNN with
dropout = 0.2 to prevent the overfitting.

2) CLASSIFICATION BASED ON MERGED FEATURES
The classifier takes the additional inputs: the sentiment of
each review RSen and the statistical information of the
app SApp, and merge the additional inputs with the pro-
cessed textual information using the merge layer. The merge
layer directly fuses RSen and SApp in the processed textual
information c. Note that we merge the additional information
directly to reduce the loss of convolutions in contrast to pass-
ing it into a separate network. Then, the flatten layer converts
the integrated feature map matrix into a vector. Finally, dense
layer takes the flattened information, computes the weighted
average w and a bias b of the integrated features, and applies
a non-linear activation function relu to predicts the classes.

III. EVALUATION
In this section, the proposed deep learning-based classification
approach (DCAR) for reviews is evaluated with the real-world
reviews from Google Play and Apple app stores.

A. RESEARCH QUESTIONS
We investigate the following research questions for the
evaluation of DCAR.
• RQ1: Can DCAR outperform the state of the art
in the classification of reviews? If yes, to what extent?

• RQ2:How do different features of reviews influence the
performance of DCAR?

• RQ3: How does the preprocessing influence the
performance of DCAR?

• RQ4: Does the proposed classifier outperform the other
classifiers in the classification of reviews?

B. DATASET
We exploit the reviews dataset which is extracted by
Maalej et al. [7] from Google store and Apple store. The

TABLE 2. Dataset statistics.

review only from the top apps are crawled. The total
1,126,453 reviews for 1100 apps from Apple store, and
146,057 reviews for 80 apps from Google store. Each
review contains text, title, app name, category, store, date of
submission, reviewer-id, and rating.

We follow Maalej et al. [7] and consider their manu-
ally labeled dataset of 4400 reviews for the evaluation of
DCAR. The data is selected in two phases. In the first
phase, 2000 reviews are randomly selected from the collected
reviews from both stores (1000 reviews from each store).
In the second phase, the top 3 apps are first selected from
both stores. Then, 400 reviews are randomly selected from
each app. In total, four sets of sample reviews (named as
1100 apps, Dropbox, Evernote, and TripAdvisor) are created
from the Apple store reviews, where the sets contain 100,
400, 400, and 400 reviews, respectively. Similarly, four sets
of sample reviews (named as 80 apps, PicsArt, Pinterest, and
Whatsapp) are created from the Google store reviews, where
the sets contain 100, 400, 400, and 400 reviews, respectively.
The statistics of the dataset are shown in Table 2.

Moreover, they conducted a paid peer, manual content
analysis for the selected reviews to create the truth set.
They sent every review to 2 randomly selected coders out
of 10 computer science experts. They briefly explained the
coders in a meeting about the manual classification task and
provided a tool for classification. The manually analyzed
reviews contain 2000 randomly selected app (1000 Apple
apps and 1000Google apps) and 2400manually selected apps
(1200 Apple apps and 1200 Google apps).

C. EXPERIMENTAL DESIGN
1) RQ1: COMPARISON AGAINST THE STATE OF THE ART
The first research question (RQ1) provides a comparison
between the proposed approach (DCAR) and the state of the
art. To answer RQ1, we compare DCAR against the Maalej
approach [7] (noted as Maalej’s for short in the rest of this
paper). To the best of our knowledge, Maalej’s reports the
best results for the classification of reviews. We also compare
DCAR against Umer approach [15] and Ramay approach [18]
as both are declared best for the classification software engi-
neering text.

The comparison employs the ten-fold cross-validation for
the evaluation. On each fold, reviews from a single set of
sample reviews (10%) are taken for testing (noted as sTest),
whereas others (90%) are taken for training (noted as sTrain).

185622 VOLUME 8, 2020



N. Aslam et al.: CNN Based Classification of App Reviews

TABLE 3. Performance of the proposed approach.

We trainDCAR andMaalej’s separately with the same sTrain.
After that, the trained models are evaluated separately with
the same sTest . Note that, we evaluate the performance of
DCAR andMaalej’s using the well-known and most adopted
metrics for machine learning classification [7], [14], [15],
[19], i.e., precision, recall, and f-measure.

2) RQ2: INFLUENCE OF DIFFERENT FEATURES
The second research question (RQ2) examines the influence
of different features employed by DCAR as mentioned in
Section II-B. DCAR leverages tr and ntr features of reviews.
We disable each of them and repeat the evaluation (only
for DCAR) as mentioned in Section III-C1. Such evaluation
measures the impact of each features on DCAR.

3) RQ3: INFLUENCE OF PREPROCESSING
The third research question (RQ3) examines the influence of
the preprocessing (Section II-C) on the given dataset by com-
paring the performance ofDCARwith preprocessing disabled
DCAR. We remove all the preprocessing steps and repeat the
evaluation (as mentioned in Section III-C1) to examine the
impact of preprocessing.

4) RQ4: COMPARISON AMONG DIFFERENT CLASSIFIERS
The fourth research question (RQ4) provides a comparison
of the proposed classifier among other machine and deep
learning classifiers. In this regard, we exploit the Naive
Bayes (NB), Multi-nomial Naive Bayes (MNB), Decision
Tree (DT), Support Vector Machine (SVM), Convolutional
Neural Network (CNN), and Long Short Term Mem-
ory (LSTM) and repeat the evaluation as mentioned in
Section III-C1. Note that we select these classifiers due to
their significant performance for the textual classification
[7], [14], [15], [18], [19].

D. RESULTS
1) RQ1: COMPARISON AGAINST THE STATE OF THE ART
To answer the research question RQ1, we compare DCAR
against Maalej’s, Umer’s, and Ramay’s. Table 3 presents

the evaluation results. The first column represents the
approaches, the second column represents the evaluationmet-
rics, and columns 3-6 present the performance on each of
the given categories. The last column presents the average
performance of the approaches of each testing category. The
first row represents the testing category, and the rest of the
rows present the performance of the approaches on the given
category. The table presents the best performance for each
testing category in bold.

From Table 3, the following observations are made.
• First, DCAR significantly improves the state of the
art. Compared to Maalej’s, Umer’s, and Ramay’s,
the improvement ofDCAR in average precision, average
recall, and average f-measure is (10.36% = (95.49%
− 86.52%) / 86.52%, 11.51% = (93.94% − 84.25%) /
84.25%, and 11.00%= (94.71%− 85.32%) / 85.32%),
(26.10% = (95.49% − 75.72%) / 75.71%, 35.26% =
(93.94% − 69.40%) / 69.40%, and 30.79% = (94.71%
− 72.41%) / 72.41%), (17.64% = (95.49% − 81.17%)
/ 81.17%, 17.22%= (93.94%− 80.14%) / 80.14%, and
17.43% = (94.71% − 80.65%) / 80.65%), respectively.

• Second, concerning the f−measure,DCAR significantly
outperforms Maalej’s, Umer’s, and Ramay’s on every
testing category. The improvement in f−measure varies
from 3.58%= (94.84%− 91.56%) / 91.56% to 16.85%
= (94.79%− 81.12%) / 81.12%, 27.49%= (94.79%−
74.35%) / 74.35% to 34.70% = (94.84% − 70.41%) /
70.41%, and 16.95%= (94.84%− 81.09%) / 81.09% to
18.54% = (94.74% − 80.00%) / 80.00%, respectively.

• Third, DCAR has significant improvement in recall on
every testing category. The improvement in recall varies
from 7.62%= (93.91%− 87.26%) / 87.26% to 17.79%
= (93.89%− 79.71%) / 79.91%, 34.01%= (93.89%−
70.06%) / 70.06% to 36.56% = (93.91% − 68.77%) /
68.77%, and 16.15%= (93.94%− 80.88%) / 80.88% to
18.17% = (94.02% − 79.56%) / 79.56%, respectively.
However, DCAR has slight reduction against Maalej’s
in precision on one testing category (Ratings), i.e., the

VOLUME 8, 2020 185623



N. Aslam et al.: CNN Based Classification of App Reviews

FIGURE 4. ANOVA analysis on F-measure.

reduction on Ratings is 0.54% = (96.30% − 95.78%) /
95.78%. In the comparison of precision, DCAR has
significant improvement against Maalej’s in recall on
the same testing category, i.e., the improvement on
Ratings is 7.62% = (93.91% − 87.26%) / 87.26%.
Consequently, DCAR has significant improvement in
f−measure on Ratings.

We perform one-way ANOVA on f-measure to further
investigate the performance improvement of DCAR. ANOVA
examines the difference between the performance of the given
approaches. Fig. 4 illustrates the results of ANOVA analysis.
The results suggests that f-ratio is 61.2748 and p-value is
1.5116E-07 that is less than 0.05. From Fig. 4, we con-
clude that ANOVA indicates a significant difference among
the f-measure of the given approaches. Note that, we also
conduct the ANOVA on precision and recall that confirms the
significant improvement of DCAR.
Based on the preceding analysis, we conclude that DCAR

significantly improves the state of the art in classification of
reviews.

2) RQ2: INFLUENCE OF DIFFERENT FEATURES
To answer the research question RQ2, we evaluate the perfor-
mance reduction ofDCAR by disabling a few of the given fea-
tures. Table 4 presents the evaluation results. The first column
presents the disabled features. The rest of the columns present
the performance of DCAR against each disabled setting.

From Table 4, the following observations are made.
• First, the performance of DCAR reduces upon disabling
any of the employed features. The default setting of
DCAR (i.e., none of the features is disabled) achieves
the highest average performance.

• Second, the textual features (i.e., extracted from
reviews) is critical for DCAR. Disabling the textual
features (2nd row) returns the highest reduction in the
performance of DCAR. The reduction in average preci-
sion, average recall, and average f-measure is 21.29%=
95.49% − 74.20%, 40.00% = 93.94% − 53.94%, and
32.24% = 94.71% − 62.47%, respectively.

• Third, non−textual features (i.e., statistics of review-
ers and statistics of apps) are appropriate. Disabling
non−textual features (5th row) returns the performance
reduction in average precision, average recall, and aver-
age f−measure by 4.48% = 95.49% − 91.01%, 3.45%
= 93.94% − 90.49%, and 3.96% = 94.71% − 90.75%,
respectively.

TABLE 4. Influence of different features.

TABLE 5. Influence of preprocessing.

• Fourth, disabling statistics of apps (6th row) has minor
reduction in performance as compared to disabling
statistics of reviewers (9th row). The reduction of both
cases in average precision, average recall, average
f−measure is (0.12% = 95.49% − 95.37%, 0.11% =
93.94% − 93.83%, and 0.12% = 94.71% − 94.59%),
and (4.09% = 95.49% − 91.40%, 3.00% = 93.94% −
90.94%, and 3.54%= 94.71%− 91.17%), respectively.
The performance comparison of both cases indicates
that statistics of reviews are more appropriate for the
classification of reviews.

• Finally, we notice that disabling Revn (10th row) has
more significant reduction in performance in contrast to
Revr (11th row). The performance comparison of both
cases indicates that Revn is more appropriate for the
classification of reviews.

Based on the preceding analysis, we conclude that all of
the employed features are useful. Leveraging the non-textual
features, particularly the statistics of reviewers, results in a
significant increase in performance.

3) RQ3: INFLUENCE OF PREPROCESSING
To answer the research question RQ3, we examine the
influence of the preprocessing. We remove the prepro-
cessing step and repeat the evaluation (as mentioned in
Section III-C1). Table 5 presents the evaluation results.
The second row presents the performance of DCAR with
the default setting (i.e., preprocessing enabled). The third
row presents the performance of DCAR without preprocess-
ing (i.e., preprocessing disabled). The last row presents the
performance improvement of DCAR.

From Table 5, the following observations are made.
• The proposed approach with the preprocessing
achieves significant improvement in performance. The
improvement in precision, recall, and f-measure is
1.15% = (95.49% − 94.40%) / 94.40%, 2.49% =

185624 VOLUME 8, 2020



N. Aslam et al.: CNN Based Classification of App Reviews

TABLE 6. Performance of the proposed approach.

(93.94% − 91.66%) / 91.66%, and 1.83% = (94.71%
− 93.01%) / 93.01%, respectively.

• Disabling the preprocessing step results in significant
reduction in performance especially in recall by
2.43% = (91.66% − 93.94%) / 93.94%.

From the preceding analysis, we conclude that the
preprocessing is appropriate for the classification of reviews.

4) RQ4: COMPARISON AGAINST DIFFERENT CLASSIFIERS
To answer the research question RQ4, we compare our neu-
ral network based classifier CNN with deep learning-based
classifier (i.e., LSTM) andmachine learning-based classifiers
(i.e., Random Forest(RF), Support Vector Machine (SVM),
Multi-nomial Naive Bayes (MNB), and Naive Bayes (NB)).
Table 6 presents the evaluation results.We bold the maximum
performance of each classifier on each testing category.

From Table 6, the following observations are made.
• First, the proposed classifier (CNN) achieves the highest
performance upon the selected deep learning classifiers.
One reason is that CNN is better for extracting posi-
tion invariant features in contrast to LSTM. Another
reason is that CNN performs exceptionally well with
high-dimensional feature [20].

• Second, the CNN classifier also achieves the highest per-
formance upon the selectedmachine learning classifiers.
One reason is that CNN transforms the non-linear and
inter-dependent features into a high-dimensional plane.

• Third, although the state of the art [7], [21] suggests
that Bayesian is effective in the classification of reviews,
it results in performance reduction with the proposed
approach. One possible reason is that some of the given
non-textual features (Revn and Revr ) to the classifier are

inter-related, and Bayesian performs well with the inde-
pendent features [15], [18]. In contrast to SVM and RF,
Bayesian is not appropriate with the proposed approach.

• Fourth, we observe the slight difference in a perfor-
mance comparison of SVM and RF. The evaluation of
the proposed approach employing these classifiers on
other datasets may influence the reported performance.

Based on the preceding analysis, we conclude that
the proposed classifier is appropriate for the performance
improvement of the proposed approach.

E. THREATS TO VALIDITY
A threat to external validity is that only a limited number
of reviews from the selected apps are considered for the
evaluation of the proposed approach. Although we observe
the slight change in performance of the proposed approach
among given categories, the results may not hold for other
apps or adding more categories.

A threat to construct validity is that the labels in the
exploited dataset could be incorrect. Maalej et al. [7] man-
ually labeled the selected reviews that could be incorrect for
different reasons [7]. As a result, such incorrect labeling could
produce inaccurate results.

A threat to internal validity is that we recode the
Maalej’swith different evaluation criteria (i.e., ten-fold cross-
validation). Consequently, the average results of theMaalej’s
are slightly different. To mitigate the threat, we double-check
the implementation and evaluation results.

IV. RELATED WORK
It is evident that one of the major success factors for software
projects is the users’ involvement and their feedbacks.

VOLUME 8, 2020 185625



N. Aslam et al.: CNN Based Classification of App Reviews

For example, the positive impact of user involvement is
highlighted in [22], where authors suggested managing user
involvement carefully otherwise it may cause more problems
in contrast to benefits. Similarly, Pagano and Brügge [23]
conducted an empirical case study for software evolution
and evident that user feedback has an important piece of
information for developers to not only improve the software
quality but also identify the missing features. Similar to tra-
ditional requirement engineering, crowd-based requirement
engineering is also a focus of researchers. In [24], [25],
authors addressed the scalability issue in the case of mul-
tiple users and the significance of the tool required for the
analysis of their feedback. In [26], authors focused on getting
user feedback from a mobile device which includes implicit
information. To develop and maintain software projects, bug
repositories are considered as one of the most scrutinized
tools for the collection of user feedback [27].

The analysis of reviews for app-stores (i.e., Google Play
store and Apple store) got significant research attention
in recent years because reviews are usually difficult to
understand due to their unstructured textual information
and frequency, moreover only a third of them are informa-
tive. Therefore, Ciurumelea at al. [28] developed a tool for
the developers to analyze the direct and valuable feedback
provided through user reviews, to better plan maintenance
and evolution activities for their mobile-apps. To facilitate
the reviews’ analysis, Maalej et al. [7] have classified it
into three major categories: i) general exploratory studies,
ii) app feature extraction, and iii) reviews filtering and sum-
marization. Furthermore, the authors provided a relationship
between customer, business, and technical characteristics of
mobile-apps from BlackBerry store [2]. They exploited NLP
techniques with data mining to extract the correlation and
trends. The results suggest that a strong correlation between
mobile-app popularity and customer rating, whereas the cor-
relation between the number of features and price is mild.
Similarly, board exploratory studies for the Apple store are
conducted by Hoon et al. [29] and Pagano and Maalej [3].
These studies identified the trends for the rating, topics dis-
cussed in reviews, quality of mobile-apps, and quality of
the review. Zhang et al. [30] proposed a novel approach to
automatically tag the unlabelled issue reports. This approach
computes the similarity between each unlabelled issue report
and user reviews related to bugs and features and also cal-
culates the textual similarity scores between each unlabelled
issue report and labeled ones.

Some studies mined user opinions and mobile-apps
features from application stores. In [31], Harman et al. uses
a greedy algorithm to extract the mobile-apps features from
the official pages presenting the description of applications
to analyze business and technical aspects of mobile-apps.
In [32], Chandy et al. exploited the latent model to classify
spams in the mobile app stores and categorized the reviews
into malicious and normal groups. To group and extract
the feature requests from the mobile-app reviews, MARA
(Mobile App ReviewAnalyzer) [5] is introduced that exploits

Latent Dirichlet Allocation (LDA) and linguistic rules for
identifying common topics. In [6], authors alleviated an auto-
matic solution for topic extraction. Moreover, they used LDA
for the summarization of user reviews.

Wiscom [33] analyzed user comments and ratings in three
different levels. In the first level, inconsistency in reviews
is discovered. Then, the reasons for liking and disliking of
mobile-apps are identified. Finally, an insight into the major
concerns of the users is provided. The study exploited the
linear regression model to identify negative words with the
help of user reviews and ratings. Furthermore, these words
are applied as an input to the LDA model to find the reasons
for people disliking of mobile-apps. Li et al. [1] proposed
another method to analyze user satisfaction with the help of
user reviews. Authors employed a predefined dictionary to
match words or phrases of user reviews. App Review Mining
(AR-Miner) [34] approach is introduced that extracts most
informative user reviews by using Naive Bayes. The approach
first removes irrelevant and noisy reviews and groups infor-
mative reviews with the help of topic modeling. Then, it uses
a ranking scheme to prioritize informative reviews. Finally,
it presents the most informative reviews using an intuitive
visualization approach.

An automatic approach for the classification of different
software artifacts has gained significant research attention.
In [8], authors exploited machine learning with linguistic
rules to classify user reviews into a taxonomy. This taxonomy
is created by analyzing developers’ emails. Bacchelli et al. [9]
leveraged a natural language parser and Naive Bayes to clas-
sify useful information from developers’ emails. To clas-
sify the structured and unstructured data, Zhou et al. [10]
also leveraged the machine learning techniques. Martens
and Maleej [35] exploited a machine learning classifier to
classify the fake reviews and achieved a recall of 91%
and an AUC/ROC value of 98%. Similarly, Ekanata and
Budi [36] exploited Naive Bayes, Support Vector Machine,
Logistic Regression, and Decision Tree for the classification
of reviews. The results suggest that Logistic Regression pro-
vides the best f-measure of 85% when unigram, sentence
length, and sentiment score are combined.

For the sentiment analysis, Cambria [37] reported that
automatically capturing the sentiments about social events,
political movements, marketing campaigns, and product pref-
erences of general public has raised interest in the scientific
community and business world for the exciting open chal-
lenges, the remarkable fallouts in marketing, and financial
market prediction. Later, Amir and Erik [38] explored the
potential of a novel semi-supervised learning model based
on the combined use of random projection scaling as part
of a vector space model, and support vector machines to
perform reasoning on a knowledge base. To this end, they
combined a graph representation of commonsense with a
linguistic resource for the lexical representation of affect.
The evaluation results suggest a significant improvement in
tasks such as emotion recognition and polarity detection,
and propose a way for the development of semi-supervised

185626 VOLUME 8, 2020



N. Aslam et al.: CNN Based Classification of App Reviews

learning approaches to big social data analytics. Furthermore,
Wang et al. [39] proposed an automatic method for the con-
struction of the domain-specific sentiment lexicon to avoid
sentimental ambiguity. It incorporates the sentiment infor-
mation not only from the existing lexicons but also from
the corpus. They exploited an improved TF-IDF to calcu-
late the sentiment of words. The evaluation results suggest
that constructed lexicon improves the sentimental ambiguity
and outperforms the state of the art approaches. Moreover,
Ma et al. [40] proposed a novel solution for aspect-based
sentiment analysis by exploiting commonsense knowledge.
They incorporated the commonsense knowledge of sentiment
related concepts in end-to-end training of LSTM network that
outperforms the state of the art methods.

Based on the preceding literature analysis, we conclude
that a number of researches have been proposed for the
classification of reviews. However, DCAR differs in that it
does not only leverage the deep learning classifier but also
employed the statistical information of reviewers and mobile-
apps. Compared to the state of the art (discussed in this
section), the additional features (i.e., statistical information
of reviewers) make DCAR different from off-the-shelf text
classification approaches.

V. CONCLUSION AND FUTURE WORK
Automated classification of reviews from various apps is
highly desirable. In this paper, we propose a deep learning
based approach for the classification of reviews. Compared
to existing approaches, the proposed approach does not only
leverage the statistics of reviews as non-textual features that
have not been employed but also exploits a deep learning
technique to classify reviews. The results of the ten-fold
cross-validation evaluation on real-world reviews indicate
that the proposed approach significantly surpasses the state
of the art.

The employed additional features i.e., statistics of reviews
suggest that these features are appropriate for the classi-
fication of review. However, temporal and location-based
features are not yet examined, i.e., reviews from differ-
ent geographical regions/cultures may cause their sentiment.
In future, it could a possible research direction to improve
the results of the review classification. Moreover, it could be
interesting to evaluate the related approaches with a larger
dataset of real-world reviews.

REFERENCES
[1] H. Li, L. Zhang, L. Zhang, and J. Shen, ‘‘A user satisfaction analysis

approach for software evolution,’’ in Proc. IEEE Int. Conf. Prog. Informat.
Comput., vol. 2, Dec. 2010, pp. 1093–1097.

[2] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang,
‘‘App store analysis: Mining app stores for relationships between cus-
tomer, business and technical characteristics,’’ RN, vol. 14, no. 10, p. 24,
2014.

[3] D. Pagano and W. Maalej, ‘‘User feedback in the appstore: An empirical
study,’’ in Proc. 21st IEEE Int. Requirements Eng. Conf. (RE), Jul. 2013,
pp. 125–134.

[4] E. Guzman andW.Maalej, ‘‘How do users like this feature? A fine grained
sentiment analysis of app reviews,’’ in Proc. IEEE 22nd Int. Requirements
Eng. Conf. (RE), Aug. 2014, pp. 153–162.

[5] C. Iacob and R. Harrison, ‘‘Retrieving and analyzing mobile apps feature
requests from online reviews,’’ in Proc. 10th Work. Conf. Mining Softw.
Repositories (MSR), May 2013, pp. 41–44.

[6] L. V. G. Carreno and K. Winbladh, ‘‘Analysis of user comments:
An approach for software requirements evolution,’’ in Proc. 35th Int. Conf.
Softw. Eng. (ICSE), May 2013, pp. 582–591.

[7] W. Maalej, Z. Kurtanovic, H. Nabil, and C. Stanik, ‘‘On the auto-
matic classification of app reviews,’’ Requirements Eng., vol. 21, no. 3,
pp. 311–331, Sep. 2016.

[8] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and
H. C. Gall, ‘‘How can i improve my app? Classifying user reviews for
software maintenance and evolution,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2015, pp. 281–290.

[9] A. Bacchelli, T. Dal Sasso,M.D’Ambros, andM. Lanza, ‘‘Content classifi-
cation of development emails,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE),
Jun. 2012, pp. 375–385.

[10] Y. Zhou, Y. Tong, R. Gu, and H. Gall, ‘‘Combining text mining and data
mining for bug report classification,’’ J. Softw., Evol. Process, vol. 28, no. 3,
pp. 150–176, Mar. 2016.

[11] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, ‘‘Is
it a bug or an enhancement?: A text-based approach to classify change
requests,’’ in Proc. Conf. Center Adv. Stud. Collaborative Res. Meeting
Minds (CASCON). New York, NY, USA: Association Computing Machin-
ery, 2008, pp. 304–318, doi: 10.1145/1463788.1463819.

[12] S. Bird, ‘‘NLTK: The natural language toolkit,’’ in Proc. ACL Workshop
Effective Tools Methodologies Teaching Natural Lang. Process. Comput.
Linguistics. Philadelphia, PA, USA: Association Computing Machinery,
2002, pp. 1–8.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Dis-
tributed representations of words and phrases and their composition-
ality,’’ in Proc. 26th Int. Conf. Neural Inf. Process. Syst. Red Hook,
NY, USA: Curran Associates, 2013, pp. 3111–3119. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999792.2999959

[14] Q. Umer, H. Liu, and Y. Sultan, ‘‘Emotion based automated priority
prediction for bug reports,’’ IEEE Access, vol. 6, pp. 35743–35752, 2018.

[15] Q. Umer, H. Liu, and Y. Sultan, ‘‘Sentiment based approval predic-
tion for enhancement reports,’’ J. Syst. Softw., vol. 155, pp. 57–69,
Sep. 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121219301104

[16] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, ‘‘Sentiment polarity
detection for software development,’’ Empirical Softw. Eng., vol. 23, no. 3,
pp. 1352–1382, Jun. 2018, doi: 10.1007/s10664-017-9546-9.

[17] S. Baccianella, A. Esuli, and F. Sebastiani, ‘‘Sentiwordnet 3.0:
An enhanced lexical resource for sentiment analysis and opinion
mining,’’ in Proc. LREC, 2010, pp. 2200–2204.

[18] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, ‘‘Deep neural
network-based severity prediction of bug reports,’’ IEEE Access, vol. 7,
pp. 46846–46857, 2019.

[19] Q. Umer, H. Liu, and I. Illahi, ‘‘CNN-based automatic prioritization of
bug reports,’’ IEEE Trans. Rel., early access, Dec. 31, 2019, doi: 10.1109/
TR.2019.2959624.

[20] B. Wang, ‘‘Disconnected recurrent neural networks for text categoriza-
tion,’’ inProc. 56th Annu.Meeting Assoc. Comput. Linguistics. Melbourne,
VIC, Australia: Association Computational Linguistics, vol. 1, 2018,
pp. 2311–2320. [Online]. Available: https://www.aclweb.org/anthology/
P18-1215

[21] J. Hellerstein, T. Jayram, and I. Rish, ‘‘Recognizing end-user transactions
in performance management,’’ Tech. Rep., 2000, pp. 596–602.

[22] M. Bano and D. Zowghi, ‘‘A systematic review on the relationship between
user involvement and system success,’’ Inf. Softw. Technol., vol. 58,
pp. 148–169, Feb. 2015.

[23] D. Pagano and B. Bruegge, ‘‘User involvement in software evolution prac-
tice: A case study,’’ in Proc. 35th Int. Conf. Softw. Eng. (ICSE), May 2013,
pp. 953–962.

[24] E. C. Groen, J. Doerr, and S. Adam, ‘‘Towards crowd-based requirements
engineering a research preview,’’ in Proc. Int. Work. Conf. Requirements
Eng., Found. Softw. Qual. Springer, 2015, pp. 247–253.

[25] T. Johann and W. Maalej, ‘‘Democratic mass participation of users in
requirements engineering?’’ in Proc. IEEE 23rd Int. Requirements Eng.
Conf. (RE), Aug. 2015, pp. 256–261.

[26] N. Seyff, F. Graf, and N. Maiden, ‘‘Using mobile RE tools to give end-
users their own voice,’’ in Proc. 18th IEEE Int. Requirements Eng. Conf.,
Sep. 2010, pp. 37–46.

VOLUME 8, 2020 185627

http://dx.doi.org/10.1145/1463788.1463819
http://dx.doi.org/10.1007/s10664-017-9546-9
http://dx.doi.org/10.1109/TR.2019.2959624
http://dx.doi.org/10.1109/TR.2019.2959624


N. Aslam et al.: CNN Based Classification of App Reviews

[27] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, ‘‘What makes a good bug report?’’ in Proc. 16th
ACM SIGSOFT Int. Symp. Found. Softw. Eng. (SIGSOFT/FSE), 2008,
pp. 308–318.

[28] A. Ciurumelea, S. Panichella, and H. C. Gall, ‘‘Automated user reviews
analyser,’’ in Proc. 40th Int. Conf. Softw. Eng., Companion. New York,
NY, USA: Association Computing Machinery, May 2018, p. 317, doi: 10.
1145/3183440.3194988.

[29] L. Hoon, R. Vasa, J. G. Schneider, and J. Grundy, ‘‘An analysis of the
mobile app review landscape: Trends and implications,’’ Fac. Inf. Com-
mun. Technol., Swinburne Univ. Technol., Melbourne, VIC, Australia,
Tech. Rep., 2013.

[30] T. Zhang, H. Li, Z. Xu, J. Liu, R. Huang, and Y. Shen, ‘‘Labelling issue
reports in mobile apps,’’ IET Softw., vol. 13, no. 6, pp. 528–542, Dec. 2019.

[31] M. Harman, Y. Jia, and Y. Zhang, ‘‘App store mining and analysis: MSR
for app stores,’’ in Proc. 9th IEEE Work. Conf. Mining Softw. Repositories
(MSR), Jun. 2012, pp. 108–111.

[32] R. Chandy and H. Gu, ‘‘Identifying spam in the iOS app store,’’ in
Proc. 2nd Joint WICOW/AIRWeb Workshop Web Qual. WebQuality, 2012,
pp. 56–59.

[33] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, ‘‘Why people
hate your app: Making sense of user feedback in a mobile app store,’’
in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2013, pp. 1276–1284.

[34] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, ‘‘AR-miner: Mining
informative reviews for developers frommobile appmarketplace,’’ inProc.
36th Int. Conf. Softw. Eng. (ICSE), 2014, pp. 767–778.

[35] D. Martens and W. Maalej, ‘‘Towards understanding and detecting
fake reviews in app stores,’’ Empirical Softw. Eng., vol. 24, no. 6,
pp. 3316–3355, May 2019, doi: 10.1007/s10664-019-09706-9.

[36] Y. Ekanata and I. Budi, ‘‘Mobile application review classification for the
Indonesian language using machine learning approach,’’ in Proc. 4th Int.
Conf. Comput. Technol. Appl. (ICCTA), May 2018, pp. 117–121.

[37] E. Cambria, ‘‘Affective computing and sentiment analysis,’’ IEEE Intell.
Syst., vol. 31, no. 2, pp. 102–107, Mar. 2016.

[38] A. Hussain and E. Cambria, ‘‘Semi-supervised learning for big
social data analysis,’’ Neurocomputing, vol. 275, pp. 1662–1673,
Jan. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231217316363

[39] Y.Wang, F. Yin, J. Liu, andM. Tosato, ‘‘Automatic construction of domain
sentiment lexicon for semantic disambiguation,’’ Multimedia Tools Appl.,
vol. 79, nos. 31–32, pp. 22355–22373, Aug. 2020.

[40] Y. Ma, H. Peng, T. Khan, E. Cambria, and A. Hussain, ‘‘Sentic LSTM:
A hybrid network for targeted aspect-based sentiment analysis,’’ Cognit.
Comput., vol. 10, pp. 639–650, Mar. 2018.

NAILA ASLAM received the B.S. and M.S.
degrees in computer science from The Islamia
University of Bhawalpur, Pakistan, in 2011 and
2015, respectively. She is currently pursuing the
Ph.D. degree with the Hebei University of Tech-
nology, Tianjin, China. She joined the Khwaja
Fareed University of Engineering and Information
Technology, Rahim Yar Khan, Pakistan, as a Lec-
turer, in 2016. Her main research interests include
artificial intelligence, the IoT, big data mining, and
machine learning.

WAHEED YOUSUF RAMAY received the Ph.D.
degree in computer science from the University
of Science and Technology Beijing, China. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, COMSATSUniversity
Islamabad, Pakistan. His research interests include
machine learning, software maintenance, and data
mining.

KEWEN XIA received the Ph.D. degree in elec-
tronics from Xi’an Jiaotong University, China,
in 2003. He is currently a Professor and Ph.D.
Candidate Supervisor with the Hebei Univer-
sity of Technology, China. His research interests
include computational intelligence and wireless
communication technology.

NADEEM SARWAR is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Software Engineering, International
Islamic University Islamabad, Pakistan. Since,
he has been working as a Senior Lecturer with the
Department of Computer Science, Bahria Univer-
sity, Lahore. He has eight years of teaching and
research experience. He has published more than
35 international and national Journal/conference
publications in the last five years with 81 cita-

tions. He has also authored a book chapter. His current research interests
include artificial intelligence, the IoT, big data, and machine learning. He has
also worked as a Reviewer of the IEEE 6th International Conference on
Innovative Computing Technology (INTEC 2016) Dublin, Ireland. He is
working as a Reviewer of IEEE ACCESS and Proceedings of the Pakistan
Academy of Sciences (Pakistan Science Foundation) and as an Editorial
Board Member of Mathematics and Computer Science (Science Publishing
Group), the SCIREA Journal of Computer, and the Indonesian Journal of
Electrical Engineering and Computer Science.

185628 VOLUME 8, 2020

http://dx.doi.org/10.1145/3183440.3194988
http://dx.doi.org/10.1145/3183440.3194988
http://dx.doi.org/10.1007/s10664-019-09706-9

