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ABSTRACT In this article, we implement fast and power-efficient training hardware for convolutional neural
networks (CNNs) based on CMOS invertible logic. The backpropagation algorithm is generally hard to
implement in hardware because it requires high-precision floating-point arithmetic. Even though parameters
of CNNs can be represented by fixed points or even binary during inference, it is still represented by floating
points during training. Our hardware uses low-precision data representation for both inference and training.
For hardware implementation, we exploit CMOS invertible logic for training. The use of invertible logic
enables logic circuits to compute probabilistic bidirectional operation (forward and backward modes) and
can be implemented by stochastic computing. The proposed hardware obtains parameters of neural networks
such as weights directly from given data (an input feature map and a true label) without backpropagation. For
performance evaluation, the proposed hardware is implemented on an FPGA and trains a binarized 2-layer
convolutional neural network model using a modifiedMNIST dataset. This implementation shows an energy
efficiency improvement of approximately 134x compared to that of a CPU implementation that executes the
training of the same model as that used in the proposed hardware. Training on the proposed hardware is
approximately 40x faster than training on the CPU using the backpropagation algorithm while maintaining
almost the same cognition accuracy.

INDEX TERMS CMOS invertible logic, neural network, stochastic computing.

I. INTRODUCTION
Advances in the development of deep neural networks
(DNNs) [1] have led to the explosive growth of their use in AI
applications such as image cognition [2] and speech cognition
[3]. The growth of in the use of DNNs has led to a demand
for deep-learning (DL) hardware accelerators for inference
and training that are two main processes of DNNs. Hard-
ware accelerators for inference have been implemented using
field-programmable gate arrays (FPGAs) [4] or application
specific integrated circuits (ASICs). In addition, the pro-
cess of inference can be simplified through low-precision
computing such as fixed-point arithmetic [5] or binary pre-
cision [6], [7]. For example, inference of binarized neural
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networks (BNNs) can be implemented by XNOR gates and
bit counters because of binarized activations and weights [6].

However, the hardware for training has less focus than that
for inference [8]. A general algorithm of training DNNs is
backpropagation [9], which requires floating-point computa-
tions. Even BNNs that use binarized weights during infer-
ence require floating-point computations for their training
[6]. Several studies on training hardware using the back-
propagation algorithm have recently been reported [10]–[12].
Training using a hardware accelerator [10], [11] shows
insufficient improvement in terms of latency compared
to the improvement obtained for inference carried out
on the same accelerator. Moreover, these works require
floating-point arithmetic during training even though they
represent low-precision data during inference.

In traditional training, parameters of the DNNs, such as
weights, are updated by error propagated backward, which
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is represented by floating-point arithmetic. Backpropaga-
tion performs many floating-point computations, and thus,
it is difficult to implement the training hardware with back-
propagation. Usually, training processes are accelerated by
graphical processing units (GPUs) based on floating-point
processing-oriented architectures. However, the GPU-based
acceleration is still time-consuming (e.g., several days)
when training a large number of data and has high power
consumption [13].

In this article, we implement energy-efficient training
hardware using CMOS invertible logic. Invertible logic pro-
vides a capability for probabilistic bidirectional operations
(forward and backward modes) [14] using a nanomagnetic
device model [15] and a Boltzmann machine [16]. The device
model can be implemented by a magnetic tunnel junctions
[17] or approximated by stochastic computing that repre-
sents CMOS invertible logic [18]. In our previous study,
the hardware implementation of CMOS invertible logic was
limited to training hardware for a single binarized percep-
tron [19]. In this work, the application of the training hard-
ware is expanded to binarized convolutional neural networks
(BCNNs). Invertible circuits compute inputs corresponding
to a given output on a backward operation. Through the
backward operation, the proposed training hardware can
directly obtain the weights of DNNs without backpropaga-
tion. Furthermore, invertible logic circuits can operate similar
to the typical logic gates at the forward mode; thus, the pro-
posed training hardware can perform inference if the input
data and weights are given. This means that inference and
training can be run on the same hardware with the same
precision.

For evaluation, the proposed hardware trains a 2-layer
BCNN model that contains 2 binarized convolutional layers.
This network model contains only convolutional layers and
has binarized weights of filters without biases. A simpli-
fied and binarized Modified National Institute of Standard
and Technology (MNIST) dataset [20] is used to train and
test the model. The proposed hardware trains the modified
dataset and obtains binarized weights for the model. It is
implemented on a Xilinx Kintex-7 FPGA under a clock
frequency of 12.5 MHz. Training using the proposed hard-
ware achieves approximately 40x faster latency than that of
traditional training on a CPU while maintaining almost the
same cognition accuracy. In addition, the training hardware
demonstrates a power efficiency improvement of approxi-
mately 134x compared to that of the CPU used to perform
traditional training.

The contribution of this work is to extend the application of
the invertible hardware to the training of multilayer BCNNs
without backpropagation. In realizing the training hardware
for BCNNs using CMOS invertible logic, a main issue is
converting convolution functions to a Hamiltonian that serves
as the basis of the CMOS invertible circuit. The conversion
method that is introduced in this article is a solution to
the floating-point arithmetic-free training that can be imple-
mented on the CMOS invertible hardware. The proposed

FIGURE 1. The computation processes of the 2D convolution function.
The filter is multiplied while shifting over the input feature map, and fact
is the activation function.

hardware can perform training with the same precision on
the same hardware as performing inference because it uses
the bidirectional operation on CMOS invertible logic.

The rest of this article is organized as follows. Section II
reviews binarized neural networks and backpropagation.
Section III introduces CMOS invertible logic. Section IV
designs the Hamiltonian corresponding to the the BCNN
model. Section V implements the proposed training hardware
using the Hamiltonian designed in Section IV. Section VI
introduces the test environment including the BCNN model
and the dataset. Section VII evaluates the performance of the
proposed hardware and compares this hardware implemen-
tation to the CPU and GPU implementations. Section VIII
concludes the paper.

II. PRELIMINARIES
A. INFERENCE OF THE BCNN
Many recent models of DNNs consist of CNNs composed
of multiple convolution functions (convolution layers) shown
in Fig. 1. The convolution function multiplies the weights of a
shifting filter over the input data called the input feature map
and applies an accumulator on the results of the multiplica-
tion. After calculating y, the activation function fact is applied
on y in order to construct a much deeper NN model [21].
The output of the convolution function is an output feature
map z, which is the input data for the next convolution layer.
To reduce memory usage or power consumption, DNNs with
low-precision data representation such as binarized convolu-
tional neural networks (BCNNs) have been investigated.

BCNNs represent weights and activations using binary pre-
cision (+1,−1) during forward propagation [6]. The weights
and activations are binarized using two different functions:
deterministic and stochastic binarization. The deterministic
binarization function is the sign function:

xb = Sign(x) =

{
+1 x ≥ 0,
−1 x < 0,

(1)

where xb are the binarized weights or activations. The second
binarization function uses the hard sigmoid function:

σ = max(0,min(1,
x + 1

2
)), (2)

and is defined as:

xb =

{
+1 p = η(x),
−1 1− p.

(3)
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FIGURE 2. Concept of bidirectional operation (forward and backward)
based on invertible logic. The output is obtained from the fixed input at
the forward mode. In contrast, the output is fixed, and the input is
obtained at the backward mode.

The multiplication of binarized weights and activation can
be implemented using XNOR gates and bit counters. For
example, the result of multiplication when xb = 1 and
W b
= −1 is the same as the output of the XNOR gate when

its inputs are 0 and 1. Because the results of multiplication
also have binary representation, summation is realized using
the bit counter.

B. TRAINING OF THE BCNN
Backpropagation is a training algorithm that updates the
parameters of DNNs with a gradient of an output error
[9]. The error is calculated by an error function, E , that
computes the differences between the output obtained from
forward propagation, and the actual output given as a true
label. After the error is calculated, the gradients of the error
obtained by the chain rule are backpropagated through the
entire network model. Parameters are updated by these back-
propagated gradients according to the following equation:
W ′ = W − η · ∂E/∂W , where η is a learning rate. Back-
propagation realizes a high cognition accuracy with DNNs,
but it requires high-precision floating-point computations to
maintain this accuracy. The floating-point arithmetic causes
inefficiency with regard to energy consumption and leads
to a low training speed. The weights and activations of the
BCNNs are binarized during forward propagation. Despite
the binarized parameters, the BCNNs update real-valued
parameters using gradients that are calculated from bina-
rized parameters. Therefore, BCNNs require floating-point
arithmetic to precisely represent the gradients.

III. CMOS INVERTIBLE LOGIC
A. HAMILTONIAN DESIGN
Invertible logic [14] realizes probabilistic bidirectional oper-
ations (forward and backward modes) shown in Fig. 2. At the
forward mode with fixed inputs, invertible logic circuits oper-
ate as typical logic circuits. In contrast, inputs are obtained
corresponding to the fixed output in the backward mode. This
unique feature of invertible logic is derived from a Boltz-
mann machine [16] and a nanomagnetic device model [14].

FIGURE 3. A Hamiltonian configuration of an invertible XNOR gate. A and
B are inputs of the XNOR gate, Y is the output, and p is the arbitrary
node. h and J are obtained from the ground-state spin logic.

The invertible logic circuit is a network of nodes with a bias
(h) and interaction weights (J ). These h and J are determined
by aHamiltonian (H ) that represents an energy of the network
and H is given by

H = −
∑
i

himi −
∑
i<j

Jijmimj, (4)

where mi = [−1,+1] means an output of a node. Fig. 3
shows a configuration of an invertible XNOR gate obtained
by the H . The invertible XNOR gate has 2 input nodes
(A and B), an output node (Y), and an arbitrary node (p) that
does not correspond to the inputs and the output of the
gate. The h and J for basic logic gates such as the XNOR
gate can be obtained by ground-state spin logic [22], [23].
In invertible logic, the h and J are determined so that the
Hamiltonian (energy) is minimum in the valid state, and in
contrast, the Hamiltonian is greater than the minimum in
the invalid state according to the truth table. For example,
the truth table of the XNOR gate and states of nodes are
shown in Table 1 including the energy at each states. When
[A, B, p, Y] is [0, 0, 0, 1], the state is valid as the XNOR gate;
therefore, the energy takes the minimal value−4. The correct
state of the arbitrary node is regarded as an OR gate output
of two inputs. As shown in the Table 1, the h and J for the
minimum energy to be −4 are given by:

hi =
[
−1 −1 +2 +1

]
, (5a)

Jij =


0 −1 +2 +1
−1 0 +2 +1
+2 +2 0 −2
+1 +1 −2 0

. (5b)

The states of the input and output nodes are calculated by the
following equations:

mi(t + τ ) = sgn(rnd(−1,+1)+ tanh(Ii(t + τ ))), (6a)

Ii(t + τ ) = I0(hi +
∑

Jijmj(t)), (6b)

where I0 is a scaling factor, sgn is the sign function,
and rnd(−1,+1) is a random value between −1 and +1.
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TABLE 1. Energy of the invertible XNOR gate. It has 4 nodes; thus,
the combinations of the state are 24 in total. When every state is correct
as the XNOR gate, the h and J are determined so that the energy is
minimal. −1 means logical value ‘0’ and +1 means ‘1’. The minimal
energy is −4 in case of the XNOR gate.

FIGURE 4. FSM of approximated tanh function using stochastic
computing. The number of states in FSM is determined by MVAL.

By calculating Eq. 6a and Eq. 6b, the energy decreases to the
minimum so that all nodes lead to the valid state. The invert-
ible circuit realizes the bidirectional operation of a function
required for the circuit by minimizing the energy.

B. CIRCUIT DESIGN USING STOCHASTIC COMPUTING
An operation of nodes can be approximated by CMOS
devices for implementation on FPGAs or ASICs with
stochastic computing [18]. Stochastic computing represents
real values as frequencies of ‘1’ in stochastic bit streams [24].
It can be categorized into binary stochastic computing and
integer stochastic computing according to the range of the real
value represented by the stochastic bit stream. Let us denote
by Px a probability of appearance of ‘1’ in the stochastic bit
stream x ∈ {0, 1}. In binary stochastic computing, the real
value X ∈ [−1 : 1] is represented by 2 · Px − 1. In con-
trast, integer stochastic computing represents the real value,
X ∈ [−r : r], where r ∈ {1, 2, . . .}, using one or more bit
streams x ∈ [−r : r].
Some functions such as multiplication or tanh are imple-

mented in the hardware in an area-efficient manner using
stochastic computing [25], [26]. A tanh function in Eq. 6a is
approximated in a finite state machine (FSM) shown in Fig. 4,
and Stanh (stochastic tanh function) is given by:

Stanh(MVAL, x) ≈ tanh(x ·MVAL/2), (7)

where MVAL is the number of states. MVAL changes the
slope of the Stanh function; for example, if MVAL is larger,
the slope of Stanh increases [25].

FIGURE 5. Block diagram of a spin gate that composes a node block.
Eqs. (8a) and (8b) are implemented in the spin gate circuit. mi is the
output of the spin gate that is represented in a binary stochastic bit
stream.

In Eq. 6a, the output bit stream of Stanh must be summed
with a random value, rnd , requiring stochastic addition. As an
alternative, the weighted noise source with the corresponding
magnitude denoted as nrnd is summed alongside input signals,
and then, Eqs. (6a) and (6b) are approximated as

mi(t + τ ) ≈ sgn(tanh(Ii(t + τ ))), (8a)

Ii(t + τ ) ≈ hi +
∑

Jijmj(t)+ nrnd · sgn(rnd(−1,+1)),

(8b)

where I0 can be included in h and J . The output, mi, is rep-
resented by binary stochastic computing so that ‘‘mi = −1’’
means a logical value of ‘0’ and ‘‘mi = +1’’ means ‘1’. For
computation of nodes, Eqs. (8a) and (8b) are implemented
in a spin gate circuit as shown in Fig. 5 using binary and
integer stochastic computing. The input and output of the
spin gate are represented in a binary stochastic bit stream as
Mi = (mi + 1)/2 (Mi ∈ 0, 1), where Mi is the output of the
spin gate. The approximated Stanh function is implemented
using a saturated bit counter described in Fig. 5. The spin
gate computes the output based on Eq. 8a and (8b) when it
is unfixed, and in contrast, when the spin gate is fixed, it just
delivers the fixed input value.

In this article, the proposed training hardware for BCNNs
is designed based on CMOS invertible logic. To implement
the invertible training hardware, a function used in the train-
ing process of DNNs needs to be converted to the Hamilto-
nian. The conversion method is explained in the following
section.

IV. DESIGN OF THE HAMILTONIAN TO TRAIN THE BCNN
A. HAMILTONIAN DESIGN OF A CONVOLUTION FUNCTION
A convolutional function generates output feature maps while
shifting filters on input feature maps, so its process is
represented by sequential logic. To implement the CMOS
invertible logic circuit that computes the convolutional layer,
the convolutional function should be converted to the Hamil-
tonian; however, only a function that is represented by com-
binational logic can be converted to the Hamiltonian. For
example, functions implemented in the invertible logic circuit
can be represented by combinational logic in [18] and [19].
To convert the convolutional function to the Hamiltonian,
the sequential process should be represented by combina-
tional logic. The convolutional function can be mapped to
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FIGURE 6. Mapping convolution functions to the matrix multiplication for
the conversion of the Hamiltonian. The convolution function is
represented by sequential logic. The input feature map and the filter can
be stretched to the matrix so that the convolution function becomes
matrix multiplication represented by combinational logic.

a matrix multiplication for high-speed computation and par-
allelization even though this results in inefficient memory
storage [27].

Fig. 6 shows that the convolution function is mapped to the
matrix multiplication. This mapping technique can be used
to convert the convolution in the Hamiltonian. A local region
filtered by the moving weight feature map is stretched in a
row while duplicating pixels that are calculated repeatedly.
The input feature map and the filter are expressed as the
matrix; thus, the convolution is realized as the matrix multi-
plication. Each multiplication of rows, x, and columns, W is
implemented in a multiplier and an adder that are represented
by combinational logic so that it can be converted to the
Hamiltonian.

B. HAMILTONIAN DESIGN OF A 2-LAYER BCNN
The convolutional function is converted to the Hamiltonian
by representing the sequential process as combinational logic.
In [6], the binarized matrix multiplication is computed by
XNOR gates and a bit counter, as well as an activation func-
tion that is defined as Eq. 1. For example, the convolution
in Fig. 6 is converted to the Hamiltonian through the process
described in Fig. 7. The binary multiplication is implemented
to a computation block that consists of four XNOR gates,
a 4-input bit counter and a threshold function. The Hamilto-
nian of this computation block is composed of a combination
of small Hamiltonians that are obtained from components
in the computation block such as the XNOR gate, and the
mechanism of combining H is described in [18]. In the case
of Fig. 7, there are four computation blocks for parallel
multiplication, and each block is converted to Hamiltonians
consisting of 4 input nodes, 4 weight nodes, an output node,
and several arbitrary nodes.

When the computation blocks are converted to the Hamil-
tonians, the input nodes and the weight nodes in each Hamil-
tonian are duplicated because the convolutional function is
mapped to the matrix multiplication. Duplicated nodes such
as x2 orW1 have the same input value and need to generate the
same output value. It is difficult to synchronize these stochas-
tic nodes, and a hardware area becomes inefficient as the
number of nodes increases. By overlapping duplicated nodes,
the convolutional layer can be converted to the Hamiltonian
possessing the same number of input and weight nodes as
those of the convolutional layer. Two x2 nodes in Fig. 7 are

FIGURE 7. Conversion of binarized convolution functions to the
Hamiltonian. The binary matrix multiplication that is mapped from the
binarized convolution is implemented to the computation block, which
consists of XNOR gates, the bit counter, and the threshold. Computation
blocks are converted to the Hamiltonians, and the Hamiltonians are
combined while overlapping duplicated nodes.

FIGURE 8. Hamiltonian configuration of a 7-input bit counter. The bit
counter counts ‘1’ of the input, and its output is a 3-bit wise integer
ranging from 0 to 7.

overlapped into a single node, and the mechanism of nodes
overlapping is same as that of combining small Hamiltonians.
The number of the nodes in the Hamiltonian is restrained so
that the training hardware based on this Hamiltonian can be
implemented in an area-efficient manner.

In this article, a 2-layer BCNN model is converted to the
Hamiltonian. To convert the BCNN model, the Hamiltonians
of an XNOR gate, saturated bit counter, threshold function,
and ripple carry adder (RCA) are required. Fig. 8 is a Hamil-
tonian configuration of the 7-input bit counter, and Fig. 9
is a threshold function. The RCA is used to accumulate the

188008 VOLUME 8, 2020



D. Shin et al.: Training Hardware for Binarized CNN Based on CMOS Invertible Logic

FIGURE 9. Hamiltonian configuration of a threshold function. The
Hamiltonian of the threshold function has five input nodes, representing
a 5-bit integer, an output node, and five arbitrary nodes. The threshold
function operates in the same manner as a sign function, and its
threshold value is 13 because each input node is represented by
‘1’ and ‘0.’

FIGURE 10. The Hamiltonian of the proposed training hardware for the
2-layer BCNN modes consists of 2645 nodes, of which 25 are input
feature map nodes (x), 25 are first-layer weight nodes (W 1), 75 are
second-layer weight nodes (W 2), 3 are true label nodes (t), and the
remaining nodes are arbitrary nodes.

output of a bit counter because a 7-input bit counter does
not have a sufficient number of inputs for a 5 × 5 filter. If
a bit counter that has a greater number of inputs is used,
the RCA can be removed, which decreases the number of
nodes in the Hamiltonian. However, the Hamiltonian of the
bit counter that has more than 7 inputs is difficult to obtain
by ground-state spin logic because the number of nodes is too
large. Combining these Hamiltonians, entire convolutional
layers are converted to a single Hamiltonian that can be
implemented to the hardware. Fig. 10 demonstrates the sim-
plified Hamiltonian configuration of the proposed training
hardware. It contains 2,645 nodes, of which 25 are input
feature map nodes (x), 25 are first-layer weight nodes (W 1),
75 are second-layer weight nodes (W 2), 3 are true label nodes
(t), and the remaining nodes are arbitrary nodes.

V. HARDWARE IMPLEMENTATION
A. HARDWARE ARCHITECTURE
Fig. 11 shows a structure of the proposed training hardware
that is composed of a nodes block, a controller, and a random
number generator. The proposed hardware trains the weights
of the 2-layer BCNN that contains the inputs, x, weights of a
first layer,W 1, weights of a second layer,W 2, and outputs, t .
Each element of x and W is represented by binary precision

FIGURE 11. Structure of the proposed training hardware. The XOR-shift
generates the random number sgn(rnd (−1,+1)). The controller manages
the noise signal nrnd using several parameters. The node block is
composed of nodes based on the Hamiltonian.

FIGURE 12. Parameterized noise signal, nrnd , controlled by the noise
parameters. The noise signal is characterized by four parameters, namely,
RNDWEIGHT , T , MVAL, and α. The magnitude of the noise maintains the
same value during all phases. In the second phase, the output of the
nodes is determined.

because the proposed hardware uses the same precision that is
used in the inference. The XOR-shift random number gener-
ator [28] generates a noise signal, rnd(−1,+1), in Eq. 8b.
The magnitude of the noise signal, nrnd is controlled by
the controller through several parameters. The noise, nrnd ,
ensures that the states of the nodes achieve the correct value
and that the Hamiltonian converges to the global minimum.
Similar to simulated annealing [29], the states of the nodes
of the CMOS invertible circuits are fluctuated by the noise
signals. The proposed hardware uses the parameterized flat
noise, nrnd , shown in Fig. 12, unlike the gradually decreasing
noise signals that are usually used in simulated annealing.
RND_WEIGHT is the magnitude of the noise signal, and T is
the number of the clock cycle in which the noise signal affects
the node block. The input and first-layer weight nodes have
a large number of interconnections than other nodes because
they are overlapped nodes. In these nodes, for a correct effect
at the nodes, the noise signals are scaled as follows:

n′rnd = 2α · nrnd , (9)

where α is a scaling factor, and nrnd is a noise signal shown
in Fig. 12.

A structure of the node block is illustrated in Fig. 13. The
nodes of the nodes block are categorized according to the
Hamiltonian that is obtained from the 2-layer BCNN, and
the details of the 2-layer network model are introduced in
Section VI. When the proposed hardware performs training,
the input and label nodes are fixed. The outputs of other nodes
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FIGURE 13. Structure of the node block that consists of spin gates. The
nodes in the node block are categorized according to the Hamiltonian.
The input and label nodes are fixed, and the weight nodes are fluctuated
by the noise signal. The noise of the input and the first layer weight
nodes is scaled using α because they have a larger number of
connections than other nodes.

FIGURE 14. The invertible training algorithm of the proposed hardware.
A flow chart describes the process of the training algorithm until cycle 2T .
sw is the outputs of weight nodes. x and t in this flow chart represent the
individual training data and true label, respectively, rather than the entire
dataset.

such as weight and arbitrary nodes are not fixed, so they are
fluctuated by the nrnd , and their states and the states of other
nodes are governed by Eqs. (8a) and (8b). The nodes are
implemented by spin gates described by Eqs. (8a) and (8b)
, and the spin gate circuit is described in Fig. 5.

B. INVERTIBLE TRAINING ALGORITHM
A training algorithm of the proposed hardware is designed
based on an invertible binarized perceptron developed in our
previouswork [19]. The proposed hardware trains each datum
in parallel and obtains the temporal weights, w, correspond-
ing to each trained datum. Fig. 14 shows the process of

FIGURE 15. Description of the 2-layer BCNN that the proposed hardware
trains. It contains 2 binarized convolutional layers, C1 and C2, which have
5× 5-pixel filters.

obtaining each w during a 1-shot (2T cycles). While training,
an operation of the nodes is divided into two phases, and the
first and second phases are shown in Fig. 12. The nodes are
fluctuated by noise signals, and the output of the nodes is not
determined during the first phase. During the second phase,
the proposed hardware accumulates wtmp using outputs of the
weight nodes, sw, and then, w is determined as wtmp/T . The
obtained w is checked for validity using its corresponding
training data. The proposed hardware counts this 2T cycles
process as one shot. The number of shots depends on the
training data because the training of each datum finishes at
different number of shots Ndata. The total number of clock
cycles, Ncycle, during which the hardware trains all of the
dataset determines the training time of the proposed hardware
and is defined as

Ncycle = 2T · Ndata. (10)

The proposed hardware performs this process for the entire
dataset and obtains w equivalent to the number of data. The
proposed hardware determines the weights of the trained
BCNN model, W , by averaging all w of the values. After
obtaining W , W is evaluated for the accuracy of the trained
model using the test data.

VI. EXPERIMENT SETUP
A. DATASET AND NETWORK
Fig. 15 illustrates the 2-layer neural network that the proposed
hardware trains. It contains 2 binarized convolutional layers
without biases, a threshold function as an activation, and an
output layer. A C1 layer takes 9 × 9-pixel images of the
input feature maps and calculates the convolution using a
5× 5-pixel filter; thus, its output feature map is 5× 5 pixels.
A C2 layer has three 5 × 5-pixel filters and generates a
classification label.

The training dataset is a modified MNIST dataset of
9×9-pixel binary images shown in Fig. 16. The simplification
has 3 steps, and each step is described as follows. First,
images of ‘0’, ‘1’, and ‘5’ are extracted from the original
MNIST, and true labels are attached. Second, these images
are shrunk to 9 × 9-pixel images. Finally, the images are
binarized using adaptive thresholding with a Gaussian filter.
The dataset includes 10,800 training images and 3600 testing
images. Images of ‘0’, ‘1’, and ‘5’ are used in the training
2-layer BCNN because they are easy to distinguish from each
other after the binarization.
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FIGURE 16. Dataset modification from the MNIST dataset. The modified
dataset consists of images of ‘0,’ ‘1,’ and ‘5’ that are shrunk to 9× 9 pixels
and binarized.

TABLE 2. Resource utilization for the proposed training hardware on
FPGA. The FPGA board is a Digilent Genesys2 (Kintex-7) The proposed
training hardware consumes 83.57% of LUT and 10.54% of FF.

B. TEST ENVIRONMENT
The proposed training hardware is implemented on an FPGA.
The FPGA board is a Digilent Genesys2 powered by an Xil-
inx Kintex-7. The hardware is designed using SystemVerilog,
and it is synthesized by Xilinx Vivado 2018.3. The power
dissipation is 0.913 W with a clock frequency of 12.5 MHz,
and the utilization of the FPGA resources is summarized
in Table 2. The implemented hardware is controlled by the
PC using Python 3.6. Training data and labels are delivered
by a universal asynchronous receiver/transmitter (UART),
including noise parameters. After the hardware trains the
given input data, it outputs the temporal weights to the PC.
The PC receives weights and tests them with the network that
the hardware trains by Python.

The training on the proposed hardware is compared with
the conventional training with backpropagation on a CPU and
GPU. Conventional training executed on a CPU with Python
running on an Intel Core i7 7800X@ 4.4 GHz, and the power
dissipation of the CPU is 122.0 W. The conventional method
also is implemented on a GPU, which is an Nvidia Geforce
GTX 1060 with 6 GB memory.

VII. EVALUATION
A. NOISE OPTIMIZATION
To achieve high cognition accuracy, an appropriate combi-
nation of noise parameters is required. Parameterized noise
signals that are used in the proposed hardware have four
parameters, namely, RND_WEIGHT , MVAL, T , and α. To
optimize the parameters, all four noise parameters are swept,
the proposed hardware trains 100 data at each combina-
tion, and the cognition accuracy is verified using test data

after training. Table 3 is a list of parameters combinations
that achieve the top-4 cognition accuracy, and Fig. 17 shows
the accuracy of each combination while training 100 data.
The proposed hardware achieves 87.97% accuracy and trains
100 data in 66.85 ms for Prop1.

B. PERFORMANCE COMPARISONS
Before comparing the performance, the hyperparameters
of the conventional training algorithm must be optimized.
Fig. 18 shows the optimization of the learning rate ranging
from 0.0001 to 0.1 when the minibatch size is 100 and the
max epoch is 10. Since the accuracy is highest when the learn-
ing rate is 0.01, the results of this case are compared with the
proposed hardware. The 2-layer BCNN model has a simple
structure, and all of the weights and dataset are represented
in binary form. Because of this simple structure, the learning
rate did not significantly affect the training accuracy and
latency. The randomly selected data in a minibatch or the
initial values of the weights affected the training result.

The training on the proposed hardware is compared with
the conventional training that uses the same 2-layer BCNN.
Table 4 summarizes the performance comparison of the
proposed training hardware with the conventional method
implemented on a CPU and GPU. The conventional training
algorithm is the well-known backpropagation, with a learning
rate η of 0.01 and a minibatch size of 100. This algorithm
requires training the entire dataset 10 times (max epoch = 10)
to achieve the maximum cognition accuracy of 90.89% and
requires 2.68 s. The proposed hardware achieves an approxi-
mately 40x faster training time than the conventional training
on a CPU while maintaining almost the same cognition accu-
racy of 87.97%. The conventional training achieves 87.64%
accuracy with a max epoch number of 5, which is the same
as the maximum accuracy of the proposed hardware, and its
training time is 1.30 s. The proposed hardware is 19x faster
than the conventional training and even achieves the same
accuracy. The implemented training hardware in the FPGA
consumes 0.913 W, which is approximately 134x higher
energy efficiency than the power dissipation of the CPU.

The implementation on the GPU using the same model
with the same hyperparameters as the training on the CPU
obtains a training time of 5.88 s. The training time of the
proposed hardware is approximately 88x lower than that for
the GPU. Generally, the training process on the GPU is much
faster than that carried out on the CPU. However, the BCNN
model trained in this article consists of only two binary convo-
lution layers; thus, it is not a complicated structure compared
to other NN models such as LeNet-5. Moreover, the dataset

TABLE 3. Results of searching for combinations of noise parameters that achieve the top-4 cognition accuracy. The accuracy and the latency of the
proposed hardware depends on the noise parameters. The maximum accuracy is achieved for Prop1.
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FIGURE 17. Cognition accuracy comparison between different combinations of the noise parameters. The noise parameters have a
considerable effect on the training process.

TABLE 4. Performance comparisons between the proposed and conventional training. The proposed hardware trains 100 data in 66.85 ms and achieves a
maximum cognition accuracy of 87.97%, which is 3% less than the maximum accuracy of the conventional training.

FIGURE 18. Results of learning rate optimization. The trained BCNN
model has only two convolution layers, and its parameters are binary
precision. Therefore, the learning rate did not significantly affect the
training accuracy.

used for training contains 9× 9-pixel binary data, so training
on the CPU and GPU may not show much difference from
each other. A minibatch that includes 100 data is sent to
the GPU at each training step while training on the GPU.
Therefore, this data transfer becomes a bottleneck in GPU
training, causing high training latency. In terms of power dis-
sipation, the GPU consumes 29.2W during training, which is
approximately 32x more than that consumed by the proposed
hardware.

Fig. 19 shows accuracy versus latency by conventional
training under different max epoch numbers and the proposed
training. The learning rate of the conventional training is 0.01,

FIGURE 19. A plot of accuracy versus latency comparing the proposed
training with the conventional training with different max epoch
numbers. The proposed hardware achieves the maximum accuracy
of 87.97% in 66.85 ms, which is faster than the latency when the
conventional training reaches the maximum accuracy.

the minibatch size is 100, and the max epoch number of
each case is 1, 5, and 10. The conventional training reaches
the maximum accuracy of 90.89% after training the entire
dataset 10 times for 2.68 s. In contrast, the proposed hardware
achieves the maximum accuracy of 87.64% even though it
trains only 100 data in 66.85 ms.

Table 5 summarizes the comparison of the speedup over
a CPU implementation in the proposed hardware and other
hardware-based training implementation on an FPGA. The
F-CNN [30] presents an FPGA implementation using back-
propagation as the training algorithm. It trains the LeNet-5
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TABLE 5. Comparison between hardware-based training methods using
FPGAs. Although it is difficult to compare the proposed training hardware
with F-CNN because of the difference between the trained dataset and
NN model, our work improves the training latency by a factor of 40x,
which is much greater than the improvement obtained by F-CNN.

[31] with the MNIST dataset [20] and achieves 4.3x lower
training latency than the CPU implementation. While the
result of [30] is difficult to compare precisely with our train-
ing hardware because it trains a different dataset, the perfor-
mance of the proposed hardware is compared with that in
[30] because there are few works reported in the literature
for training hardware using FPGAs. Although our imple-
mentation trains a much smaller network model, it reduces
the training latency by a factor of 40. The energy efficiency
of [30] is 7.5x higher than that of the corresponding CPU
implementation, while in contrast, this work achieves 134x
higher energy efficiency.

C. DISCUSSIONS
To realize the training hardware, the cognition accuracy is
also as important as the energy efficiency and the training
latency. Our training hardware achieves an 87.97% cognition
accuracy that is approximately 3% lower than that of the
conventional training with backpropagation. The proposed
hardware trains NNs using a very simple algorithm that calcu-
lates the weights of NNs as the mean of the temporal weights
obtained from backward computation. This training algo-
rithm can train a single binarized perceptron properly [19];
however, the proposed hardware trains a 2-layer model that
is much deeper than the perceptron. To train NN models that
are more complex than the 2-layer model such as LeNet-5,
the training algorithm may need to be improved, which will
be investigated in future work. Also, the Hamiltonian for
the complex model becomes larger because the number of
nodes increases. Hence, key points to implement a training
hardware for the complex NN model are the configuration
of the Hamiltonian and architecture of the hardware which
requires less FPGA resources, and they are our another future
works.

VIII. CONCLUSION
In this article, we have demonstrated fast and energy-efficient
training hardware for BCNNs using CMOS invertible logic.
Due to the bidirectional operation of CMOS invertible logic,
the proposed hardware directly obtains the weights with-
out the error function that requires numerous floating-point
computations. The convolution function was converted in the
area-efficient Hamiltonian through overlapping nodes that
are duplicated from the same element of the input feature
maps or filters. For performance evaluation, the training hard-
ware for the 2-layer BCNN was implemented in the FPGA

and was used to train the modified MNIST dataset. Specif-
ically, our hardware reduces the power dissipation and the
training latency by 97.51% and 99.25%, respectively, while
maintaining almost the same accuracy of 87%. The 2-layer
BCNN trained by the proposed hardware is not sufficient to
actually use as an application. We hope that these findings
will contribute to the development of new directions in the
field of hardware-based training.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[3] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams, Y. Gong, and A. Acero, ‘‘Recent advances in deep
learning for speech research at microsoft,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 8604–8608.

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimiz-
ing FPGA-based accelerator design for deep convolutional neural net-
works,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays
(FPGA), New York, NY, USA, 2015, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689060

[5] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culur-
ciello, ‘‘Hardware accelerated convolutional neural networks for synthetic
vision systems,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2010,
pp. 257–260.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Binarized neural networks,’’ in Advances in Neural Information Pro-
cessing Systems, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2016,
pp. 4107–4115. [Online]. Available: http://papers.nips.cc/paper/6573-
binarized-neural-networks.pdf

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’ in
Computer Vision, B. Leibe, J. Matas, N. Sebe, andM.Welling, Eds. Cham,
Switzerland: Springer, 2016, pp. 525–542.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[9] M. Mathieu, M. Henaff, and Y. LeCun, ‘‘Fast training of convolutional
networks through FFTs,’’ 2013, arXiv:1312.5851. [Online]. Available:
http://arxiv.org/abs/1312.5851

[10] S. Shukla et al., ‘‘A scalable multi-TeraOPS core for AI training and
inference,’’ IEEE Solid-State Circuits Lett., vol. 1, no. 12, pp. 217–220,
Dec. 2018.

[11] B. Fleischer et al., ‘‘A scalable multi-TeraOPS deep learning processor
core for AI trainina and inference,’’ in Proc. IEEE Symp. VLSI Circuits,
Jun. 2018, pp. 35–36.

[12] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, ‘‘7.7 LNPU:
A 25.3TFLOPS/W sparse deep-neural-network learning processor with
fine-grained mixed precision of FP8-FP16,’’ in IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 142–144.

[13] D. Li, X. Chen, M. Becchi, and Z. Zong, ‘‘Evaluating the energy efficiency
of deep convolutional neural networks on CPUs and GPUs,’’ in Proc.
IEEE Int. Conf. Big Data Cloud Comput. (BDCloud), Social Comput.
Netw. (SocialCom), Sustain. Comput. Commun. (SustainCom) (BDCloud-
SocialCom-SustainCom), Oct. 2016, pp. 477–484.

[14] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, ‘‘Stochastic p-bits for
invertible logic,’’ Phys. Rev. X, vol. 7, Jul. 2017, Art. no. 031014. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevX.7.031014

[15] R. Faria, K. Y. Camsari, and S. Datta, ‘‘Low-barrier nanomagnets as p-bits
for spin logic,’’ IEEE Magn. Lett., vol. 8, pp. 1–5, 2017.

[16] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, ‘‘Boltzmann machines:
Constraint satisfaction networks that learn,’’ Dept. Comput. Sci. Pittsburgh,
Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-84-
119, 1984.

VOLUME 8, 2020 188013

http://dx.doi.org/10.1038/nature14539


D. Shin et al.: Training Hardware for Binarized CNN Based on CMOS Invertible Logic

[17] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno,
and S. Datta, ‘‘Integer factorization using stochastic magnetic tunnel
junctions,’’ Nature, vol. 573, no. 7774, pp. 390–393, Sep. 2019, doi:
10.1038/s41586-019-1557-9.

[18] S. C. Smithson, N. Onizawa, B. H.Meyer,W. J. Gross, and T. Hanyu, ‘‘Effi-
cient CMOS invertible logic using stochastic computing,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, no. 6, pp. 2263–2274, Jun. 2019.

[19] N. Onizawa, D. Shin, and T. Hanyu, ‘‘Fast hardware-based learning algo-
rithm for binarized perceptrons using CMOS invertible logic,’’ J. Appl.
Logics, vol. 6, no. 7, pp. 41–58, Jan. 2020.

[20] Y. Lecun and C. Cortes. The MNIST Database of Hand-
written Digits. Accessed: Aug. 5, 2019. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[21] B. Karlik and A. Vehbi, ‘‘Performance analysis of various activation func-
tions in generalized MLP architectures of neural networks,’’ Int. J. Artif.
Intell. Expert Syst., vol. 1, no. 4, pp. 111–122, 2011.

[22] J. D. Biamonte, ‘‘Nonperturbative k-body to two-body commuting
conversion Hamiltonians and embedding problem instances into
ising spins,’’ Phys. Rev. A, Gen. Phys., vol. 77, no. 5, May 2008,
Art. no. 052331. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.77.052331

[23] J. D. Whitfield, M. Faccin, and J. D. Biamonte, ‘‘Ground-state spin
logic,’’ Europhys. Lett., vol. 99, no. 5, Sep. 2012, Art. no. 57004, doi:
10.1209%2F0295-5075%2F99%2F57004.

[24] B. R. Gaines, ‘‘Stochastic computing,’’ in Proc. Spring Joint Comput.
Conf. (AFIPS), New York, NY, USA, Apr. 1967, pp. 149–156. [Online].
Available: http://doi.acm.org/10.1145/1465482.1465505

[25] B. D. Brown and H. C. Card, ‘‘Stochastic neural computation. I. Com-
putational elements,’’ IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905,
Sep. 2001.

[26] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, ‘‘Computation
on stochastic bit streams digital image processing case studies,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014.

[27] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, ‘‘cuDNN: Efficient primitives for deep learning,’’ 2014,
arXiv:1410.0759. [Online]. Available: https://arxiv.org/abs/1410.0759

[28] S. Vigna, ‘‘Further scramblings of Marsaglia’s xorshift generators,’’
J. Comput. Appl. Math., vol. 315, pp. 175–181, May 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0377042716305301

[29] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983. [Online].
Available: https://science.sciencemag.org/content/220/4598/671

[30] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
‘‘F-CNN: An FPGA-based framework for training convolutional neural
networks,’’ in Proc. IEEE 27th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2016, pp. 107–114.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

DUCKGYU SHIN received the B.E. degree in
electrical and communication engineering from
Tohoku University, Japan, in 2019, where he
is currently pursuing the M.E. degree with the
Research Institute of Electrical Communication.
His main research interests and activities include
energy-efficient VLSI design based on CMOS
invertible logic and related applications, such as
hardware-based deep learning accelerators.

NAOYA ONIZAWA (Member, IEEE) received the
B.E.,M.E., and D.E. degrees in electrical and com-
munication engineering from Tohoku University,
Japan, in 2004, 2006, and 2009, respectively.

He was a Postdoctoral Fellow with the Univer-
sity of Waterloo, Canada, in 2011, and McGill
University, Canada, from 2011 to 2013. In 2015,
he was a Visiting Associate Professor with the
University of Southern Brittany, France. He is cur-
rently an Assistant Professor with the Research

Institute of Electrical Communication and a JST PRESTO Researcher
with Tohoku University. His main research interests and activities include
energy-efficient VLSI design based on asynchronous circuits and proba-
bilistic computation and related applications, such as brain-like computers.
He received the Best Paper Award in 2010 IEEE ISVLSI, the Best Paper
Finalist in 2014 IEEE ASYNC, the Kenneth C. Smith Early Career Award
for Microelectronics Research in 2016 IEEE ISMVL, and the MEXT Young
Scientists’ Prize, in 2020.

WARREN J. GROSS (Senior Member, IEEE)
received the B.A.Sc. degree in electrical engineer-
ing from the University of Waterloo, Waterloo,
ON, Canada, in 1996, and the M.A.Sc. and Ph.D.
degrees from the University of Toronto, Toronto,
ON, Canada, in 1999 and 2003, respectively.

He is currently a Professor, the Louis-Ho Fac-
ulty Scholar in Technological Innovation, and the
Chair of the Department of Electrical and Com-
puter Engineering, McGill University, Montreal,

QC, Canada. His research interests include the design and implementation of
signal processing systems and custom computer architectures. He has served
as the Chair of the IEEE Signal Processing Society Technical Committee on
the Design and Implementation of Signal Processing Systems. He has served
as the General Co-Chair of IEEE GlobalSIP 2017 and IEEE SiPS 2017 and
the Technical Program Co-Chair of SiPS 2012. He has also served as the
Organizer for theWorkshop on Polar Coding inWireless Communications at
WCNC 2017, the Symposium on Data FlowAlgorithms and Architecture for
Signal Processing Systems (GlobalSIP 2014), and the IEEE ICC 2012Work-
shop on Emerging Data Storage Technologies. He has served as an Associate
Editor for IEEETRANSACTIONSON SIGNAL PROCESSING and a Senior Area Editor.
He is a licensed Professional Engineer in the Province of Ontario.

TAKAHIRO HANYU (Senior Member, IEEE)
received the B.E., M.E., and D.E. degrees in
electronic engineering from Tohoku Univer-
sity, Sendai, Japan, in 1984, 1986, and 1989,
respectively.

He is currently a Professor and the Education/
Research Councillor of the Research Insti-
tute of Electrical Communication, Tohoku Uni-
versity. His general research interests include
nonvolatile logic circuits and their applications to

ultralow-power and/or highly dependable VLSI processors and post-binary
computing and its application to brain-inspired VLSI systems. He received
the Sakai Memorial Award from the Information Processing Society of
Japan, in 2000, the Judge’s Special Award at the 9th LSI Design of the Year
from the Semiconductor Industry News of Japan, in 2002, the Special Feature
Award at the University LSI Design Contest from ASP-DAC, in 2007,
the APEX Paper Award of the Japan Society of Applied Physics, in 2009,
the Excellent Paper Award of IEICE, Japan, in 2010, the Ichimura Academic
Award, in 2010, the Best Paper Award of IEEE ISVLSI 2010, the Paper
Award of SSDM 2012, the Best Paper Finalist of IEEE ASYNC 2014, and
the Commendation for Science and Technology by MEXT, Japan, in 2015.

188014 VOLUME 8, 2020

http://dx.doi.org/10.1038/s41586-019-1557-9
http://dx.doi.org/10.1209%2F0295-5075%2F99%2F57004

