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ABSTRACT This paper investigates a novel adaptive fault-tolerant guaranteed performance control problem
for Euler-Lagrange systems subject to unknown actuator faults. Firstly, a barrier Lyapunov function instead
of logarithmic transformation is constructed to handle the performance constraints imposed on the controlled
system. Then, an adaptive control scheme is devised to guarantee the prescribed tracking performance with
consideration of the unknown actuator faults. Compared with the existing works, the prominent advantage
of the proposed control method is that the detailed actuator fault information is not required to identify
online and the complex logarithmic transformation is avoided. In this sense, the complexity of the developed
controller is decreased dramatically, which is easily achievable in practice. Finally, application to a 2-link
robotic manipulator is organized to validate the effectiveness of the proposed control method.

INDEX TERMS Euler-Lagrange system, prescribed performance control, robotic manipulator, adaptive
fault-tolerant control.

I. INTRODUCTION
In recent years, adaptive control on nonlinear Euler-Lagrange
(EL) systems has attracted considerable attention owing to
the fact that EL systems can be used to describe various prac-
tical engineering systems such as robotic system, helicopter
system and satellite system [1]–[6]. For example, a predictor-
based tracking controller is developed for a EL system sub-
ject to time-delayed actuation, parameter uncertainty, and
external disturbances in [7]. A stable control method is pro-
posed to realize the trajectory tracking control for a planar
three-link underactuated mechanical system with considera-
tion of the gravity constraints in [8]. A robust autopilot con-
troller is designed for a generic missile without consideration
of the actuator nonlinearities, angle of attack constraint, and
mismatched uncertainties by applying the barrier Lyapunov
function and dynamic surface control techniques in [9].
As for the cooperative control of the multiple EL systems,
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a distributed output tracking control scheme is devised for a
class of EL multiagent systems with only using the measur-
able position information in [10]. To solve the actuator satu-
ration problem, a dynamic auxiliary system is introduced for
each EL agent system to obtain some auxiliary variables. And
then a formation-containment control scheme is designed for
the networked EL systems based on the auxiliary variables
in [11].

However, in practice engineerings, precise system infor-
mation is difficult to obtain owing to the complex structure
of the controlled object. In this case, unknown nonlinearity
is often encountered in the corresponding controller design.
In the existing works, neural network (NN) and fuzzy logic
system as two effective tools have been widely utilized to
approximate the unknown nonlinearities due to their superior
approximation capability. For example, an adaptive tracking
controller is devised for multiple uncertain EL systems via
using a NN to approximate the unknown nonlinear func-
tions in [12]. A two-layer NN-based adaptive distributed
formation-containment control method is developed for

184160
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6670-1817
https://orcid.org/0000-0002-4447-1758


G. Zhang, D. Cheng: Adaptive Fault-Tolerant Guaranteed Performance Control for EL Systems

multiple EL systems via only using the output feedback
information. Similar with NN-based adaptive control meth-
ods, adaptive fuzzy ones also have attracted wide attention.
A fuzzy logic system is used to approximate the robot dynam-
ics. And an adaptive control scheme is proposed based on
the fuzzy approximation in [13]. Fuzzy approximation and
backstepping techniques are integrated to develop an adap-
tive fuzzy optimal controller for the strict-feedback single-
input and single-output nonlinear system in the presence
of unmeasurable states and unknown nonlinear dynamics
in [14]. Owing to its effectiveness and excellent control per-
formance, the control method in [14] was extended to solve
the output tracking problem for a group of strict-feedback
nonlinear large-scale systems in [15]. Moreover, trajectory
tracking control problem for multiple quad-rotor UAVs is
solved by designing an adaptive fuzzy control scheme in [16].
Although effective, the relevant adaptive schemes based on
the NN and fuzzy logic system are only valid in the relevant
compact set. How to guarantee the adaptive scheme to keep
on the compact set is pretty challenging both in theory and
application [17]. Thus, it requires more efforts to conduct
some further investigations on the adaptive control for EL
systems.

In practice, actuator faults are often encountered, which
will degrade the control performance or event lead to the
system instability. A comprehensive survey of the fault diag-
nosis and fault-tolerant techniques is presented from the
view of model-based and signal-based ways in [18], [19].
A low-complexity fault-tolerant control problem is inves-
tigated for multiple uncertain large-scale systems subject
to unknown dead-zone input in [20]. An adaptive fuzzy
fault-tolerant control scheme was proposed for a switched
resistance-inductance-capacitance circuit system by applying
the fuzzy-logic system to approximate the unknown internal
dynamics in the presence of process fault. Wherein, a barrier
Lyapunov function was constructed to make the system out-
put be trapped into its constrained interval in [21]. Moreover,
the recent development of spacecraft attitude fault-tolerant
control methods are reviewed and analyzed in [22]–[24].
Faced with the actuator faults, how to guarantee the tracking
performance of the controlled system is very challenging.
To solve this problem, Bechlioulis and Rovithakis proposed
a brand-new control method, named as prescribed perfor-
mance control (PPC), to quantitatively characterize the tran-
sient and steady-state performance of the controlled system
in 2008 [25]. Due to its prominent advantage in the control
performance synthesis, PPC has attracted considerable atten-
tion in the existingworks [26], [27]. For example, a NN-based
adaptive PPC scheme is formulated for uncertain nonlinear
systems in [28]. The constrained PPC problem is investigated
for uncertain EL systems with consideration of full-state
constraints in [29]. Moreover, to solve the control satura-
tion, a bounded-input PPC scheme is developed for uncertain
EL system in [30]. To enhance the robustness of the PPC
method, an adaptive slidingmode disturbance observer-based
composite control scheme is devised for space manipulators

in [31]. Although effective, the usage of logarithmic trans-
formation in the PPC structure makes it very complex in
the relevant controller design. Meanwhile, the logarithmic
transformation is very sensitive to uncertainties and external
disturbance. As an alternative, barrier Lyapunov function
is a potential tool to deal with the state performance con-
straints existed in the traditional PPC method. For example,
an output tracking constrained control protocol was investi-
gated for switched uncertain nonlinear systems with consid-
eration of unknown dead-zone nonlinearity by combining a
time-varying tan-type barrier Lyapunov function and fuzzy
logic system in [32]. Moreover, an integral barrier Lyapunov
function was proposed to derive a full-state constrained adap-
tive control scheme for a class of uncertain switched non-
linear system in [33]. Although effective, the application of
fuzzy logic systems in the above reference works makes it
pretty challenging and complex to tune the relevant adaptive
parameters online. Thus, how to conquer the above limita-
tions deserve further investigations.

In this paper, a novel adaptive guaranteed performance
control method is proposed for EL system with unknown
actuator faults. Compared with the existing works, the promi-
nent contributions of this work are twofold:

i. The detailed information of the unknown actuator faults
is not required to identify online. This decreases the
complexity of the relevant control system design dramat-
ically.

ii. The complex logarithmic transformation in the conven-
tional PPC structure is omitted, which makes the rel-
evant controller scheme easily achievable in practice.
Meanwhile, norm inequality is applied to deal with the
unknown nonlinear dynamics without using any neural
or fuzzy approximation technique, which makes the tun-
ing procedure for the relevant adaptive parameters much
easier.

The rest of this paper is organized as follows. Section II
gives the description of the EL system and actuator faults.
The detailed procedure of the adaptive fault-tolerant control
method is shown in Section III. Section IV shows the appli-
cations of the proposed control method to a 2-link robotic
manipulator. Some detailed discussions and conclusions are
drawn in Section V.

A. NOTATIONS
T , ‖ · ‖, | · | represent the vector transpose, the Euclidean
norm of a vector, and the absolute value of a real number.
Rn, Rn+ are, respectively, the sets of n-dimensional real
numbers and n-dimensional positive real numbers. σ (·) is
the eigenvalue of a nonsingular matrix, respectively. N, N+
denote the set of nonnegative integers and positive integers,
respectively. For any two positive real numbers %̂1, %̂2 ∈ R+,
if the two numbers satisfy %̂1 > 1, %̂2 > 1 and 1

%̂1
+

1
%̂2
= 1,

then for any two positive variables a, b ∈ R+, the following
inequality holds a · b ≤ a%̂1

%̂1
+

b%̂2
%̂2

. When and only when
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a%̂1 = b%̂2 , the ‘=’ can be obtained. This is the Young’s
inequality based on [34].

II. SYSTEM DESCRIPTION AND ANALYSIS OF ACUTATOR
FAULTS
A. DESCRIPTION OF EULER-LAGRANGE SYSTEM
In this paper, EL system, as a typical multiple-input-multiple-
output one, is considered with the following universal form:

M (p) p̈+ C (p, ṗ) ṗ+ G (p) = u (1)

where p = [p1, . . . , pn]T ∈ Rn is the general position vector
of the EL system with n dimension. ṗ, p̈ are the relevant gen-
eral velocity and accelerated velocity vectors, respectively.
M (p) ∈ Rn×n, C (p, ṗ) ∈ Rn×n, G (p) ∈ Rn denote,
respectively, the general inertial matrix, the vector of Cori-
olis and Centrifugal torques, and the vector of gravitational
torque, which are difficult to obtain precisely in practice.
u ∈ Rn represents the control torque of the EL system. For the
EL system in (1), according to [35], there are four common
properties listed as follows.
Property 1: Matrix Ṁ(p) − 2C (p, ṗ) is skew-symmetric,

i.e.; qT
(
Ṁ(p)− 2C (p, ṗ)

)
q = 0, ∀q ∈ Rn.

Property 2: Matrix M(p) is positive-definite and symmet-
ric. And there exist two positive constantsm < m ∈ R having
the following inequality hold: 0 < mIn ≤ M(p) ≤ mIn.
Property 3: Vector of Coriolis and Centrifugal torques

C (p, ṗ) are continuous with respect to states p, ṗ. And there
exists a positive constant c making the inequality hold:
‖C (p, ṗ)‖ ≤ c ‖ṗ‖.
Property 4: Vector of gravitational torque G (p) is

bounded, i.e.; there exists a positive constant g making the
following inequality hold ‖G (p)‖ ≤ g.
Remark 1: The above four properties are very common in

practical systems such as robotic manipulators and spacecraft
attitude system. These properties are very beneficial to facil-
itate the subsequent controller design.

B. ANALYSIS OF ACTUATOR FAULTS
In practice, actuator failure is often encountered, which will
degrade the control performance or even bring a serious threat
for the system safety. Thus, it is of necessity to analyze the
common actuator faults. In this work, multiplicative and addi-
tive actuator failures are considered, which can be modelled
as:

uactual (t) = B (t)u (t)+ ub (t) (2)

where B (t) = diag {B1 (t) , . . . ,Bn (t)} ∈ Rn×n denotes the
remaining control rate for multiplicative actuator fault, which
is often unknown but its element satisfies 0 < b ≤ Bi (t) ≤ 1
with b being a known constant. ub (t) is an unknown additive
actuator fault. Based on (2), system (1) becomes

M (p) p̈+ C (p, ṗ) ṗ+ G (p) = B (t)u (t)+ ub (t) (3)

Remark 2: As shown in Eq. (3), it is easy to find that
the external disturbance or noise in the control input can be

integrated into the additive actuator fault term ub (t). In gen-
eral, additive actuator fault refers to those unknown fault
model and external disturbance or noise. Thus, to be brief,
in this work, the additive actuator fault term ub (t) contains
thematched external disturbance or noise in the control input.

According to the foregoing analysis, the control objective
of this work is twofold:
i. The desired reference command pd can be tracked stably

by the devised controller. And the prescribed transient
and steady-state performance of the tracking error sys-
tem can be guaranteed.

ii. All the involved close-loop signals are uniformly ulti-
mately bounded under the devised controller.

Before moving, there are two assumptions are imposed on
the controlled EL system.
Assumption 1:-General position and velocity vectors p, ṗ

are available for measurement.
Assumption 2:-The desired reference command pd is con-

tinuous and its first derivative known.
Remark 3: In practice systems, position and velocity infor-

mation is easily obtained by the measurement devices like
laser radar. Thus,Assumption 1 is reasonable. ForAssumption
2, the desired reference command can be preplanned by the
designers, i.e., it can be designed sufficiently smoothly. Thus,
Assumption 2 is also reasonable.

III. ADAPTIVE FAULT-TOLERANT GUARANTEED
PERFORMANCE CONTROL METHOD
According to the foregoing discussions, a brand-new adap-
tive fault-tolerant guaranteed performance control method is
investigated in this part. Before moving, the tracking error is
defined as pe =

[
pe,1, . . . , pe,n

]T
= p− pd .

A. ADAPTIVE FAULT-TOLERANT GUARANTEED
PERFORMANCE CONTROLLER DESIGN
To guarantee the tracking performance, the following perfor-
mance constraint is imposed:

−αi (t) < pe,i (t) < αi (t) (4)

where αi (t) > 0 is the designed performance function. With-
out loss of generality, an exponential performance function is
formulated, namely, it is:

αi (t) =
(
αi,0 − αi,∞

)
exp (−γit)+ αi,∞ (5)

where αi,0 ∈ R is the initial state of αi (t), which is positive.
αi,∞ > 0 is the ultimate state of αi (t). γi denotes the
convergence rate of the performance function. To guarantee
the tracking performance in the whole time domain, the value
of αi,0 should satisfy αi,0 >

∣∣pe,i (0)∣∣ (i = 1, . . . , n).
Remark 4: In Eq. (5), the parameters of performance

function αi(t) will affect the control performance of the
Euler-Lagrange systems. As for the convergence rate γi,
the larger the γi is, the faster the convergence of the tracking
error system is. However, it will require a very large control
input to support the fast convergence rate. So in practical
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systems, the value of parameter γi can be set according to
control ability of the actuator. As for the ultimate bounded-
ness parameter αi,∞, it represents the tracking accuracy. So it
can be set according to the desired control requirement from
the practical tasks. As for the rest parameters, they can be set
freely when the foregoing basic conditions are satisfied.

As presented in (5), the tracking error pe,i (i = 1, . . . , n)
will converge to a small set involved in the interval(
−αi,∞, αi,∞

)
with an exponential velocity. To facilitate the

subsequent controller design, the following standard tracking
error is defined:

−1 < pe,i (t) /αi (t) < 1 (6)

To be brief, a newly defined state x1 =
[
x1,1, . . . x1,n

]T
∈ Rn

is given with its every element is

x1,i (t) = pe,i (t) /αi (t) (7)

Backstepping technique, as an effective one, has been widely
used to develop the relevant controller for the cascaded sys-
tem [36]. So in this work, backstepping technique is applied
to develop the relevant controller. In detail, there are two steps
as follows.
Step 1:-Construct the following barrier Lyapunov function:

V1 =
1
2

∑n

i=1

x21,i
1− x21,i

(8)

Taking the derivative of V1 yields

V̇1 =
1
2

∑n

i=1

2x1,i
(
1− x21,i

)
+ 2x31,i(

1− x21,i
)2 ẋ1,i

=

∑n

i=1

x1,i(
1− x21,i

)2 ẋ1,i (9)

Substituting (7) into (9) gets

V̇1 =
∑n

i=1

x1,i(
1− x21,i

)2
(
ṗe,iαi − pe,iα̇i

α2i

)

=

∑n

i=1

x1,i(
1− x21,i

)2
αi

(
ṗe,i −

α̇i

αi
pe,i

)
(10)

Due to pe,i = pi − pd,i, (10) becomes

V̇1
∑n

i=1

x1,i(
1− x21,i

)2
αi

(
ṗi − ṗd,i −

α̇i

αi
pe,i

)
(11)

Based on the foregoing design procedure, we continue to
define the following coordinate transformation:

x2 (t) = ṗ (t)− υ (t) (12)

where x2 (t) =
[
x2,1 (t) , . . . , x2,n (t)

]T
∈ Rn is the

newly state vector under the coordinate transformation.

υ (t) = [υ1 (t) , . . . , υn (t)]T ∈ Rn is the first virtual con-
troller to be determined later. Based on (12), (11) becomes

V̇1=
∑n

i=1

x1,i(
1− x21,i

)2
αi

(
x2,i + υi−ṗd,i−

α̇i

αi
pe,i

)
(13)

By applying Young’s inequality, one can obtain

x1,i(
1− x21,i

)2
αi

x2,i ≤
2x21,i(

1− x21,i
)4
α2i

+
1
4
x22,i (14)

Based on (13) and (14), the virtual controller υi (t) is devised
as

υi = −K1,ipe,i + ṗd,i +
α̇i

αi
pe,i −

2x1,i(
1− x21,i

)2
αi

(15)

where K1 = diag
{
K1,1, . . .K1,n

}
∈ Rn×n is the

positive-definite control gain matrix. Accordingly, substitut-
ing (15) into (13) yields

V̇1 ≤ −
∑n

i=1

K1,ix21,i(
1− x21,i

)2 + 1
4

∑n

i=1
x22,i (16)

Step 2:-To design the true control input, the following
Lyapunov function is devised

V2 = V1 +
1
2
xT2M (p) x2 (17)

Taking the derivative of V2 yields

V̇2 = V̇1 +
1
2
xT2 Ṁ (p) x2 + xT2M (p) ẋ2

= V̇1 +
1
2
xT2 Ṁ (p) x2 + xT2M (p) p̈− xT2M (p) υ̇ (18)

Substituting (3) into (18) gets

V̇2 = V̇1 +
1
2
xT2 Ṁ (p) x2 + xT2 (B (t)u+ ub

−C (p, ṗ) ṗ− G (p)−M (p) υ̇) (19)

Based on (12), (19) becomes

V̇2 = V̇1 +
1
2
xT2 Ṁ (p) x2 + xT2 [B (t)u+ ub

−C (p, ṗ) (x2 + υ) −G (p)−M (p) υ̇]

= V̇1 +
1
2
xT2
(
Ṁ (p)− 2C (p, ṗ)

)
x2

+xT2 (B (t)u+ub−C (p, ṗ)υ−G (p)−M (p) υ̇) (20)

According to Property 1, (20) is simplified as

V̇2 = V̇1 + xT2 (B (t)u+ub − C (p, ṗ)υ−G (p)−M (p) υ̇)

(21)

According to Properties 2 4, we can obtain that

‖C (p, ṗ)υ + G (p)+M (p) υ̇‖

≤ ‖C (p, ṗ)υ‖ + ‖G (p)‖ + ‖M (p) υ̇‖

≤ b
(
c̄
b
‖ṗ‖ ‖υ‖ +

ḡ
b
+
m̄
b
‖υ̇‖

)
(22)
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Owing to the fact that the additive actuator fault ub is
bounded, thus, there exists an unknown constant ūb > 0
making the following inequality hold

‖ub‖ ≤ ūb =
būb
b

(23)

Then, define the following two constants µ1, µ2 > 0:

µ1 = max
{
c̄
b
,
ḡ
b
,
m̄
b

}
, µ2 :=

ūb
b

(24)

It is obvious that the above two defined constants are
bounded. By defining θ = ‖ṗ‖ ‖υ‖ + ‖υ̇‖ + 1 > 0, (22)
becomes

‖C (p, ṗ)υ + G (p)+M (p) υ̇‖

≤ b
(
c̄
b
‖ṗ‖ ‖υ‖ +

ḡ
b
+
m̄
b
‖υ̇‖

)
≤ bµ1θ (25)

(23) becomes

‖ub‖ ≤ bµ2 (26)

Substituting (25) and (26) into (21) yields

V̇2 ≤ V̇1 + xT2B (t)u+
(
bµ1θ + bµ2

)
‖x2‖ (27)

According to the foregoing design procedure, the adaptive
fault-tolerant controller is devised as

u = −K2x2 −
1
4b
x2 −

µ̂1θ
2x2

θ ‖x2‖ + σ0
−

µ̂2x2
‖x2‖ + σ0

(28)

where K2 = diag
{
K2,1, . . . ,K2,n

}
∈ Rn×n is the

positive-definite control gain. σ0 is a positive constant. µ̂1, µ̂2
are the estimated values of unknown parameters µ1, µ2. The
relevant adaptive schemes are designed as

˙̂µ1 = −µ̂1 +
θ2xT2 x2

θ ‖x2‖ + σ0
˙̂µ2 = −µ̂2 +

xT2 x2
‖x2‖ + σ0

(29)

It is worth noting that function θ = ‖ṗ‖ ‖υ‖ + ‖υ̇‖ + 1
requires to calculate the derivative of virtual controller υ.
However, as (15) presents, the form of υ is tedious. Namely,
the derivative of υ is also very complex. To solve this prob-
lem, we use a linear tracking differentiator to estimate it. The
corresponding tracking differentiator is expressed by{
ż1,i = z2,i
ż2,i = −c02

[
c1
(
z1,i − υi

)
+ c2z2,i/c0

] (i = 1, . . . , n)

(30)

where z1,i, z2,i ∈ R is the states of the tracking differentiator.
c0, c1, c2 are the relevant positive constants. Based on (30),
the ith dimensional element of υ̇ is approximated by z2,i. The
convergence of the tracking differentiator is proved by the
following lemma.
Lemma 1.( [37]) For the linear tracking differentiator

in (30), if c0, c1, c2 are positive and υi (0) , υ̇i (0) are

bounded, then the estimated error eυ,i (t) = z2,i (t)− υ̇i (t) is
always bounded and the following equation holds

lim
t→+∞

eυ,i (t) = 0 (31)

The detailed proof of Lemma 1 can be found in [37], which is
omitted for brief. Based on the aforementioned discussions,
one can use the state z2,i to approximate the υ̇i to lower the
computational complexity.

B. STABILITY ANALYSIS
According to the adaptive fault-tolerant controller design, one
of important result is obtained in the following theorem.
Theorem 1: Under the devised controller and adaptive

scheme in (28) and (29), the prescribed position tracking
performance in (4) can be achieved in the whole time domain.
Meanwhile, all the system signals involved in the close-loop
tracking error system for system (1) are uniformly ultimately
bounded in spite of unknown actuator faults.

Proof: The proof of Theorem 1 is organized as follows.
First, construct the following Lyapunov function:

V3 = V2 +
b
2

(
µ̃2
1 + µ̃

2
2

)
(32)

where µ̃1, µ̃2 are the estimation errors for unknown constants
µ1, µ2, respectively. Namely, they are defined as

µ̃1 = µ1 − µ̂1, µ̃2 = µ2 − µ̂2 (33)

Taking the derivative of V3 yields

V̇3 = V̇2 + bµ̃1 ˙̃µ1 + bµ̃2 ˙̃µ2 (34)

Substituting (16) and (27) into (34) gets

V̇3 = V̇1+xT2B (t)u+
(
bµ1θ+bµ2

)
‖x2‖+µ̃1 ˙̃µ1+bµ̃2 ˙̃µ2

≤ −

∑n

i=1

K1,ix21,i(
1− x21,i

)2 + 1
4

∑n

i=1
x22,i + x

T
2B (t)u

+
(
bµ1θ + bµ2

)
‖x2‖ + bµ̃1 ˙̃µ1 + bµ̃2 ˙̃µ2 (35)

Substituting (28) into (35) yields

V̇3 = V̇1+xT2B (t)u+
(
bµ1θ+bµ2

)
‖x2‖+µ̃1 ˙̃µ1 + bµ̃2 ˙̃µ2

≤ −

∑n

i=1

K1,ix21,i(
1− x21,i

)2 + 1
4

∑n

i=1
x22,i − x

T
2B (t)K2x2

−
1
4b
xT2B (t) x2 −

µ̂1θ
2xT2B (t) x2

θ ‖x2‖ + σ0
−
µ̂2xT2B (t) x2
‖x2‖ + σ0

+
(
bµ1θ + bµ2

)
‖x2‖ + bµ̃1 ˙̃µ1 + bµ̃2 ˙̃µ2 (36)

With consideration of ‖B (t)‖ ≤ b, the following results can
be obtained.

1
4

∑n

i=1
x22,i −

1
4b
xT2B (t) x2 ≤

1
4
xT2 x2 −

1
4
xT2 x2 = 0

−
µ̂1θ

2xT2B (t) x2
θ ‖x2‖ + σ0

≤ −
bµ̂1θ

2xT2 x2
θ ‖x2‖ + σ0
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−
µ̂2xT2B (t) x2
‖x2‖ + σ0

≤ −
bµ̂2xT2 x2
‖x2‖ + σ0

(37)

Based on (37), (36) can be simplified as

V̇3 ≤ −
∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 + bµ̃1 ˙̃µ1 + bµ̃2 ˙̃µ2

+

(
bµ1θ ‖x2‖ −

bµ̂1θ
2xT2 x2

θ ‖x2‖ + σ0

)

+

(
bµ2 ‖x2‖ −

bµ̂2xT2 x2
‖x2‖ + σ0

)

≤ −

∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 + bµ̃1 ˙̃µ1 + bµ̃2 ˙̃µ2

+
b
(
µ1 − µ̂1

)
θ2‖x2‖2

θ ‖x2‖ + σ0
+
b
(
µ2 − µ̂2

)
‖x2‖2

‖x2‖ + σ0

+
σ0bµ1θ ‖x2‖
θ ‖x2‖ + σ0

+
bσ0µ2 ‖x2‖
‖x2‖ + σ0

(38)

With consideration of µ̃1 = µ1− µ̂1, µ̃2 = µ2− µ̂2, we can
obtain ˙̃µ1 = − ˙̂µ1, ˙̃µ2 = − ˙̂µ2 due to the fact that µ1, µ2
are constants. By substituting (29) into (38), the following
inequality can be obtained

V̇3 ≤ −
∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 − bµ̃1 ˙̂µ1 − bµ̃2 ˙̂µ2

+
bµ̃1θ

2‖x2‖2

θ ‖x2‖ + σ0
+
bµ̃2‖x2‖2

‖x2‖ + σ0

+
bσ0µ1θ ‖x2‖
θ ‖x2‖ + σ0

+
bσ0µ2 ‖x2‖
‖x2‖ + σ0

≤ −

∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 + bµ̃1µ̂1 + bµ̃2µ̂2

+
bσ0µ1θ ‖x2‖
θ ‖x2‖ + σ0

+
bσ0µ2 ‖x2‖
‖x2‖ + σ0

(39)

For (39), the following result is obtained

bσ0µ1θ ‖x2‖
θ ‖x2‖ + σ0

+
bσ0µ2 ‖x2‖
‖x2‖ + σ0

≤ σ0bµ1 + σ0bµ2

= σ0b (µ1 + µ2) (40)

Based on (40), (39) is further simplified as

V̇3 ≤ −
∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 + bµ̃1 (µ1 − µ̃1)

+bµ̃2 (µ2 − µ̃2)+ σ0b (µ1 + µ2)

= −

∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 − bµ̃2
1 − bµ̃

2
2

+bµ̃1µ1 + bµ̃2µ2 + σ0b (µ1 + µ2) (41)

By applying Young’s inequality, we can obtain
bµ̃1µ1 ≤

b
2
µ̃2
1 +

b
2
µ2
1

µ̃2µ2 ≤
b
2
µ̃2
2 +

b
2
µ2
2

(42)

Accordingly, (41) becomes

V̇3 ≤ −
∑n

i=1

K1,ix21,i(
1− x21,i

)2 − bxT2K2x2 −
b
2
µ̃2
1 −

b
2
µ̃2
2

+
b
2
µ2
1 +

b
2
µ2
2 + σ0 (µ1 + µ2) (43)

Define the following two constants λ1, λ2 > 0
λ1 = min

{
min
i

2K1,i, 2bmin
i
K2,i/m̄, 1

}
λ2 =

b
2
µ2
1 +

b
2
µ2
2 + σ0b (µ1 + µ2)

(44)

Thus, (43) becomes

V̇3 ≤ −λ1V3 + λ2 (45)

Based on the above equation, we can obtain that all the signals
involved in the close-loop tracking error system are uniformly
ultimately bounded. In the meanwhile, the following conclu-
sion can be obtained

1
2

x21,i (t)

1− x21,i (t)
≤ V1 (t) ≤ V3 (t) ≤ δ (i = 1, . . . , n) (46)

where δ is a positive constant. Based on (46), we can obtain

∣∣x1,i (t)∣∣ ≤ √ 2δ
2δ + 1

(i = 1, . . . , n) (47)

Due to x1,i (t) = pe,i (t) /αi (t), we can obtain

∣∣pe,i (t)∣∣ ≤ √ 2δ
2δ + 1

αi (t) < αi (t) (i = 1, . . . , n) (48)

As presented in (48), we can find that the prescribed tracking
performance can be achieved in the whole time domain.
Accordingly, the proof of Theorem 1 is finished. �

IV. APPLICATION TO A 2-LINK ROBOTIC MANIPULATOR
A. DYNAMIC DESCRIPTION OF A 2-LINK ROBOTIC
MANIPULATOR
To demonstrate the effectiveness of the proposed control
method, in this part, a 2-link robotic manipulator works as
the simulation object, which is illustrated in Fig. 1.

As shown in Fig. 1, m1,m2, l1, l2 denote the mass and
length of the two links, respectively. p = [p1, p2]T , ṗ =
[ṗ1, ṗ2]T ∈ R2 is the joint angles and angle velocity of the
2-link manipulator, respectively. The dynamics of the manip-
ulator are expressed by [35] the equation can be derived, as
shown at the bottom of next page wherein, g is the gravita-
tional acceleration in the foregoing matrices.
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FIGURE 1. Geometric representation of the 2-link robotic manipulator.

B. STABILIZATION CONTROL OF JOINT ANGLE FOR THE
2-LINK ROBOTIC MANIPULATOR
Based on the foregoing dynamic description, in this part,
the joint angle stabilization control is organized. The desired
reference command is pd (t) =

[
pd,1 (t) , pd,2 (t)

]T
=

[0, 0]T rad . The simulation parameters are chosen as: m1 =

0.5 kg,m2 = 1.5 kg, l1 = 1.0 m, l2 = 0.8 m. g = 9.8 m/s2,
αi,0 = 4, αi,∞ = 0.1, γi = 0.3, K1 = diag {0.1, 0.1}, K2 =

diag {100, 100}, σ0 = 0.001. The initial simulation condi-
tions are set as p (0) = [p1 (0) , p2 (0)]T = [2,−2]T rad ,
µ̂1 (0) = µ̂2 (0) = 1, ṗ (0) = [ṗ1 (0) , ṗ2 (0)]T =
[0, 0] rad/s. To further validate the robustness of the
proposed control scheme, the LuGre joint friction model, as a
universal one in the robotic systems, is applied to describe a
typical type of external disturbance or noise in the control
input, which is expressed by

τd,i = −χ0,iwi − χ1,iẇi − χ2,iṗi
ẇi = ṗi − χ0,i |ṗi|wi/%i (ṗi)
%i (ṗi) = Fc,i +

(
Fs,i − Fc,i

)
exp

(
− |ṗi| /ṗs,i

) (49)

where χ0,i, χ1,i, χ2,i (i = 1, 2) denote the stiffness parame-
ter, the damping parameter and the viscous friction parameter,
respectively. wi, %i are the intermediate variables. Fc,i, Fs,i
are, respectively, the Coulomb friction parameter and static
friction term. ṗs,i > 0 is the joint stribeck velocity. Accord-
ing to [38], the above parameters are selected as χ0,i =
280, χ1,i = 1, χ2,i = 0.017,Fc,i = 0.22,Fs,i = 0.39, ṗs,i =
0.1 (i = 1, 2). To show the effectiveness of the proposed

FIGURE 2. Time response of joint angle without actuator faults.

control scheme, the simulation results under the proposed
controller in [38] are as the comparative test. In this part, two
cases are considered.

1) STABILIZATION CONTROL WITHOUT ACTUATOR FAULTS
When there are no actuator faults, B (t) = diag {1, 1} , ub =
[0, 0]T , b = 1, then, the corresponding simulation results are
shown in Figs. 2-5.

As shown in Figs. 2-5, one can conclude that: The joint
angle of the 2-link robotic manipulator can be stabilized
around 5 seconds under the two control schemes (see Figs. 2
and 3). However, Fig. 2 demonstrates that the ultimate track-
ing accuracy is improved dramatically with the proposed
control scheme.Meanwhile, the control torques of the robotic

M (p) =
[
(m1 + m2)l21 + m2l22 + 2m2l1l2 cos(p2) m2(l22 + l1l2 cos(p2))

m2(l22 + l1l2 cos(p2)) m2l22

]
C (p, ṗ) =

[
−m2l1l2 sin(p2)ṗ2 −m2l1l2 sin(p2)ṗ2 − m2l1l2 sin(p2)ṗ1
m2l1l2 sin(p2)ṗ1 0

]
G (p) =

[
(m1 + m2)gl1 sin(p1)+ m2gl2 sin(p1 + p2)

m2gl2 sin(p1 + p2)

]
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FIGURE 3. Time response of joint angle velocity without actuator faults.

FIGURE 4. Control torques of the 2-link robotic manipulator without
actuator faults.

manipulator are bounded. Figure 5 shows that the adaptive
parameters are convergent under the designed adaptive
scheme. To be brief, the joint angle of the 2-link robotic
manipulator can be stabilized quickly under the two control
schemes without actuator faults.

FIGURE 5. Time response of adaptive parameters without actuator faults.

FIGURE 6. Time response of joint angle with actuator faults.

2) STABILIZATION CONTROL WITH ACTUATOR FAULTS
To further validate the effectiveness of the proposed con-
trol method, stabilization control with actuator faults is
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FIGURE 7. Time response of joint angle velocity with actuator faults.

FIGURE 8. Control torques of the 2-link robotic manipulator with actuator
faults.

organized. The relevant actuator fault model is expressed
by 

B (t) =

{
diag {1, 1} , t < 10
diag {0.3, 0.2} , t ≥ 10

ub =

{
2 sin (t)− 1, t < 10
cos (t)+ 2, t ≥ 10

b =

{
1, t < 10
0.1, t ≥ 10

(50)

FIGURE 9. Time response of adaptive parameters with actuator faults.

FIGURE 10. Time response of joint angle tracking error with actuator
faults.

The relevant simulation parameters keep the same. Then,
the corresponding simulation results are shown in Figs. 6-9.

As shown in Figs. 6-9, one can conclude that: Under the
two control schemes, the joint angle of the 2-link robotic
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FIGURE 11. Tracking trajectory of joint angle velocity with actuator faults.

FIGURE 12. Time response of adaptive parameters in the angle tracking.

manipulator can be stabilized around 5 seconds before the
actuator faults appear (see Figs. 6 and 7. When the actu-
ator faults appear at 10 seconds, there exists a chattering
phenomenon in the states and control input. This chattering
phenomenon only lasts for about 1 second under the proposed
control scheme. However, the chattering phenomenon lasts
for a long time after 10 seconds under the control scheme
in [38], which leads to much more fuel comsumptions com-
pared with the proposed control scheme. This is because that,
in this work, the adaptive parameters change actively to com-
pensate for the negative effects induced by the actuator faults
as Fig. 9 presents. Thus, in spite of the actuator faults, the joint
angle of the 2-link robotic manipulator can be also stabilized
in the proposed control schemewith higher tracking accuracy.
So, the devised controller and adaptive scheme are effective.

C. TRACKING CONTROL OF JOINT ANGLE FOR THE 2-LINK
ROBOTIC MANIPULATOR
In this part, the joint angle tracking control of the 2-link
robotic manipulator is organized to further validate the effec-
tiveness of the proposed control method. Without loss of
generality, the desired reference command is chosen as:

pd (t) =
[
pd,1 (t) , pd,2 (t)

]T
=

[
sin (0.5t)
cos (0.5t)

]
rad (51)

FIGURE 13. Control torques of the 2-link robotic manipulator in the angle
tracking.

The simulation parameters and actuator fault model are the
same as those in subsection 4.2.2. Then, the corresponding
simulation results are shown in Figs. 10-13.

As shown in Figs. 10-13, one can conclude that: Figures 10
and 11 show that the desired reference command can be
tracked around 7 seconds. When the actuator faults appear
at 10 seconds, there is a chattering phenomenon in the states
and control input. However, this chattering phenomenon will
disappear and the relevant tracking accuracy is improved by
one order of magnitude under the proposed control scheme
compared with that in [38]. This can be explained that after
10 seconds, the adaptive parameters change actively to com-
pensate for the negative effects brought by the actuator faults
(see Fig. 12). Moreover, Fig. 13 illustrates that the control
input of the proposed control scheme is very smaller than that
in [38]. In this case, the fuel comsumption is pretty smaller
under the proposed control scheme.

Based on the aforementioned three groups of numerical
simulation results, we can find that the proposed control
method is effective to address the joint angle stabilization and
tracking problem in spite of actuator faults.

V. CONCLUSION AND FUTURE WORK
The adaptive fault-tolerant guaranteed performance control
method has been established for the Euler-Lagrange system
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subject to uncertain actuator faults in this paper. Compared
with the existing works, the prominent advantage of the
proposed method is that the uncertain actuator faults are not
required to identify online and the conventional logarith-
mic transformation is omitted in the controller design. Thus,
the developed control scheme is easily achieved by the prac-
tical systems. Moreover, the simulation results on the joint
angle stabilization and tracking demonstrate the effectiveness
of the proposed control method.

In the future work, we may extend the proposed control
method to solve the formation control problem of multiple
EL systems with consideration of the limited communication
ranges and burden. Moreover, the unmeasurable state prob-
lem as presented in [14], [15] also deserves investigations for
the EL systems in the PPC structure.
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