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ABSTRACT Deep learning has been applied in healthcare, where features of patients are read by the
computer to assist with diagnosis and treatment. In sports medicine, kinematic characteristics of injuries
need to be defined. Patients’ data are then acquired amplified to training deep learning models. In this study,
we tracked motions of lower extremities in patients with lateral collateral ligament injuries of the ankle.
Key kinematic characteristics of injuries were identified by comparing patients to normal individuals. The
deep convolutional generative adversarial networks (DCGANSs) was employed to synthesize a modest-sized
labeled dataset to avoid the problems raised from using large-scale manual labeling data. We then fed a
combination of real and synthesized data to train long short-term memory (LSTM) networks to detect
patients with ligament injuries. The results showed that combined data yielded a better outcome, measured by
classification accuracy and f1-score, than solely using the patient data or with a large quantity of synthesized
single range of motion feature.

INDEX TERMS Kinematic characteristics, lateral collateral ligament injuries (LCL injuries) of the
ankle, injuries detection, deep convolutional generative adversarial networks (DCGANSs), long short-term
memory (LSTM) networks.

I. INTRODUCTION the patients with LCL injuries of the ankle, which can detect

Kinematics-based intelligent diagnosis is a crucial technique
to improve precision medicine in sports injuries [1] [2]. As an
important weight-bearing joint in the lower extremity, ankle
is the most vulnerable joint in the human body [3]. The
lateral collateral ligament injuries (LCL injuries) of the ankle
are particularly common because the lateral ligaments are
weaker than the medial [4]. The incidence of LCL injuries of
the ankle was one case per 10,000 person-day in the world,
ranking first in trauma emergency cases [5]. There is an
urgent need to develop an intelligent diagnosis method for
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the injuries automatically, accurately, and immediately either
in the acute phase or during rehabilitation [6], [7].

Deep learning provides a convenient possible solution
for intelligent diagnosis, but the medical dataset in train-
ing restricts the practical application [8], [9]. Because it is
paramount to protect patient privacy, accessing large datasets
is often restricted within medical and healthcare institutions.
Furthermore, the large-scale manual labeling of medical
datasets from the unstructured fashion leads to considerable
variability in standards [10].

The size of training sets directly impacts on the detection
performance in deep learning [11]. Generative adversarial
networks (GANs) proposed by Goodfellow expanded the
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training data by unsupervised learning [12]. GANs provides
a new solution for the problem that medical data is not
enough in model training [13]. Alec Radford et al. pro-
posed the deep convolutional generative adversarial networks
(DCGANS), combining the GANs and the convolutional neu-
ral network [14]. DCGANSs explore the potential pattern from
complex data and generate high-quality synthesized samples,
supplementing the training sets for intelligent detections [15].
There were many pieces of pilot research using DCGAN:S,
such as aging face generation, Parkinson’s voiceprint
samples augment, computerized tomography image recon-
struction, skin lesion classification, and liver lesion
classification [16]-[20].

In this paper, we first measured the foot and ankle kine-
matic characteristics of LCL injuries of the ankle using the
Heidelberg Foot Measurement Method (HFMM). Once we
identified the key kinematic characteristics of LCL injuries,
we employed the DCGANSs to synthesize features of those
injuries, then data were taken in the long short-term mem-
ory (LSTM) networks to automatically detect patients with
LCL injuries. As a means of augmenting datasets under
controlled conditions, the generative networks, trained by the
injury and control group independently, simulated the prob-
ability distribution of kinematic characteristics in walking.
The synthesized features increased the quality and quantity
of labeled samples for training the detection model. We used
the Pearson correlation coefficient method and t-distribution
Stochastic Neighbor Embedding (t-SNE) algorithm to evalu-
ate the relevance between the real and synthesized features
and trained the LSTM networks by real and synthesized
features for the LCL injuries of the ankle detection.

Il. RELATED WORK
A. FOOT AND ANKLE KINEMATICS
To detect the LCL injuries, it is important to look for the
difference between normal and injured foot and ankle motion
throughout each gait cycle. The model assumption of the foot
as a single rigid segment in previous studies is no longer
acceptable. Recent studies for objectively measuring the
static and kinematic characteristics of the foot and ankle using
multi-segment foot models are reported. Kim ef al. compared
ankle joint kinematics as well as ligament and muscle strains
using two-segment, three-segment, and five-segment foot
models during vertical hopping. The study showed that the
model covering all foot structures was superior to the talus
into one segment in ankle joint biomechanics [21].
Preliminary works in sports medicine have built several
multi-segment foot models and applied these motion-tracking
metrics to measure gait behaviors. Canseco et al. provided
a quantitative characterization of gait kinematics in patients
with hallux rigidus using the Milwaukee Foot Model (MFM),
a four-segment foot model introduced by Canseco et al. [22],
Kidder et al. [23]. The marker-based segmental definition
of foot included the tibia, hindfoot, forefoot, and hallux.
Balsdon et al. investigated the between-day reliability and
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within-session variability of the Oxford Foot Model (OFM),
a multi-segment rigid model developed at the Oxford Gait
Laboratory [24]. The OFM based on two main foot segments
(hindfoot and forefoot) plus a separate hallux segment has
been used clinically on patients with cerebral palsy, club foot,
toe walkers, and other foot-related question [25]. Nicola et al.
modified the Rizzoli Foot Model (RFM), a five-segment
rigid model described by Leardini et al., to describe the foot
and ankle motion of teenagers with pes-planus [26], [27].
This five-segment model included the shank, foot overall,
calcaneus, mid-foot, and metatarsus. Wouter et al. compared
the kinematic output of the OFM and RFM during normal
gait and typical pathological gait patterns in healthy adults.
The results revealed that the OFM measured a larger range of
motion (ROM) in the hindfoot-shank joint, but the RFM mea-
sured a larger ROM in the forefoot-hindfoot joint. The differ-
ences between these two models were significantly in equinus
and toe-out gait [28]. From this study, we are reminded that
careful consideration is warranted when measuring the gait
kinematics using a multi-segment foot model.

Simon et al. developed a kinematic measurement protocol,
HFMM, to measure foot function including almost all typical
foot deformities for clinical practice [29]. The marker-based
segmental definition covered the shank, hindfoot, midfoot,
and the forefoot. The HFMM identified angular definitions
to describe the multi-segmental motion of the foot and
ankle and developed a reliable marker set for the shank and
all foot. The reliability and validity of these measurement
methods have been tested in walking on a level surface
in people with no-known abnormalities and patients with
hallux rigidus before/after cheilectomy, low arched feet, or
Charcot-Marie-Tooth disease, et al. [30]-[32].

B. GENERATIVE ADVERSARIAL NETWORKS IN GAIT
RECOGNITION

A considerable volume of kinematic data will certainly help
with the intelligent detection for LCL injuries of the ankle.
However, data annotation is time-consuming, the data from
each subject required hours for surgical experts in labeling
those gait kinematics recorded. It is uncommon that deep
learning algorithms run on data with relatively small volumes.
The GANS help us make up this gap synthesizing and aug-
menting data. Currently, GANs have been initially introduced
to the field of gait recognition for data synthesis.

1) USING MICRO-DOPPLER SPECTROGRAMS

Doherty et al. presented a GANs-trained unsupervised model
using micro-Doppler spectrograms for gait detection [33].
Abdulatif er al. used GANs to learn the joint distribu-
tion of the training data for denoising and reconstructing
the micro-Doppler spectrograms in human walking [34].
Erol et al. proposed multi-branch GANS integrating the kine-
matic analysis of the micro-Doppler signature envelope to
generate abnormal gait samples [35]. The results showed that
there was greater overlap between the synthesized and real
abnormal gait samples in the feature space.
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2) USING GAIT IMAGES

Babaee et al. used GANs to reconstruct gait energy images
for addressing the problem of gait recognition from an
incomplete gait cycle. This approach was evaluated on the
OULP large gait dataset to confirm that the GANs-based
synthesis architecture was efficient [36]. He et al. proposed
multi-task GANs for learning view-specific feature repre-
sentations with period energy images. The multi-task GANs
extended more discriminative features from gait sequences
for cross-view gait recognition. The competitive performance
has been shown on OU-ISIR, CASIA-B, and USF benchmark
datasets [37]. Li et al. presented the cycle-consistent attentive
GANSs to map different views’ gait images to view-consistent
and photorealistic images for cross-view gait recognition.
The experimental results demonstrate that the synthesized
data help the gait recognition model get better outcomes [38].
Furthermore, there were serval superior GANs, such as
Gait GANs [39], RGB GANs [40], view transformation
GANSs [41], variation normalizing GANs[42], and parallel
GANS [43], for image-based gait features augmentation and
reconstruction.

There are few works for foot and ankle kinematic char-
acteristics augmentation using GANSs at present. However,
kinematics is crucial for clinical reasoning in sports medicine.
With the development of the motion-tracking technologies,
the kinematic measure has serval precisely quantified studies
in foot and ankle behaviors for clinic practice. This study con-
nects the intelligent technologies to kinematics synthesizing
foot and ankle kinematic characteristics for automatic LCL
injuries detection.

Ill. FOOT AND ANKLE KINEMATIC CHARACTERISTICS

A. DATA ACQUISITION

We placed 17 reflective markers (13 of 9 mm, 4 of 14 mm
reflective markers) on each side of the lower extremity below
the knee to track foot and ankle motions. The markers were
stuck on the key bony landmarks. The three-dimensional
(3D) perspective of the lower extremity in Vicon Nexus is
shown in Fig. 1A. The markers’ placement followed the
HFMM [29], [31].

The motion data was captured by the Vicon MX Motion
Capture System (Lucent Technologies Inc.) with eight MX
Cameras. The motion capture system used infrared emission
cameras to illuminate reflective markers and recorded their
3D coordinate data at 100 Hz.

Each subject was required to walking in barefoot along a
10 meters flat path at his comfortable speed (Fig. 1B). The
raw position data for each subject were exported as.csv files
from Vicon Nexus 1.8.5 for future analysis.

B. PRE-PROCESSING

The raw position data were filtered by a low-pass zero phase
shift first-order Butterworth filter with no more than 1dB
of ripple in passband from 0 to 0.01Hz, and at least 3dB
of attenuation in the stopband above 20Hz to reduce the
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FIGURE 1. (A) 3D perspective of the low extremity in Vicon Nexus;
(B) Motion tracking by Vicon MX Motion Capture System. Note: the
captured position data are mapped into a fixed 3D coordinate system
aligned with the lab area.

noise from the environment, marker shift, and other uncertain
factors [44].

The gait in natural walking is periodic. An intact gait cycle
includes a stance phase (from heel-strike to toe-off) and a
swing phase (from toe-off to heel-strike again) [45]. The
marker CCL is placed in the most prominent part of the
dorsal calcaneus. At heel-strike, the position of CCL at
the Z-axis reaches a minimal value. This moment is defined
as the ending of the last gait cycle and the beginning of a new
gait cycle (Fig. 2). To make data comparable among subjects,
we normalized each gait cycle to 100 sample points by linear
interpolation.

FIGURE 2. Segmenting method of gait cycles. Bold line is the CCL position
at the Z-axis; dashed is the heel-strike moment.

C. KINEMATICS MEASURE

The range of motion (ROM) profiles were calculated by
seven angle features and a distance feature (Fig. 3), including
tibiotalar flexion (A), forefoot/ankle abduction (B), medial
arch angle (C), lateral arch angle (D), subtalar rotation (E),
forefoot/ankle supination (F), MT I-V angle (G), and lat-
eral malleolus scale (H). These HFMM-based features were
largely independent of each other and were considered clin-
ically relevant as the revealing pathologic features of the
gait after LCL injuries of the ankle. The description of these
features is shown in Table 1 [29].

D. NORMALIZATION

To improve the convergence speed and accuracy of the deep
learning model (DCGANs and LSTM), we normalized each
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FIGURE 3. HFMM-based kinematics measure. (A) tibiotalar flexion;

(B) forefoot/ankle abduction; (C) medial arch angle; (D) lateral arch
angle; (E) subtalar rotation; (F) forefoot/ankle supination; (G) MT I-V
angle; (H) lateral malleolus scale. LEP/MEP: lateral/medial epicondyle;
LML/MML: lateral/medial malleolus; LCL/CCL/MCL: lateral/dorsal/
medial calcaneus; NAV: navicular; PMT1/PMT5: proximal end of 1st/5th
metatarsal; DMT1/DMTS5: distal end of 1st/5th metatarsal.

value of ROM features to the range of O to 1 [24]. The
feature’s normalization is defined as
f* — f _fmin
fmax _fmin
where f* is the normalized feature, f is the feature before
normalization, f,q is the feature’s maximum value in the
training set, and fi,;, is the feature’s minimum value in the
training set.

ey

IV. SYNTHESIZING MODEL AND ASSESSMENT

The proposed method had two stages as shown in Fig. 4A.
The first stage trained DCGANSs using a dataset of labeled
ROM features to learn the distribution of real data. The sec-
ond stage used this trained generator to synthesize new
features. The DCGANSs were trained for the injury and control
group independently, so the labels of synthesized features
is known. The synthesized and real features trained the
LSTM-based LCL injuries detection model together as shown
in Fig. 4B.

A. SYNTHESIZING KINEMATIC CHARACTERISTICS

GANSs is an unsupervised machine learning and is com-
posed of two neural networks: a generator and a discrim-
inator. The adversarial competition between generator and
discriminator improves the networks’ performance [46].
The DCGANSs synthesizing kinematic characteristics used
fractionally-strided convolutions and strided convolutions to
replace the pooling layers in generator and discriminator,
respectively.

The generator G builds a potential probability distribution
Pof training data for real kinematic characteristics and pro-
poses a mapping G(z, 0;) from the input noise variable p,(z),
where 0, is the set of learning parameters of the deep
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TABLE 1. Description of ROM features.

No. ROM Marker Description
Feature
A tibiotalar ~ LEP/MEP Flexion between Tibia and Talus
flexion LML/MML  around Ankle (close to the
LCL/CCL/  sagittal plane).
MCL
B forefoot/ LML/MML  Rotation between Forefoot and
ankle DMTI1/5 Ankle around the axis vertical
abduction upward (close to transverse

plane).

C medial MCL Angle between the line from

arch NAV NAYV to DMT1 and the line from
angle DMTI1 NAYV to MCL around the axis
perpendicular to these two lines
(close to the sagittal plane).
D lateral LCL Angle between the line from
arch PMTI1/5 PMTS5 to DMTS5 and the line from
angle DMTS LCL to PMTS5 around Midfoot
(close to the sagittal plane).
E subtalar LML/MML  Rotation between Calcaneus and
rotation LCL/CCL/  Ankle around Talus (close to the

MCL frontal plane).

F forefoot/ LML/MML  Angle between Forefoot and
ankle LML/CCL/  Ankle around Talus (close to the
supinatio ~ MCL frontal plane).

n DMTI1/DM
T5
G MT -V NAV Angle between the line from
angle DMT1/5 PMT1 to DMTI and the line from
PMT1/5 PMTS5 to DMTS around the line
perpendicular to the line from
Midfoot Center to Forefoot
Center and Forefoot (close to
transverse plane).

H lateral LML/LCL Distance between LML and LCL.
malleolus
scale

Note: Tibia: line from knee joint center (midpoint between LEP and
MEP) to ankle joint center (midpoint between LML and MML); Talus: line
from point P (P=(2LCL+MCL+CCL)/4) to NAV marker; Ankle: line from
MML to LML; Calcaneus: line from MCL to LCL; Midfoot: line from
PMT1 to PMTS5; Forefoot: line from DMT1 to DMTS5; Midfoot Center:
center of NAV, PMTI, and PMT5; Forefoot Center:
(3*DMT1+2*DMT5)/5.

convolutional neural network in the generator [47]. As shown
in Fig. 4A, the input of the generator is a 100-dimensional
noise vector z depending on uniform distribution between
—1 and 1. The noise z is projected and reshaped to spatial
convolutional representation with 512 feature maps. A series
of four fractionally-strided convolutions convert 1 x 50 fea-
ture maps into ROM features F 1x800-

The discriminator network D(x, 6;) receives synthesized
features F' and real features F and then produces an output to
declare the input features are real or synthesized after passing
the four convolution layers.

The generator aims to generate random samples as real
ROM features. While the discriminator tries to distin-
guish between the synthesized and real features. Therefore,
DCGAN:S training is a minimax process [48]. The discrimi-
nator maximizes the loss value, while the generator tries to
minimize it [49]. The adversarial competition between the

VOLUME 8, 2020
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FIGURE 4. System design of the proposed method. (A) Thearchitecture of
the DCGANSs and training it with real kinematic characteristics. The model
is trained for the injury group and control group independently. (B) Top:
Synthesizing kinematic characteristics using trained generators for
each. Bottom: Architecture of the LSTM networks and training it with real
and synthesized kinematic characteristics to detect LCL injuries of the
ankle.

generator and discriminator is indicated as

me mng (D, G) = Ex~pyyux) [logD (x)]

+E:~p,llog(1 — D (G(2)))] (2)

where, Ex~p,,,.(x) and E,~p ;) are the expectation from the
real and synthesized features;D (x) € [0, 1] is the probability
that the sample x is deemed to be real; D (G(z)) € [0, 1] is
the probability that the synthesized feature G(z) is deemed to
be real.
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The independently trained generator by the control and
injury group is used to synthesize kinematic characteristics
as shown in Fig. 4B. The shuffled concatenation of real and
synthesized kinematic characteristics is fed to the LSTM
networks for LCL injuries detection.

Fig. 5 shows a series of randomly selected synthesized
kinematic characteristics at different learning epochs of
DCGANS and a group of real characteristics. The first epoch
(EpochO) started with the initialization of DCGANSs param-
eters. After 2500 epochs, we can observe a fuzzy structure
of kinematic characteristics as shown in Fig. 5 (Epoch2500).
After 5000 and 7500 epochs, a trend-consistent structure of
the characteristics is becoming visible. In epoch 10000, fur-
ther details such as the stance and swing phase in a gait cycle,
adjustment amplitude between frames become coordinated.

(A) Tibiotalar flexion (B) Forefootiankle abduction

(D) Lateral arch angle

(G) MT IV angle

EPoch0 —+— EPOch2500 —e— EpOchS000 —a— EpOch7500 —e— EPOCNT0000 —a—Real

FIGURE 5. Randomly selected a set of synthesized features for injury
group at different training epochs of the DCGANSs. The real features from
a patient with LCL injuries of the ankle.

B. ASSESSMENT FOR SYNTHESIZED CHARACTERISTICS

It is challenging to measure the quality of synthesized fea-
tures versus real features frame by frame because the synthe-
sized features do not belong to a real fixed pattern. We used
the Pearson correlation coefficient and the t-SNE algorithm
to compare the similarity of synthesized features to the real.

1) PEARSON CORRELATION COEFFICIENT

Pearson correlation coefficient Pi is used to evaluate
the linear correlation between synthe51zed ROM features
F(f],fz, - ,fg) and thereal F(f1, f2, - . ., f3) [50]. The Person
correlation coefficient is calculated as

cov(F, F) E(<ﬁ - ﬂﬁ) (F = ur))
- O0;O0F - OpOF

E (FF) —E <F> E(F)

E (FZ) — EX(),/E (F?) — EX(F)

(€)
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where o is the standard deviation, cov (-) is the covariance
between synthesized features F and the real F, E is the
mathematical expectation, u is mean value.

When p 7. Fis in (0.8,1.0], the degree of correlation between

the synthesized features F and the real F is very strong.
When Pi. Fis in (0.6,0.8], the degree of correlation is
strong. When P Fis in (0.4,0.6], the degree of correlation is
medium. When P Fis in (0.2,0.4], the degree of correlation
is weak. When Pg., Fis in [0.0,0.2], the degree of correlation
is very weak or no correlation.

2) VISUALIZATION USING T-SNE

The visual verification for synthesized features by the t-SNE
algorithm consists of two stages [51]. First, t-SNE constructs
a probability distribution over pairs of high-dimensional fea-
tures in such a way that the probability of being picked
is proportional to the similarity of objects. Second, t-SNE
defines a similar probability distribution over the features in
the low-dimensional map for visualization. The details are as
follows [52].

The Euclidean distance in high-dimensional space is
transformed into a conditional probability. Give a set of n
high-dimensional features (shuffled concatenation of real and
synthesized) f1, f2, . . . , fu, the conditional probability p ;; of
features f; and f; is defined as

b el = IP/207) @
N S e Xp I fi — fn 12/202)
where o; searched by the binary search algorithm is a variance
of the Gaussian distribution centered at f;.

The similarity in high-dimensional features is defined as a

symmetrized version of the conditional probability, that is:

Pjli T Pilj

=T

To reflect the similarity p;; in the low-dimensional map as

well as possible, the similarity between two features f/; and
f'; in the map is defined as

&)

A+If =
St (L 1L = 1)

The location of the features f'; in the low-dimensional map
is determined by minimizing the Kullback-Leiber divergence
between the probability distribution P = (p;;) and Q = (g;))
using the gradient descent algorithm, that is:

qij = ,qii =0 (6)

KL(P Q) =), pilos” )
ij
SKL(P —
G — a3 Gy~ 0+ = 1
®)

The result of this algorithm is a map that describes the
high-dimensional ROM features in a low-dimensional space
to verify the synthesizing quality from visualization.
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V. EXPERIMENTS

A. DATA

This is an interdisciplinary study done at several institutes in
Canada and China. The protocol was reviewed and approved
by the Institutional Research Board of Peking University
Third Hospital where data collected were executed. Each
participant provided written consent before they enrolled in
the study.

The injured gait data captured from three patients diag-
nosed with LCL injuries of the ankle before surgery (all-male,
the average age of 34). Five healthy adults with paired age
and gender were recruited from the student and staff of the
hospital and university to serve as control subjects (all-male,
the average age of 25). The true human kinematics dataset
consisted of 86 normal gait cycles and 30 injury gait cycles.
The training set for the synthesizing model included 50 gait
cycles from three control subjects and 20 gait cycles from
two patients. The remaining data from another two healthy
subjects and one patient differing from the training set was
used for testing.

We created three different strategies for feeding data to
train the detection model and compared their outcomes. The
first feeding strategy (DFS1), as same as the training set
for the synthesizing model, only included real ROM fea-
tures. The second feeding strategy (DFS2) included the real
features plus 200 synthesized features for each group. The
third feeding strategy (DFS3) included the real features plus
1000 synthesized features for each group.

B. TECHNICAL DETAILS OF TRAINING AND
IMPLEMENTATION
1) SYNTHESIZING MODEL
The DCGANs model was trained independently for the injury
and control groups. The injury group used a batch size of 16,
and the control group used a batch size of 32. The number of
training epochs was set to 10,000. The learning rate for Adam
optimizer was 0.002 and the momentum term was 0.5. The
prior input noise variable p,(z) was a 100-dimensional vector
with continuous uniform distribution randomly synthesized
values in [—1,1]. The initial weights of DCGANs were set
by a Gaussian distribution with zero mean and 0.02 standard
deviation.

The generator consisted of a fully connected layer and
4 deconvolution layers with 5 x 5 kernel size and 2 stride size.
Batch-normalization (BN) was applied to each hidden layer.
The fully connected layer in the generator reshaped the input
into size 1 x 50 x 512. The output of each fractional-strided
convolution layer expanded to twice its input size. The gen-
erator’s output layer used the tanh activation function and the
hidden layers used the ReLU activation function.

The discriminator consisted of a fully connected layer and
4 convolution layers with 5 x 5 kernel size and 2 stride size.
BN was applied to each hidden layer. The hidden layers used
the Leaky ReLU activation function after BN and the output
layer used the sigmoid activation function.
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TABLE 2. Pearson correlation coefficient of 5 randomly selected samples for each group.

& =)

- Z a2 = = ~ 5 ) e

£ s 8 g 2 3 o R £ s T Z = g 2

3 sz £ 2 g g 2 5 5 = 8 8 =

=< X = & 5 ¢ - =g % E

= S =~ — =

§ E
1 0.81 0.70 0.95 0.81 0.81 0.87 0.94 0.81
s 2 0.72 0.71 0.95 0.92 0.78 0.86 0.97 0.92
e 3 0.71 0.78 0.94 0.97 0.80 0.81 0.96 0.97
o4 0.89 0.84 0.90 0.96 0.85 0.82 0.93 0.96
2 5 0.72 0.88 0.98 0.96 0.82 0.86 0.94 0.96
= Ave 0.77 0.78 0.94 0.92 0.81 0.84 0.95 0.92
1 0.87 0.78 0.84 0.93 0.79 0.95 0.99 0.82
= 2 0.89 0.92 0.90 0.96 0.76 0.84 0.96 0.88
e 3 0.95 0.86 0.82 0.94 0.84 0.84 0.95 0.81
s 4 0.98 0.77 0.92 0.94 0.82 0.86 0.97 0.68
£ 5 0.91 0.93 0.84 0.96 0.65 0.90 0.96 0.81
°  Awg 0.92 0.85 0.87 0.95 0.77 0.88 0.96 0.80

2) DETECTION MODEL

LSTM is a powerful computer algorithm for performing clas-
sification work on the entire time series [53]. The LSTM
detection model in this study included an input layer, two hid-
den layers, and a Softmax classifier as the output layer. There
were 32 memory units for each hidden layer. The stochastic
gradient descent (SGD) algorithm was used for the model
training. Using the Root Mean Square Prop (RMSProp) algo-
rithm was to reduce the swing amplitude during parame-
ter optimizing and accelerate the rate of convergence [54].
The categorical cross-entropy loss function was added after
the Softmax classifier to estimate the level of inconsistency
between the prediction and true value. The number of training
iterations was set to 300 and the batch size was 32. According
to the three DFSs, we designed two kinds of detection exper-
iments: 1) detecting the LCL injuries through each ROM fea-
tures independently (the input was batches of 1 x 100 feature
vectors); 2) detecting the LCL injuries through eight ROM
features together (the input was batches of 1 x 800 feature
vectors). There were two diagnostic tags (0 and 1) for the
detection model output. Tag O represented the normal and
tag 1 represented the LCL injuries of the ankle.

C. VALIDATION FOR SYNTHESIZED CHARACTERISTICS

1) CORRELATION ANALYSIS

We randomly selected 5 samples from real and synthesized
data for each group and paired off. The Pearson correlation
coefficients of eight ROM features for each pair were cal-
culated respectively as shown in Table 2. The correlation
coefficients were above 0.65 for every pair and the aver-
age of 5 samples’ correlation coefficients were all above
0.77 for each ROM feature. It means that there was a strong
linear correlation between the real and synthesized features.
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The synthesized features were consistent with the real, but
they were not identical.

2) VISUAL VERIFICATION

The eight ROM features in gait cycles were mapped into
a plane respectively using the t-SNE algorithm (perplexity
was set to 30). Fig. 6 shows the visualization of real and
200 randomly selected synthesized ROM features. The syn-
thesized ROM features overlapped with the same class of
real ROM features and generalized within their certain range.
The synthesized features of forefoot/ankle abduction (B) and
lateral malleolus scale (H) had a sharp border for each class.
The synthesized features of tibiotalar flexion (A), media
arch angle (C), and forefoot/ankle supination (F) had bits
of overlapping features while the real data are more distin-
guished. The features of subtalar rotation (E) and MT I-V
angle (G) were closer to each other. This observation might
be due to the subtle differences between LCL injuries of the
ankle and control groups with less visible features to the
human eye.

D. INJURIES DETECTION

We calculated accuracy, precision, recall, and f1-score based
on the confusion matrix to measure the effect for the detec-
tion with three different training sets. Accuracy defined as
ACC = (TP+1N) / (TP + TN + FP + FN) is a measure
of the classification performance of a detection model. Here,
TP is the number of true predictions for the normal, TN is
the number of true predictions for the LCL injuries, FP is the
number of false predictions for the normal, FN is the number
of false predictions for the LCL injuries. Precision-Recall
is used to measure the success of prediction [55]. Precision
is defined as P TP / (TP + FP). Recall is defined
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FIGURE 6. Visualization of real and synthesized gait kinematics using the t-SNE algorithm. Digit 0 (red color) in the chart represents 200 randomly
selected synthesized ROM features for the control group; digit 1 (blue color) in the chart represents 200 randomly selected synthesized ROM features for
the injury group; digit 2 (green color) in the chart represents 50 real ROM features for the control group; digit 3 (purple color) in the chart represents

20 real ROM features for the injury group.

TABLE 3. Accuracy, precision, recall, and f1-score for LCL injuries detection using a single ROM feature for three DFSs on the same test dataset.

. 2 _ 3
—~ = m = <= ~ — @) K]
& g 5 8 g £ s 2 T2 £ 8 S £ S w® g 2 Avg.
a 2 s g S 8 B2 g2 Z £ 5 5 s S 2
c & £ S s g s e =5 z S
ST % — =
] g
accuracy (%) 84.78 73.91 67.39 71.74 78.26 71.74 50.00 91.30 73.64
3 precision 1.00 1.00 1.00 0.77 0.78 0.85 1.00 1.00 0.93
E recall 0.81 0.67 0.58 0.92 1.00 0.78 0.36 0.88 0.75
fl-score 0.89 0.80 0.74 0.84 0.88 0.81 0.53 0.94 0.80
accuracy (%) 93.48 84.78 65.22 56.52 91.30 71.74 65.22 91.30 77.45
I precision 1.00 0.97 1.00 0.75 1.00 0.93 0.75 1.00 0.93
E recall 0.91 0.83 0.56 0.67 0.89 0.69 0.83 0.89 0.78
fl-score 0.96 0.90 0.71 0.71 0.94 0.79 0.79 0.94 0.84
accuracy (%) 93.48 93.48 78.26 71.74 76.09 76.09 67.39 89.13 80.71
a precision 1.00 0.97 0.78 0.87 1.00 1.00 0.96 1.00 0.95
E recall 0.92 0.94 1.00 0.75 0.69 0.69 0.61 0.86 0.81
fl-score 0.96 0.96 0.88 0.81 0.82 0.82 0.75 0.93 0.87
as R = TP/ (TP + FN). fi defined as fi = tibiotalar flexion, forefoot/ankle abduction, medial arch

(2-P-R) / (P+R) is the harmonic mean of precision and

recall.

The accuracy, precision, recall, and fl-score for LCL
injuries detection using a single ROM feature are pre-
sented in Table 3. The training set for the detection
model only using real features (DFS1) did not yield
adequate classification outcomes. The accuracy for the
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angle, lateral arch angle, subtalar rotation, and forefoot/
ankle supination (A-F) were moderated (about 67% ~ 85%);
the accuracy for MT I-V angle (G) was a random guess
(50.00%); the accuracy for lateral malleolus (H) scale was
satisfied (91.30%). The average accuracy for all the features
was moderated (73.64%). The average accuracy improved
slightly (77.45%) when 200 synthesized features were added
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FIGURE 7. ROC curves for detecting LCL injuries of the ankle. (A) single feature-based detection trained with DFS1; (B) single feature-based detection
trained with DFS2; (C) single feature-based detection trained with DFS3; (D) eight features-based detection.

to the training set. The average accuracy improved dramat-
ically (80.71%) adding 1000 synthesized features to train
the detection model. On this training condition (DFS3),
the improvement of accuracy for the tibiotalar flexion,
forefoot/ankle abduction, medial arch angle, forefoot/ankle
supination, and MT I-V angle (A-C, F, G) were satisfied.
It is acceptable that the accuracy for lateral arch angle (D)
remained constant (71.41%) and the accuracy for subtalar
rotation (E) and lateral malleolus scale (H) decreased slightly
(E: from 78.26% to 76.09%; H: from 91.30% to 89.13%).
Adding 200 synthesized features to the training set can
improve the fl-score for half of the features (A, B, E, G).
Compared to the DFS1, the average of the f1-scores for eight
features improved slightly with DFS2 (from 0.80 to 0.84).
Adding 1000 synthesized features to the training set can
improve the trade-off between precision and recall for most
of the ROM features (A-C, F-H). The average of fl-score
with DFS3 was higher than with DFS2 (0.87 vs. 0.84). The
fl-scores show that the detection model had a poor per-
formance in the classification of forefoot/ankle abduction
(B), medial arch angle (C), and MT I-V angle (G) using
DFS1. Using 1000 synthesized features as the training set
promoted their f1-score dramatically. Our results showed that
the importance of features for the classification with a rank-
ing is the tibiotalar flexion (A) and forefoot/ankle abduction
(B) > the medial arch angle (C) and lateral malleolus scale
(H) > the subtalar rotation (E) and forefoot/ankle supination
(F) > the lateral arch angle (D) and MT I-V angle (G).
By the way, the visualization using the t-SNE algorithm
in Fig. 6 already provided some insights.

Although the detection accuracy for each feature was
spotty, all the eight ROM features made substantial con-
tributions in their single feature-based LCL injuries detec-
tion. We integrated these features for training the detection
model. We tested the detection with the three DFSs for five
times, the accuracy, precision, recall, f1-score, and specificity
for the test with medium results are shown in Table 4.
Training with real features (DFS1) did not yield adequate
detection outcomes. The accuracy, precision, recall, and
fl-score were moderated, and the specificity is low. When
we added 200 synthesized features, the outcome was
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TABLE 4. Accuracy, precision, recall, f1-score, and specificity for LCL
injuries detection using eight ROM features for three DFSS on the same
test dataset.

DFS accuracy  precision recall  fl-score specificity
DFS1  73.91% 0.77 094 0385 0.00
DFS2  97.83% 1.00 097  0.99 1.00
DFS3  100.00%  1.00 1.00 1.00 1.00

dramatically improved. With increasing the sample size by
adding 1000 synthesized features to the training set, the out-
comes further improved. The acceptable option was the real
plus 1000 synthesized ROM features, where the accuracy,
precision, recall, f1-score, and specificity were all satisfied.

The receiver operating characteristic (ROC) plots
in Fig. 7(A-C) also show that adding synthesized ROM fea-
tures to the training set improved the trade-off between true
positive rate and false positive rate. In the case of detection by
a single kind of ROM feature, adding 1000 synthesized fea-
tures to the training sets generally was better than adding 200.
The detection accuracy was further improved by eight ROM
features together (Fig. 7D).

VI. CONCLUSION
We report our works in detecting patients with LCL injuries
using a deep learning methodology. When ligaments sur-
rounding patients’ foot and ankle get injured, patients’ mobi-
lization will be disturbed. In this study, we quantitatively
described the behavior surrounding foot and ankle in nat-
ural walking based on data collected by HFMM. Notic-
ing the true human data was insufficient for deep learning,
we used DCGANSs to synthesize data with the eight ROM
features for the injuries. We have shown that synthesized
ROM features can augment the training dataset, resulting
in a substantial improvement in both single feature-based
and eight feature-based LCL injuries detection performance.
We obtained the best results with a combination of true human
and 1000 synthesized features in training the LSTM networks
for classification.

The quality of synthesized features was evaluated using
the Pearson correlation coefficient and the t-SNE algorithm.
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The results from calculating the Pearson correlation coeffi-
cient show that there was a strong linear correlation between
the real and synthesized features for each class. The visual-
ization using the t-SNE algorithm shows that the synthesized
ROM features were closed to their real counterparts per class.

Our experiment results also show that augmenting datasets
with synthesized ROM features can improve the diversity
of the dataset to enhance the generalization performance
of the detection model. The size of the training dataset
is a direct factor impacting on the detection performance
for LCL injuries. Therefore, the moderate training set can
improve the classification and generation performance for the
LCL injuries detection model reducing the misdiagnosis and
missed diagnosis rate.

Our long-term goal is to develop an artificial intelligence-
based instrument for automatically detecting the LCL injuries
of the ankle. This study focuses on one aspect of patients’
behaviors (i.e. range of motion) that connects to their foot
and ankle kinematic characteristics during walking. Current
research proves the feasibility of using the synthesizing
model for LCL injuries detection. This is only a small but
concrete step toward our long-term goal. By closely working
with surgeons, we will extend our research to inspect more
specific behaviors around micro-adjustment of foot and ankle
in gait, posture control in different sports situations, sequen-
tially optimize our detection model, and eventually enhance
the quality of clinical assessment of human movement in
sports medicine.
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