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ABSTRACT The continuous increase of mobile data traffic calls for the design of energy-efficient content
distribution mechanisms, to be incorporated in the fifth generation of mobile networks, 5G. One of the
biggest concerns of the companies and the research community is to reduce the energy consumption in
both the user equipments (UEs) and the network equipment. In this article, we present a novel content
distribution framework called Network-Coded Cooperative (NCC) Networks, which benefits from the
interplay between mobile clouds (MC) and Random Linear Network Coding (RLNC) to reduce the overall
energy consumption in the devices that take part in the communication. This novel framework leads to
reduced energy consumption by offloading the cellular interface to a link with greater energy efficiency, for
instance, WiFi, within the mobile small cell. We evaluate the performance of our framework analytically
and in practical implementation (i.e., testbed) in terms of throughput, energy savings, packet decoding ratio,
latency, and synchronicity. In comparison to the conventional content distribution system, for the case of four
users, the analytical model and the testbed implementation show energy savings of more than 12% and 8%,
respectively. Furthermore, network usage is reduced, losses are neutralized, and the content is synchronously
distributed to all users.

INDEX TERMS Network coding, random linear network coding (RLNC), cooperative communication,
content distribution, cellular networks, mobile small cells, energy efficiency, traffic offload.

I. INTRODUCTION
As a new mobile generation unfolds, new systems, struc-
tures, devices, and protocols are designed to match user’s
and company’s expectations. The fifth generation of wireless
networks (5G) presents a new networking paradigm where a
massive number of mobile devices are connected anywhere
and anytime. It has been reported by Cisco [2] that mobile
data traffic will increase sevenfold between 2017 and 2022,
reaching 77.5 exabytes per month by 2022. Moreover, wire-
less traffic will reach 71% of the total Internet Protocol (IP)
traffic, and immersive media services will multiply their
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uses. For instance, IP video traffic will represent 82% of
all IP traffic, live video will grow 15-fold, video surveil-
lance cameras traffic will increase around 700%, and virtual
reality (VR) and augmented reality (AR) traffic will have a
Compound annual growth rate (CAGR) of 65%. Furthermore,
the expected number of connected and connected devices will
increase in the next years. During this time, technologies
such as the Internet of Things (IoT) and Wireless Sensor
Networks (WSN) will dominate the user’s services with
smartphones, tablets, machines, and sensors. Cisco reported
in 2017 [3] that the number of connections will increase up to
29.3 billion in 2023. The number of connected devices will
also increase up to 13.1 billion. In order to carry this increase
in mobile traffic, micro, pico, and femtocells base stations are
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expected to populate the network. These base stations will
conform heterogeneous Ultra Dense Networks (UDNs) that
provide ubiquitous connectivity.

All the aforementioned applications have in common the
need for a massive content distribution system and infrastruc-
ture. The current state of the art of cellular content distribution
establishes a cellular, unicast connection between the cellular
gNodeB (gNB) and the user equipment (UE), regardless of
the content requested by the users. If multiple users request
the same information, the gNB establishesmultiple replicated
unicast connections, which leads to inefficient use of cel-
lular resources. Examples of these situations can be found
in stadiums, music festivals, or theaters where cameras can
stream to the mobile phones of the audience, passengers in
a train receiving news of connecting trains, weather news or
delays, or players in AR mobile games such as Pokemon Go.
Distributed ledger technologies (DLTs) (e.g., Blockchain)
present another use case for massive content distribution,
where every DLT node has to store a copy of a common
timestamped and ordered database called ledger [4].

This problem has been in the spotlight of the industry
and research community in the last years. Consequently, new
architectures, protocols, and schemes have been developed
with the target of providing a more efficient content
distribution framework. The 3rd Generation Partnership
Project (3GPP) proposed Multimedia Broadcast Multi-
cast Service (eMBMS) [5], a framework that provides
multicast capabilities to Long Term Evolution Advanced
(LTE-A). However, a EuropeanUnion report [6] detected sev-
eral issues in eMBMS, such as reduced transmission range,
high energy consumption, and poor spectral efficiency. Many
other researchers developed in parallel different methods
to provide massive content distribution, such as the use of
cloudlets or device to device communication, combined with
forward error correction (FEC) techniques such as network
coding (NC). NC has been known for increasing throughput
in wireless networks [7]. Random Linear Network Coding
(RLNC) [8] is widely used in streaming systems due to
the low latency it provides. Instead of using deterministic
coefficients, the transmitter creates a random coding matrix.
Consequently, the intermediate nodes do not have to wait
until the generation is complete to decode and forward the
information, but they only need to generate new coding coef-
ficients and send them. The coding matrix is generated by a
linear combination of the vector of source symbols with the
vector of coefficient, which are taken from a Galois-field of
size q, GF(q). In the end, the decoder only needs to receive
enough linear independent packets to perform the Gaussian
elimination in the decoding matrix and retrieve the source
symbols.

Although a lot of research has been done in this field,
it has not been found yet a framework that enables efficient
massive content distribution in cellular networks. In particu-
lar, dissemination techniques that rely on cloudlets and mesh
networks suffer from high jitter and latency in multipath
communications. In this article, we propose a new framework

called Network-Coded Cooperation (NCC) for efficient con-
tent distribution in cellular networks. NCC offloads traffic
from the cellular network to a small cell short-ranged net-
work. NCC leverages the massive UDNs to convert some
of the smaller cells into Mobile Clouds (MCs). MCs are
defined in [9] as ‘‘a cooperative arrangement of dynamically
connected nodes sharing opportunistically resources’’. This
means that nodes (i.e. UEs) in an MC communicate among
each other to obtain a common or personal benefit. An exam-
ple MC can consist of various UEs that communicate with
each other through a short-range technology such as WiFi.
Regarding data dissemination, it has been proved that MC
can be a promising solution [10]. Similar cooperative relaying
systems have been introduced to improve the performance
and reliability of wireless networks [11]. NCC has three
different agents: the first agent is a RLNC encoder that is
placed inside the video server. The second agent is a NCC
controller running in the edge cloud, and the third agent is
a RLNC recoder placed inside the UE. Both the first and
the second agents are enabled through Network Function Vir-
tualization (NFV) and Software-Defined Networking (SDN).
NFV enables them to be virtualized as Virtualized Network
Functions (VNFs) so they can be flexibly deployed. SDN
enables them to dynamically adjust the configuration to the
events in the network. SDN and NFV together enable the
placement of both the first and the second agent in a Mobile
Edge Computing (MEC) server. Consequently, NCC can:
(i) dynamically switch between configurations, (ii) dynami-
cally adapt redundancies depending on the network’s quality,
(iii) dynamically create new NCC controllers to scale the
service to new users, and (iv) seamlessly move between edge
clouds to reduce latency, energy consumption, and network
traffic [12]. The technology of SDN, NFV, andMEC, in com-
bination with UDNs and the massive deployment of base
stations, enable NCC to be viable in 5G.

NCC consists of two phases: the cellular phase and the MC
phase. In the first phase, the gNB segments the content in
packets and groups them in blocks of g packets; hereafter
we refer to g as the generation size. The server in the gNB
encodes the packets and sends them to the mobile users in
a round-robin manner. At the end of this phase, each UE
receives a part of the content that will be forwarded to the
other UEs in the MC. In the MC phase, the UEs share
their part of the content to the rest via WiFi multicast. NCC
leverages the interplay between MCs and NC to increase
network throughput, increase network resilience, and reduce
energy consumption with small latency and complexity
overhead.

In our previous works [13], [14], we proposed two dif-
ferent analytical models for NCC. The models estimated
the optimal number of coded retransmissions in the MC for
successful content delivery. The RLNC protocol used was
systematic RLNC [15]. In this work, we present the analytical
model of NCC for the protocol PACE-MG [16], which is an
improved version of RLNC PACE [17]. Moreover, this is the
first work to provide testbed results of NCC. We assess the
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TABLE 1. Comparison of the related works. New acronyms (*) are listed here due to space constraints: Network Coding with Multiple Interfaces (NCMI),
multicast (mcast), Instantly Decodable Network Coding (IDNC), Opportunistic Network Coding (ONC), Free Viewpoint Video (FVV), Hypertext Transfer
Protocol (HTTP), acknowledgement (ACK).

validity of our framework with the comparison of the two
aforementioned methods. We evaluate the analytical model
presented to calculate the energy consumption at the UEs
and compare our results with the hardware implementation.
Please note that in this article the analytical model is used
to find upper and lower bounds for the testbed and not for
accuracy. Please refer to [14] if accuracy is the desired metric
in the analytical model. The analytical results, for a MC of
eight users, show energy savings of 30% when compared to
single unicast. Implementation results confirm the analytical
ones with an extra offset due to overprovisioning, by reducing
the energy consumption at the UEs from 100% in the case of
single unicast to a 27% in the case of eight nodes in the MC.
Moreover, we reduce the packet loss rate in the implemen-
tation to a negligible value, while studying the latency and
providing a high degree of decoding synchronicity.

The remainder of the paper is organized as follows. The
state of the art is presented in Section II. Then, in section III
we describe the content distribution scenario and we propose
our solution for that specific scenario. In section IV we eval-
uate the proposed solution using two different approaches,
namely an analytical model and simulations in a real testbed.
Finally, section V concludes the paper.

II. RELATED WORK
Table 1 shows a comparison of the related works and
the framework proposed in this article. The work in [26]

presented a comparison of different systems for massive
content distribution in cellular networks. On one hand,
eMBMS [5] leveraged file delivery over unidirectional trans-
port (same as HTTP, but unidirectional) and single frequency
networks (SFN) to massively stream video over cellular net-
works. However, the performance obtained was inferior to
the expectations [6]. On the other hand, cooperative relaying
leveraged the use of mobile clouds [27] to improve network
performance in terms of throughput and resilience, and, as a
result, it reduces the energy consumption of the system [28].
For example, Shnaiwer et al. [29] proposed a NC broad-
cast offloading scheme in homogeneous cellular networks
that offloads macrocell traffic into femtocells. The same
authors expanded their work by addingONC in the offloading
scheme [20].

NC had a very important role in streaming since
Ahlswede et al. [7] introduced it to increase throughput and
resilience in wireless networks. In particular, the interplay
between RLNC and cooperative relaying was first proposed
in [30]. RLNC [31] is a popular NC protocol used in stream-
ing because the intermediate nodes do not need to know
the coding coefficients to forward the packets, but they can
generate new coding coefficients as soon as the packets arrive,
which reduces the latency of the system. This is known as
coding on the fly. Consequently, RLNC has been used in
many works [23], [32]–[34]. Wang et al. [23] proposed a dis-
semination scheme in local area networks (LANs) that uses
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RLNC to improve the throughput and resilience in the system.
Chau et al. [32] used RLNC in the relay nodes to improve
the efficiency of the network during the uploading phase.
Tassi et al. [33], [34] studied RLNC-based, energy-efficient
resource allocation models for multicast scenarios in hetero-
geneous networks. RLNC and cooperative relaying have been
used together several times.

Keshtkarjahromi et al. [18] developed a framework for
cooperative mobile devices in a joint setup that consisted of
cellular and device to device (D2D) links. MicroCast [35]
is a novel cooperative system where each mobile device
uses simultaneously two network interfaces, a cellular inter-
face that connects to the video server and downloads parts
of the video, and a WiFi interface to locally exchange the
received data via unicast links. In their work, they firstly
formulate the theoretical problem and they provide a dis-
tributed solution for it, and they prove their system by means
of simulation and practical implementation. Yan et al. [36]
contributed with a similar study but from a theoretical
point of view. They formulated the problem of optimal
collaborative transmission scheduling and they proposed a
new weight function for measuring the quality of a cod-
ing pattern. Antonopoulos et al. [38] and Antonopoulos and
Verikoukis [39] proposed and tested multi-player, non-
cooperative game theoretic Medium Access Control (MAC)
strategies to obtain the balance between saving energy and
successfully transmitting the data. The authors used RLNC
to eliminate the exchange of control packets. The Network-
coding-based video conference system (NCVCS) [23] is a
reliable framework for massive content distribution using
WiFi multicast. Specifically, NCVCS leverages the benefits
of RLNC and multicasting to provide a solid content dis-
tribution system inside a local area network. However, the
cellular network as an overlay network of the NCVCS system
was not considered [23]. Aymen et al. [39] offloaded cellular
heterogeneous networks through cooperative RLNC-based
video streaming with D2D. Li et al. [19] leveraged the bene-
fits of adaptive RLNC and D2D communication to provide a
hybrid multicast system in cellular heterogeneous networks.
Similarly, Zhang et al. [40] proposed a cooperative multicast
system based on adaptive RLNC. Both works used RLNC
in combination with D2D communications to fix the losses
produced in the cellular link. Le et al. [21] proposed a similar
approach to the aforementioned ones, but in Android devices.
They increased smartphone throughput while maintaining
the same battery life. Zhang et al. [22] developed an algo-
rithm based on encoded anchors (texture-plus-depth). The
eNodeB (eNB) unicasted parts of the anchors to the UE,
which broadcasted the encoded anchors. Firooz and Roy [41]
studied the latency upper and lower bounds for content dis-
tribution using network coding, and Torre et al. [42] imple-
mented and studied the latency of the scenario. The analytical
model of RLNC has been studied in [43], who proposed a
Newton method approximation to adjust the channel losses
to optimize channel usage. Tsimbalo et al. [44] studied the
decoding probability of one source and two destinations using

multicast under RLNC. In their work, they have to deal
with the correlation between packets received at each node.
We have to cope with a similar problem in our analytical
model.

Leyva-Mayorga et al. presented the NCC analytical model
in [13]. This model was further extended in [14]. However,
the results showed that the increase of complexity in the
model in comparison to the extra accuracy achieved was not
significant, and the initial model is sufficiently accurate in
general scenarios. R. Torre developed a wired version of a
demonstrator called 5G Nokia Stadium Experience, shown
in Mobile World Congress 2017. In this demonstrator, four
clients were placed on the other side of a 5G network simula-
tor, and they were connected to a video streaming server. The
demonstrator was further extended into a wireless version,
which was presented at CCNC and CES Las Vegas 2018 [45].

III. SYSTEM DESCRIPTION
In this section, we first introduce the scenario we want to
address and then we propose our solution, NCC networks,
to solve this scenario.

A. SCENARIO
The target scenario consists of multiple users (i.e., the UEs)
inside a cell that requests the same information (e.g. a video
file) through the cellular network to one or more servers
far away from the UEs. These users are close enough to
each other so these can communicate using a short-range
wireless technology like WiFi, forming a complete network
graph. The scenario is depicted in Fig. 1. The gNB establishes
one unicast session per user requesting the video file. This
scenario is likely to arise in situations where social events
concentrate the users spatially and these share a common
interest towards particular video streams, for example, stadi-
ums, auditoriums, conferences, or even trains. As mentioned
in the previous section, the traditional solution to this scenario
is having the cellular gNB to establish multiple and redundant
sessions to send the same data. This is inefficient in terms
of energy consumption, bandwidth usage, and can also cause
great levels of interference within the cell.

FIGURE 1. Graphic description of the scenario under evaluation.

B. PROPOSED SOLUTION
In our solution, NCC networks, we extend the concept of
small cells to a more specific one called MCs. We define
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an MC as a group of nodes inside a small cell that share
their resources opportunistically, cooperating with each other
to obtain a common benefit. This protocol uses small cells
to offload the traffic from cellular communication into a
short-range communication inside the small cell, like WiFi.
The protocol comprises two different phases. In the first
phase, communication occurs either from the gNB to theUEs,
and, in the second phase, the UEs in the MC communicate
with each other. Hence, these phases are called the cellular
phase, and the MC phase, respectively. The cellular and MC
phases can occur sequentially or in parallel, and communica-
tion in the MC phase can occur directly among the UEs or
through an access point (AP).

NCC has three different agents: the first agent is a RLNC
encoder that is placed inside the video server. The second
agent is a NCC microservice running in the edge cloud,
hereafter named NCC controller. The third agent is a RLNC
recoder placed inside the UE.

We use RLNC in the video server to encode the video pack-
ets, and in each UE of the MC to recode and decode the pack-
ets. In RLNC, the encoder gathers the packets in blocks of
size g, namely generation size. It linearly combines packets in
the block multiplying them by random coefficients, creating
new coded packets that are transmitted through the network.
At the destination, the decoder only needs enough linear
independent packets to fill a coding matrix of g columns until
the matrix is full-rank. Then, the decoder performs Gaussian
elimination to that matrix to obtain the original packets. The
main benefit of using RLNC in this setup is that every NC
coefficient is random, so during the recoding phase, the UEs
do not need to wait for any specific coefficient. They simply
recode the incoming packet with a new random coefficient
and change the RLNC header. This reduces the latency that
is inherent to coding, unlike in other coding protocols like
Reed Solomon or turbo codes. Furthermore, in the case of
lossy scenarios, the source only needs to send extra redundant
packets to the destination, avoiding feedback techniques that
would delay the communication.

The evaluations (analytical model and testbed) are done
using a novel experimental RLNC protocol called PACE
multigeneration [16].We decided to use this protocol because
it fulfills the NC protocol requirements of NCC. In particular,
NCC needs high throughput and resilience to efficiently dis-
tribute video content, low latency to provide the content live
(like in streaming services), resilience against high-jitter and
multipath networks since the protocol is based on creating
a mesh inside mobile clouds to distribute the content, low
energy to extend the battery life of the devices. PACE [17] is
an approach that focuses on lowering the latency per packet
issue. It includes coded redundancies between the systematic
packets of the generation. Therefore, the receiver will not
have to wait until the end of the generation to recover from a
loss. However, PACE, as well as many other RLNC protocol,
provides in-order-delivery, which means that the protocol
waits until the next incoming packet with the next source
symbol arrives. PACE underperforms in high-jitter networks

FIGURE 2. Concept of Network-Coded Cooperation. Adapted from: [45].

in terms of decoding ratio and latency. First, because it has
no recovery mechanisms for unordered packet arrival and,
as a result of it, packets stall in the decoding queue waiting
for older packets, thus increasing the latency in the system.
PACE multigeneration has a mechanism to handle multiple
generations at the same time. It divides the original decoder
into two layers: a controller that redirects the traffic and
multiple subdecoders, which are entities that are createdwhen
the first packet of a new generation arrives. Each subdecoder
stores the data of a single generation, and they are destroyed
when the generation is decoded.More information about Pace
multigeneration can be found in [16].

The NCC controller is the agent in change of monitoring
the traffic and adapting NCC to the network conditions.
The monitoring and adaptation must be fast, dynamic, and
flexible, and thus, the NCC controller is preferably placed
in the gNB, as close as possible to the user. If not, it can be
placed in the 5G MEC server. It organizes MCs in periodic
formation phases, where nodes can join or leave the cloud on
the fly. The structure of each MC can only change during the
formation phase. However, in case of failure of the network,
the NCC controller can trigger an emergency formation phase
(for example, if many nodes left a MC and the data does not
arrive successfully). The NCC controller decides how many
nodes are assigned per MC, based on the network conditions.
Moreover, it is in charge of adjusting parameters during the
application runtime. Parameters such as the coding ratio or
the distribution of redundancies can be adjusted dynamically.
We define N as the number of nodes in an MC; hereafter
referred to as the cloud size. We assume that all members
in the mobile cloud can have cellular communication with
the gNB and they are close enough to communicate with the
rest of the nodes in the MC through a short-range technology,
namely WiFi. They all request the same content, and nodes
can eventually join or leave the cloud.

NCC achieves the successful content distribution in two
phases: the cellular phase and the MC phase.

1) CELLULAR PHASE
The gNB distributes the g packets to the UEs connected via
time-multiplexed unicast sessions in a round-robin fashion.
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Each of the N UEs is assigned an index, in the set N =

{n ∈ Z+ | i ≤ N }, which defines the order in which they will
receive the data packets from the gNB. That is, as illustrated
in the left part of Fig. 3, the first packet is sent to the first (pur-
ple) UE, in the first time slot. In the second time slot, the gNB
sends the second data packet to the second (blue) UE and so
on. The gNB will send a second packet to first UE at time
slot (n + 1) after sending a data packet to the n-th UE; this
will be the (n + 1)-th packet of the generation. In the spec-
ification of 5G New Radio (NR) [46], the data transmission
takes place in a slotted channel, whose minimum scheduling
unit is one subframe, with duration ds = 1 ms. That is,
the minimum unit for data transmission (downlink) in NR is
the physical resource block (PRB), which is defined as the
number of consecutive Orthogonal frequency-division multi-
plexing (OFDM) symbols in the time domain and the number
of consecutive subcarriers in the frequency domain [46]; in
the time domain, two PRBs fit in one subframe. Therefore,
in the frequency domain, only one PRB is utilized simultane-
ously in each cluster.

FIGURE 3. Timing diagram for the proposed NCC protocol given 3 nodes,
g = 5 packets, and s = 1 time slot reserved for the transmission of a
redundancy packet. The error that occurred in the second time slot is
recovered with the first redundant packet [13].

Note that packet losses in the cellular phase may greatly
impact the decoding after the MC phase. That is, if the
aggregated packets in all the UEs in the MC are not suffi-
cient to create a matrix of rank g at the end of the cellular
phase, decoding becomes impossible. In the analytical model,
we consider an upper bound in performance by assuming that
no errors occur in the cellular communication. Specifically,
this results in the minimum energy consumption in this phase
and does not impact the communication in the MC phase.
This latter statement is valid considering the low data rate
(see Table 4) and NR has error correction algorithms such
as Hybrid Automatic Repeat reQuest (HARQ) and modifies
the modulation and coding scheme (MCS) if the packet error
rate (PER) is higher than 0.1 [47]. Therefore, errors can be
recovered at the cellular phase before initiating theMC phase.
In the testbed, losses may occur at the cellular link. However,
we mitigate their impact by adding extra redundancies. This
places our scheme in the worst-case scenario for our protocol,
since the current state of the art is to use only the cellular
channel and the losses in this channel will be zero.

At the end of this phase, all g packets will be distributed
over the UEs, where each UE will have either dg/ne or
bg/nc packets depending on the order in which the connection
between the gNB and the UE was established.

2) MC PHASE
When a UE receives a packet from the server in the gNB,
it will be in charge of redistributing the packet to the rest
of the nodes in the MC. Since no feedback messages are
transmitted, the gNB must inform the number of time slots
allocated for the content distribution within the MC to the
UEs. Each UE will be assigned an index n to create the
TDMA schedule in the cellular phase. At every time slot,
a UE sends a WiFi multicast packet to the remaining UEs in
the MC; each transmitted packet at this phase is coded using
full-vector RLNC. The transmitting client is changed at every
time slot to distribute all resources in the MC uniformly. The
time slot in this phase does not need to be the same as in the
cellular phase since a different data rate can be used.

A timing diagram of our NCCprotocol is depicted in Fig. 3,
where we show an example with three nodes, a generation
of five packets, and one coded retransmission. In this dia-
gram, we show how the data dissemination protocol on three
devices and five packets. In the cellular phase, the packets
are first sent in a round-robin fashion to the UEs. Then, each
UE records and forwards the coded packets to the rest. The
system recovers from an error that occurred in the second time
slot, in the first coded retransmission.

However, there are still challenges arisingwhen usingNCC
schemes. The first challenge is the modeling of multicasting
whenmultiple sources are sending to themulticast group. The
work in [43] uses an approximation algorithm to obtain the
redundancies (i.e. the number of coded packets) needed for
a certain RLNC protocol. The work in [44] models a single
source and two destinations scenario under RLNC.We use the
same lower bound used in [44] to solve our problem. The sec-
ond challenge resides in modeling both incoming packets
from the gNB and the multicast group at the same time.
Finding amodel for such a scenario is not straightforward due
to the possible linear dependency of every coded transmis-
sion. Therefore, an upper bound is used in the analytical part.
However, the implementation was accessible so we decided
to use the multi-antenna approach to leverage throughput and
latency in the UEs [48]. The third challenge is the nature of
the application as all UEs need to be synchronous. Future
5G applications will require a synchronous content as it was
observed in [49]. Our system can provide a synchronous
content output when reducing the errors to zero. The fourth
challenge of this system was introduced in [50]. The author
identified that the large number of feedback messages needed
to keep track of the state of the UEs is one of the main
problems in existing cooperative systems. Suppressing the
feedback messages in the MC and using an analytical model
to calculate the number of coded transmissions the reliability
of the system will not be affected and it will gain in cellular
network usage and energy consumption.
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IV. EVALUATION
In this section, we evaluate the proposed protocol using two
different approaches. We first present the analytical model
to obtain a lower bound for the number of coded trans-
missions needed to provide successful content distribution.
We evaluate the analytical model in terms of packet loss and
energy consumption. Then, we built a testbed that runs the
proposed approach in real hardware. We evaluate the testbed
in terms of the loss ratio, energy consumption, latency, and
synchronicity.

A. MODEL AND TESTBED DESCRIPTION
In this subsection, we give an overview of the analytical
model that we use to obtain the minimum number of coded
transmissions needed to provide successful content distribu-
tion. Afterward, we introduce the aforementioned testbed.

1) ANALYTICAL MODEL
We are interested in using a simple, yet accurate, model to
obtain the reliability of the system as a function of s, defined
as the number of time slots allocated for the transmission
of redundant packets in the MC. In our analytical model,
we assume that one redundant transmission occurs at each
allocated time slot. Hence, the total number of redundant
packet transmissions is also s. Table 2 lists and describes the
symbols used in the model.

TABLE 2. Table of symbols used for the analytical model.

Let S be the random variable (RV) that defines the number
of coded transmissions needed to make the coding matrix of
each UE full-rank. That is, S has a phase-type distribution
that describes the probability that every UE decodes the
generation at each s ∈ Z. We refer to S from now on as the
probability of successful distribution.

In the cellular phase, the g source packets are distributed
among the N UEs in a round-robin manner. Each UE n ∈ N
will receive a part of those g packets that is different from the
remaining N − 1 UEs. We define the total number of data
packets received by the n-th UE in the cellular phase as

gn =
⌈
g− (n− 1)

N

⌉
; (1)

the latter is the rank of the UEs at the beginning of the MC
phase. Note that the generation will not be decoded in all
cases where

∑N
n=1 gn < g. Hence, it is essential for the gNB

to ensure the correct distribution of the packets among the
UEs in the MC.

We model the MC as a complete graph, where the neigh-
borhood of the n-th UE is Nn = {j | j ∈ N \ n}. We denote
the packet erasure probability for the WiFi links between
any two UEs in the MC as ε. Next, we define the stochastic
process X (n)

s as the rank of the coding matrix of the n-th UE
at time index s ∈ Z≥0, whose support for any s is x =
{0, 1, . . . , g}. Note that at each s, the number of redundant
packet transmissions towards the n-th UE (i.e., from every
j ∈ Nn) may be different. Specifically, we denote the latter as
sn, which is defined as the function of s, n, and N given as

sn = f (s, n,N ) = s+ gn −
⌈
g+ s− (n− 1)

N

⌉
. (2)

As described above, all the transmissions in the MC are
encoded using full-vector RLNC. Please note that a correla-
tion between the packets received at each UE exists during
the MC phase due to the possible linear dependency of all of
them. Besides, the coding matrix of the UEs is not full-rank
until a sufficiently large number of coded transmissions s
are performed. Hence, the probability of receiving a linearly
independent packet depends on the rank of the receiver and
the transmitter, as well as on the correlation between their
coding matrices. These characteristics are extremely diffi-
cult to capture analytically [14], [44], hence, we follow a
simplistic approach and assume that the coding matrix used
for recoding at every transmitter is full-rank. Naturally, this
leads to an upper bound in decoding probability for a given
value of s. We have employed this approach previously with
accurate results. The interested reader is invited to consult our
previous work [13], [14] for details on the accuracy decrease
due to this simplification, its implications, and on alternate
approaches to capture the described characteristics.

Building on this, we approximate the probability of linear
independence for the coded transmissions in the MC as

P (x, g) = 1− qx−g ≥ 1− qx+z−g; (3)

the last term in (3) is the exact probability of linear inde-
pendence for a given z, defined as the number of degrees of
freedom (DOFs) that are missing from the receiver and the
transmitter.

Also let S(n) be the RV that defines the number of redundant
transmissions from the j ∈ Nn UEs needed for the coding
matrix of the n-th UE to be full rank. S(n) also has a phase-type
distribution whose domain is the set of values for the time
index sn. The latter can be calculated from a given s as

sn , s+ gn −
⌈
g+ s− (n− 1)

N

⌉
. (4)

Note that a minimum number of transmissions are needed
for theN UEs to distribute the packets received from the gNB.
Specifically, since every UE received gn unique packets at
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the cellular phase, every UE must transmit at least gn times
in the MC phase. Hence, the absolute minimum number of
coded transmissions in the MC phase is g. Building on this,
we denoteX (n)

0 as the RV that represents the rank of the coding
matrix of the n-th UE at the end of these g transmissions.
To calculate the pmf ofX (n)

s , we first defineC to be a coding
matrix of size r × c s.t. r ∈ Z≥0 and {c ∈ Z+ | c ≤ g}. The
elements of C are selected uniformly at random from GF(q).
The probability that the rank of a coding matrix matrix C is
x is given as [44]

pXC (x, r, c) = Pr [XC = x | r, c]

=


0 for x>min{r, c}.∏x−1

j=0

(
1−qj−r

)(
1−qj−c

)
(1−qj−x)

q(r−x)(c−x)
otherwise.

(5)

From there, it is easy to derive the probability that a coding
matrix C is full-rank as

F(r, c) = pXC (c, r, c)

=


0 for r < c,
c−1∏
j=0

(
1− qj−r

)
otherwise.

(6)

Then, we use (4) and (5) to obtain the pmf of the rank of
the coding matrix after g+ s transmissions as

pX (x, sn; n,N )

= Pr
[
X (n)
s = x

]
=

g−gn+sn∑
u=0

(
g− gn + sn

u

)
(1− ε)u εg−gn+sn−u

· pXC (x − gn, u, g− gn) . (7)

The closed-form expression for the probability of decoding
the generation at a UE n for a given s is obtained by substi-
tuting x with g in (7). On the other hand, for the whole MC,
the exact probability of decoding with s redundant transmis-
sions is defined as

F∗S (s;N ) , Pr

[
N⋂
n=1

X (n)
s = g

]
. (8)

However, capturing the correlation between coding matrices
has proven to be a complex task that is intractable even for
relatively small MC sizes. Instead, we calculate an upper
bound by assuming

{
S(n)

}
to be a set of independent RVs.

This allows us to calculate FS (s;N ) as

FS (s;N ) ,
N∏
n=1

Pr
[
X (n)
s = g

]
=

N∏
n=1

pX (g, s; n,N ) ≥ F∗S (s;N ) (9)

The latter upper bound is exact for N = 2.

From this point, it is easy to calculate diverse performance
indicators. In the following, we calculate the throughput and
the energy consumption per UE, along with bounds for the
packet loss rate and packet latency. We consider that the same
data rate is used at the cellular and at the WiFi links, so the
throughput per UE is simply given as

Tue(n; g, s,N ) =
E
[
X (n)
s

]
`

ds(2g+ s)

=
`

ds(2g+ s)

g∑
x=1

x pX (x, sn; n,N ) (10)

where ` is the packet length and ds is the duration of the
subframes in the cellular phase and of the time slots in the
MC phase. In [14] we provided the closed-form expression
for the upper bound in throughput per UE for different data
rates at each interface.

Next, we calculate the average energy consumption per
UE, Eue as

Eue(N , s)

=
1

N ds

[
g Pcel,rx + (g+ s)Pwifi,tx

+

(
(N−1)g+

N∑
n=1

sn∑
u=0

upX (g, sn; n,N )

)
Pwifi,rx

]
(11)

where Pcel,rx, Pwifi,rx, and Pwifi,tx denote the power consump-
tion during reception in the cellular link, and reception and
transmission in the WiFi link, respectively.

Next, let L̂K ,s be RV of the packet loss ratio for a given s
when K consecutive generations are transmitted. To calculate
the latter, first, let L(n)s be the RV of the number of lost
packets at the n-th UE at the end of the MC phase, where
s redundant packets were transmitted. Note that a packet is
lost if it cannot be decoded from the received coded packets.
Therefore, the rank of the coding matrix of a given UE x is an
upper bound to the number of decoded packets, which gives
Pr
[
L(n)s > g− x

]
. Next, let Ls(k) be the RV of the number of

lost packets in the MC for the kth generation. Assuming that{
L(n)s

}
n∈N

is a set of independent RVs, we have

Ls(k) =
N∑
n=1

L(n)s . (12)

Analogously, for the transmission of K generations,
assuming {L(k)s}k∈Z is a set of independent RVs, the pmf of
the packet loss ratio L̂K ,s can be calculated as

Pr
[
L̂K ,s = `

]
= Pr

[
K∑
k=1

Ls(k) = `gKN

]
(13)

Hence, the support for L̂K ,s is `{0, 1/gKN , 1/gKN , . . . , 1}.
Both, Ls(k) and L̂K ,s can be easily calculated by convo-

lution. However, the pmf of L(n)s is still unknown. In the
following, we derive an upper and a lower bound for L(n)s .
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We denote the lower bound for the number of lost packets
as RV λ(n)s with pmf

pλ(x, s; n,N ) = Pr
[
L(n)s = x

]
= pX (g− x, sn; n,N ) . (14)

That is, the lower bound is obtained by assuming that the
UEs can decode as many packets as the rank of their coding
matrices.

On the other hand, we denote the upper bound for the
number of lost packets as RV 3(n)

s with pmf

p3(x, s; n,N ) =

{
1 if x = g− gn
0 otherwise.

(15)

That is, the upper bound on the number of lost packets is
obtained by assuming that only the packets received at the
cellular phase can be decoded for all the coding matrices that
are not full-rank.

Finally, the maximum packet latency for a successful gen-
eration is simply given as ds(2g+ s).

2) TESTBED DESCRIPTION
In this section, we introduce the testbedwe developed to emu-
late a real scenario. This scenario consists of different UEs
within the same cell, close enough so they can communicate
with each other, that request the same video from a streaming
server.We describe the hardware used, the NCC protocol, and
the functionality of the proposed scheme.

The UEs are equipped with two wireless interfaces: an
interface to request the video from the cellular communi-
cation in the cellular phase and WiFi to share and receive
packets from the rest of UEs in the MC phase. Even though
high-end mobile phones from the last generation can activate
a feature to use the WiFi link to assist the cellular link and
increase the download speed, this feature lacks flexibility
in terms of configuration parameters. Hence, we use small
portable computers that can carry two network interfaces,
namely a WiFi interface and a cellular dongle with a SIM
card for the cellular interface.

The architecture of the testbed with four users is the one
previously illustrated in Fig. 1 on page 185967. We placed N
Intel NUC6i5SYH (hereafter referred simply as NUCs) in our
offices in Dresden, Germany, to work as clients that request
a video from a video streaming server, which is located in an
Amazon Web Service cloud in Frankfurt, Germany. A WiFi
access point provides short-range connectivity in the MC
phase. Finally, five-inch LCD screens are attached to each
Intel NUCs to display the video. Table 3 lists the hardware
specifications used for each element in the testbed.

The testbed works as follows. A server runs in the cloud,
far away from the UEs. Each UE requests access to the server
on its own. The server will grant the unicast connection and
start sending the coded video stream. If there are more users
connected, the server will send the packets in a round-robin
manner to all the clients connected to it. Each user will
receive gn packets as in Eq. 1. The UEs will be connected
in a multicast group, and a WiFi access point will provide

TABLE 3. Testbed hardware specifications.

short-range connectivity. Each UE will recode and forward
the packets received to the remaining users in the MC. When
the generation is complete, the UE will decode the coded
packets and display them on the LCD screen.

TheUEs always perform at least gnmulticast transmissions
in theMC phase; this is the minimum to distribute the packets
received from at the cellular phase. Then, the UEs select
the number of coded redundancies based at the end of these
transmissions based on the rank of their coding matrices,
given by X (n)

0 as defined in (7), and a design parameter r ∈ R.
Note that this approach enforces fairness in the MC, as the
number of redundant transmissions from each UE depends
on the packets received from the rest of the UEs in the MC.
Specifically, the number of redundantmulticast transmissions
performed by the n-th UE whose rank at s = 0 is x is defined
as

yn(x) =
⌊
x ·
dgre
g

⌋
, (16)

Note that the maximum value for yn(x) is ymax
n = dgre.

Then, for a specific MC phase with yn redundant transmis-
sions for the n-th UE, he total number of redundant transmis-
sions in the MC is

y =
N∑
n=1

yn. (17)

To provide some insights on the behavior of the testbed,
we can define the RV Y (N ) as the total number of redundant
transmissions in the MC phase with N UEs. To calculate the
later, we first let Y (n) be the RV of the number of redundant
multicast transmissions performed by the n-th UE, whose
support is yn ∈ Z. The probability that the n-th UE performs
yn redundant transmissions is then defined as

Pr
[
Y (n)
= yn

]
= Pr

[
X (n)
0 ≤

⌈
g(yn + 1)
dgre

⌉
− 1

]
− Pr

[
X (n)
0 ≤

⌈
gyn
dgre

⌉
− 1

]
(18)
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Since the RVs
{
X (n)
0

}
are correlated, we can only define an

upper bound for Y (N ) as

Y (N ) =
N∑
n=1

Y (n), (19)

which can be obtained by convolution.

B. RESULTS
In this subsection, we first present the parameters used to tune
the model and the testbed, as well as discuss the reason why
these parameters were chosen. Afterward, we introduce the
metrics selected, and lastly discuss the results.

1) PARAMETER SELECTION
In this subsection, we introduce the parameters used for the
analytical model and the testbed.

The testbed parameters were selected so that the demon-
strator emulates a scenario as close as possible to reality.
The parameters of the analytical model are selected to cor-
roborate the testbed results, hence, the values correspond to
the ones given in the testbed. In our previous works [13],
[14], we selected a generation size g of 100 because more
intuitive to understand. However, due to the on/off nature of
computers, we decided to use 32 symbols (25) per generation.
Regarding field size, we decided to use 28 because it reduces
the chances of receiving linear dependent packets. We used
a variable cloud size, ranging from 2 clients to 16 clients.
We use an error rate of ε = 0.1 since NR has error correc-
tion algorithms such as HARQ and modifies the modulation
and coding scheme (MCS) if the packet error rate (PER)
is higher than 0.1 [47]. However, it is expected to perceive
higher losses in the testbed due to the inherent losses on the
WiFi multicast channel, which make the end losses increase.
In order to adjust the number of redundancies of the testbed,
we define a design parameter (r) as the maximum number
of redundancies per generation. This parameter defines a
maximum value, however, the real value is variable and it
is defined in 16. For example, with g = 32 and r = 0.08,
the maximum number extra coded transmissions ymax

n that
will be transmitted is 4. They will be inserted in between
the other transmissions and then will be transmitted when
the rank of the decoding matrix reaches 8, 16, 24, and 32.
This means that if the rank of the matrix is 6, the number
of coded redundancies transmitted is still 0, but if the rank
of the matrix is 10, the number of coded redundancies trans-
mitted is 1. In our experiments, we used different values
of r , ranging from 0 to 0.2. However, the extreme cases
had no interest because of their low performance, hence,
we compare the results of r = {0.04, 0.08, 0.12, 0.16}.
We define the payload size as the number of bytes each packet
can carry. On top of the payload, different layers of encap-
sulation are applied, always respecting the MTU to avoid
segmentation. Energy consumption models were obtained
from [51] for NR and [52] for WiFi, respectively. Please note
that Lauridsen et al. [51] models the energy consumption for

LTE-A. However, the parameters in this article were selected
in such a way that the specifications for LTE-A [53], [54] can
be also applied to NR [46], [47] and hence, the power con-
sumption model for LTE-A can be applied as well. Regarding
the work of Sun et al. [52], please note that the authors
assumed a negligible difference in energy per bit during
transmission and reception over WiFi. Table 4 lists all the
parameters used.

TABLE 4. Parameter settings.

2) ANALYTICAL RESULTS
In this subsection, we show the results obtained from the
analytical model.

a: SUCCESSFUL CONTENT DISTRIBUTION
Wefirst analyze the complementary CDF (CCDF) of success-
ful content distribution of our protocol, obtained with the ana-
lytical model with different parameters, for N = {2, 4, 8, 16}
in Fig. 4. We observe that smaller MCs need to send more
coded transmissions than bigger ones if high reliability is
needed, due to the fact that the frequency of transmissions in
theMC phase increases withN . The analytical results for ε =
0.1 indicate the need for around ten to eleven redundancies in
order to provide a successful content distribution. As a result,
we use these values to simulate variations of the coding ratio,
i. e. the extra number of coded packets transmitted.

FIGURE 4. Complementary CDF (CCDF) of successful content distribution,
S, for N = {2,4,8,16} in logarithmic scale.
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FIGURE 5. CDF of the packet loss probability given ε = 0.1 and q = 28.

b: LOSS RATIO
The performance of the cloud in terms of loss ratio (the
opposite of the decoding probability) for different cloud sizes
and a different number of coded packet transmissions is pre-
sented in Fig. 5. In the upper figure, we change the additional
coded packet transmissions while maintaining the cloud size
N = 8. In the lower figure, we change the cloud size,
while maintaining the additional coded packet transmissions
s = 11. We observe a reduction in the packet loss probability
while increasing both coded packets and users. The value
selection of s and N is determined by the testbed results, in
section IV-B3. More information about the explanation of the
selected values and the comparison between the analytical
model and the testbed can be found in the discussion section,
in IV-B4.

c: ENERGY CONSUMPTION
Now we showcase the main benefit of our NCC protocol:
the sharp reduction in energy consumption at the UEs. Fig. 6
plots the average energy consumption per UE for WiFi trans-
mission, WiFi reception, and cellular reception for ε = 0.1,
as a function of the cloud size. A representation of the energy
consumption in absolute values and relative values can be
observed in the upper and the lower figures, respectively.
We observe energy savings of more than 37% for small cloud
sizes when the error rate is high. For example, the energy

consumption for the direct transmission of the g packets in
the cellular link is 29.586 mJ. On the other hand, the energy
consumption per UE for n = 16 is 20.393 mJ, and it is further
reduced as the cloud size increases.

Fig. 6 also shows that the main contributor to energy con-
sumption is the energy that is used during the WiFi reception.
As n increases, the WiFi antenna needs to be in an active
state longer. Conversely, the reception in both cellular and
WiFi has a less impact on energy consumption when the
cloud size increases. The energy consumed in WiFi trans-
mission becomes negligible for large cloud sizes, as well as
the cellular reception. The energy consumed in the recoding
and decoding processes was negligible and thus, it was not
included in this study.

Finally, the CDF of Y (N ) can be observed in Fig. 7 forN =
8 and r = {0.04, 0.08, 0.12, 0.16}. The latter provides some
insight on the upper bound of redundant packet transmissions
in the MC for the given r . As can be seen, by assuming that
the RVs of the rank of the coding matrices are independent,
it is calculated that the number of redundant transmissions is
close to ymax

n .

3) TESTBED RESULTS
In this subsection, we plot the results obtained through the
evaluation of the testbed and we validated them with the
analitc model.
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FIGURE 6. a) Average energy consumption and b) relative energy
consumption per UE for different cloud sizes given ε = 0.1.

FIGURE 7. CDF of the maximum redundant multicast transmissions for a
cloud size N = 8.

a: LOSS RATIO
We first focus on the decoding probability (i.e. losses). Fig. 8
shows the CDF of the average packet loss in the UEs. The
upper picture shows the relation between the r and the loss
probability, which is complementary to the decoding proba-
bility. The lower picture shows the optimal number of clients
inside the MC. After retrieving the optimal number of clients
for the parameters set, we use the testbed proposed in subsec-
tion IV-A2 to obtain different CDFs for different values of r .
We observe that the values of r = {0.04, 0.08, 0.12, 0.16}
in the testbed correspond to values of ymax

n = {2, 3, 4, 6}.
We cannot know the real y unless we take a snapshot of the
system at a specific point in time, but we can conclude that

FIGURE 8. CDF of the average packet loss probability.

the real y is upper bounded by ymax
n . In both cases, we can

observe similar behavior in the results. This occurs due to
the nature of RLNC. If r does not suffix the losses in the
channel, none of the packets will be obtained (because they
are coded). When the value of r gets closer to the channel
erasure rate ε, the number of packets decoded increases
drastically to the maximum decoding probability. Another
important observation is that this scheme does not match
the the more, the better, in both the design parameter r and
the number of clients N in the cloud regarding losses. The
performance of using r = 0.16 is worse than using r = 0.12,
and a bigger number of clients (N = 16) does not reflect a
better performance as in N = 8. If either r or N increases
too much in such a way that there are too many packets in the
channel, useful packets are delayed by useless redundancies,
and by the time they arrive at the decoder is already too late.
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We observe a trade-off between the useful packets sent in the
multicast link, and the useless ones (due to linear dependence
or network congestion).

b: ENERGY CONSUMPTION
Fig. 9 shows the energy consumption relative to the direct cel-
lular download (N = 1). We observe a steady reduction in the
overall energy consumption with the cloud size increase. This
is mainly due to the reduction in the energy consumption of
the cellular reception. The cellular power model contributes
almost double to energy consumption. Hence, the reduction
in energy consumption due to the cellular offload impacts
more than the energy increase in the WiFi link. We observe
an initial peak in the energy consumption for N = 2 (as well
as in the analytical model). This happens because the energy
overhead given by the transmission and reception of extra
coded transmissions is higher than the energy savings from
offloading. Conversely, this behavior changes for N = 3 and
the following cloud sizes. In the case of N = 8, we maximize
the energy reduction to 27% from the direct download value.
Furthermore, we expect the trend in energy consumption for
bigger cluster sizes to continue going down, i. e. the energy
consumption for bigger cluster sizes than the ones shown in
Fig. 9 will be lower.

FIGURE 9. Average relative energy consumption (NCC vs. direct
download).

c: PACKET LATENCY
Fig. 10 shows the CDF of average latency per packet observed
in all eight UEs. Since the upper part cannot be clear,
we decided to zoom it. Therefore, the colored part represents
exactly the colored part of the graph (from 0.95 to 1.0). Since
Fig. 10 is a little bit complex we divide it into five different
parts. Hereunder a description of each part is described:
(A) The distance between the 0 ms mark and Line A rep-

resents the minimum latency the packets can have due
to the transmission delay. The height of Line A repre-
sents the percentage of packets that are decoded right

FIGURE 10. Average packet latency.

after being received, without waiting in the coder of the
queues.

(B) Line B represents the cases where a packet is lost or
corrupted, but it is recovered within its generation. The
protocol we use provides in-order delivery, which means
that if a packet is lost, the rest of the packets that arrive
later will wait until the lost packet is recovered. Hence,
the first packet sent after the lost one will have a higher
delay than the last packet sent before the error was
corrected. This generates a linear slope, as observed
in Fig. 10. The explanation of this behavior is extended
in Fig. 3 from the work of Pandi et al. [17].

(C) Line C shows an internal timeout. This timeout is trig-
gered in the case the protocol cannot recover the loss.
The tunable timeout starts when the first packet is
decoded, and it is refreshed every time a new packet is
decoded. In our protocol, we set a timeout of 500ms,
which can be observed in the Line C. No packets will
arrive until the timeout (500ms plus 20ms of transmis-
sion delay) is reached. We are aware that the value of
this timeout is not ideal, and it depends on the losses of
the channel and the architecture of the system.

(D) Line D shows the latency of the packets that arrive after
an unrecovered error. If an unrecovered error occurs,
the protocol will wait and store the packets that arrive
during the waiting interval. The waiting interval is char-
acterized by the timeout flag, which is our case is
500 ms. That means that, after an error, the protocol will
wait for 500 ms to see if the error can be recovered.
When the timeout is triggered, the protocol will forget
the lost packet and the stored packets will be decoded.
In Fig. 10, can be observed that line D is not linear. The
explanation of this shape lies in the in-order delivery
nature of the protocol. A loss can occur at the beginning,
at the middle, or the end of the generation. When the
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FIGURE 11. Packet decoding times depending on r for the first UE (Client
0).

timeout is triggered, the packets of the generation that
arrived after the loss (which is a smaller number than
the generation size) will be decoded, as well as all the
packets of all the generations next. This means that the
number of packets that wait for longer (the ones that
have the same generation of the lost packet) will be less
than the number of packets that wait for less.

(E) Finally, line E shows an infinite latency for the rest of
the packets. This gives us the percentage of unrecovered
packets, i.e., the loss ratio.

d: PACKET SYNCHRONICITY
We discuss now how synchronous packets are decoded in the
UEs. Synchronicity in streaming services is very important.
For instance, two unsynchronized devices in a sports bar
could trigger that a part of the audience receives the video
and cheers before the other part. Moreover, security systems
and ultra-reliable systems need to have consistent data in their
databases, and sending the updates synchronously is vital.

Due to the constraint that one UEwill need the information
of the rest UEs to decode the information, we expect our sys-
tem to be synchronous. The source node sends 10, 000 pack-
ets with their respective timestamps attached, marking down
when the packet is decoded. Fig. 11 depicts the packet decod-
ing time of the 10, 000 packets for 10% of the channel erasure
rate in the first UE. For lower values of r , we observe a
stepped line. This occurs because r is not high enough to cope
with the channel erasure rate, so the decoder is continuously
flushing every generation. As r increases, the graphs become
more linear with eventual failures. However, the more redun-
dancy we add in the channel, the later the packets arrive. This
can be appreciated by observing the differences in the slopes
of the lines. At the end of the simulation, it can be observed
that the decoder has to wait for the timeout to retrieve the
remaining packets in case of previous losses, due to the fact

FIGURE 12. Packet decoding times for all clients with r = 0.12.

that the transmission ends. This UE can be considered as a
representative of the others since the behavior is similar.

Fig. 12 showcases the synchronicity of the decoding in all
UEs. It prints the same information from Fig. 11 with the
optimal r = 0.12 for all UEs. The results show eight straight
lines superimposed to each other, which demonstrates that
all nodes decode the information at the same time, keeping
the system synchronous. Eventual failures make some of the
nodes deviate from the trend in punctual moments when a
packet is lost and the decoder needs to be flushed. Please note
this figure is a representative example since the behavior with
different values of r is similar.

4) DISCUSSION
In this subsection, we discuss and compare the results. In the
work presented above, we performed the following evalua-
tions:
• In the analytical model, we obtained the optimal packets
to provide successful content distribution over a cer-
tain threshold. Then, we evaluated the loss ratio of the
scheme for different coded packet transmissions and
different cluster sizes. Finally, we evaluated the energy
savings for the proposed scheme.

• In the testbed, we evaluated the loss ratio of the
scheme for different values of r and different cluster
sizes. Then, we evaluated the energy savings for the
proposed scheme. We evaluated the latency overhead
caused by the introduction of our model and the packet
synchronicity.

To provide a fair comparison of both evaluation methods,
it is important to take into consideration the impact of the
network in the testbed, for example, network congestion,
interferences, WiFi scheduling, etc. We expect that the evalu-
ation in the testbed provides worse results and that the testbed
is upper bounded by the analytical model. Moreover, these
irregularities in the network do not allow a fine adjustment of
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the number of coded transmissions in the testbed. As a result,
we overprovision the network with more redundant packets
andwe evaluate it for different values of r .We observe similar
behavior in the shape of the loss rate plots in the analytical
model (Fig. 5) and in the testbed (Fig. 8). We observe that
the values of r = {0.04, 0.08, 0.12, 0.16} in the testbed
correspond to values of ymax

n = {2, 3, 4, 6}. We cannot know
the real y unless we take a snapshot of the system at a specific
point in time, but we can conclude that the real y is upper
bounded by ymax

n . In the analytical model, the more redundant
packets, the lower the loss ratio is. The same behavior occurs
with different cluster sizes. However, the testbed results do
not follow the same trend. We observe that after r = 0.12
andN = 8 the decoding probability decreases. The reason for
this behavior lies in the addition of multiple useless packets
(either by increasing N or r), which congests the network,
fills the receiving queues, and ultimately forces the nodes
to discard packets. This behavior is not considered in the
analytical model.

Regarding the comparison in terms of energy savings,
the shapes of both the analytical model (Fig. 6) and the testbed
(Fig. 9) are very similar. However, the energy savings in the
testbed appear to be slightly smaller in comparison to the
ones observed in the model. The reason behind this behavior
lies in the overprovisioning given in the testbed to deal with
possible congestion bottlenecks in the short-range channel.
For example, the energy overhead for N = 2 and the energy
savings for N = 8 in the analytical model correspond to
15.8% and 28.17% respectively. In the case of the testbed
results, these values correspond to 31.8% and 27.55%. The
MSE between the analytical model and the testbed is 0.61%.

The latency evaluation (Fig. 10) in the testbed provides
the minimal latency overhead of the NCC protocol, which
is around 20 ms. However, it also shows that the impact of
channel losses will highly impact the latency, increasing it to
150 ms. In error-prone channels such as WiFi, it is expected
to receive most of the packets below the 150 ms mark. These
latency values are observable by the human eye. Therefore,
this technology is not optimal for applications that require
low latency, such asVR orAR.However, 150ms is acceptable
in streaming services. Moreover, the synchronicity evaluation
(Fig. 11 and Fig. 12) indicates a synchronous packet delivery
within the MC in reliable channels, which is optimal for
streaming services.

V. CONCLUSION
In this article, we presented a novel NCC protocol to dis-
seminate data in cellular networks reliably and efficiently
when co-located clients request the same content to a
server.We assess the validity of our schemewith an analytical
model and a testbed. The analytical model provides an upper
bound for the testbed. We obtain the number of coded trans-
missions needed for successful content distribution given a
certain QoS threshold. Then, we evaluated our system in
terms of decoding ratio, energy consumption, latency, and
synchronicity.

The results can be summarized as follows: Important
energy savings were achieved, for example, in the case of
four nodes, more than 12%, and 8% for the analytical model
and the testbed, respectively. Moreover, decoding probability
increases to more than 99.5% with an initial channel erasure
rate ε = 0.1. A significant decrease in cellular network usage
was also achieved through NCC. The evaluation done in the
testbed showed a reduction in the multicast channel error rate
up to 93.75% when using our system for 16 nodes. Further-
more, the results also showed that UEs decode the informa-
tion synchronously to the human eye. The main overheads
of our protocol were the decrease of network throughput in
situations where the WiFi channel is slower than the cellular
channel and a latency increase due to the in-order-delivery
nature of our RLNC protocol. However, a gNB can only serve
a limited number of high data rate unicast sessions in parallel
and no errors were considered in the cellular channel. Hence,
in a real scenario with hundreds of UEs connected to the
gNB the throughput would be higher and the error rate in the
cellular phase not negligible.

There are still unknowns that were left out of the scope of
this research and will be further studied. The formation of
the MCs, the maximum number of nodes per cloud, the study
of interferences between MCs, the mobility and handover
betweenMCs, are some examples of them. Another challenge
appears when UEs need to carry active cellular and WiFi
antennas. This feature is present in the last generation of
high-end mobile devices. However, we should not expect that
every node in the MC is able to send and receive from two
active antennas at the same time. Nevertheless, we expect that
by the moment this technology is ready for deployment, UEs
with two active antennas will be the state of the art in the
mobile phone market.
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