
Received September 12, 2020, accepted September 27, 2020, date of publication October 8, 2020, date of current version October 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029691

An In-Sight Into How Compression Dictionary
Architecture Can Affect the Overall
Performance in FPGAs
MATĚJ BARTÍK 1,2, (Member, IEEE), TOMÁŠ BENEŠ1, (Student Member, IEEE),
AND PAVEL KUBALÍK1
1Department of Digital Design, Faculty of Information Technology, Czech Technical University in Prague, 160 00 Prague, Czech Republic
2Department of Technology for Network Applications, CESNET, 160 00 Prague, Czech Republic

Corresponding author: Matěj Bartík (bartimat@fit.cvut.cz)

This work was supported in part by the Czech Technical University Project Design, Programming and Verification of Embedded Systems
under Grant SGS20/211/OHK3/3T/18, and in part by the project E-infrastructure CESNET – Modernization under Grant
CZ.02.1.01/0.0/0.0/16013/0001797.

ABSTRACT This paper presents a detailed analysis of various approaches to hardware implemented
compression algorithm dictionaries, including our optimized method. To obtain comprehensive and detailed
results, we introduced a method for the fair comparison of programmable hardware architectures to show the
benefits of our approach from the perspective of logic resources, frequency, and latency. We compared two
generally used methods with our optimized method, which was found to be more suitable for maintaining
the memory content via (in)valid bits in any mid-density memory structures, which are implemented in
programmable hardware such as FPGAs (Field Programmable Gate Array). The benefits of our new method
based on a ‘‘Distributed Memory’’ technique are shown on a particular example of compression dictionary
but the method is also suitable for another use cases requiring a fast (re-)initialization of the used memory
structures before each run of an algorithm with minimum time and logic resources consumption. The
performance evaluation of the respective approaches has been made in Xilinx ISE and Xilinx Vivado toolkits
for the Virtex-7 FPGA family. However the proposed approach is compatible with 99% of modern FPGAs.

INDEX TERMS Compression algorithm, compression dictionary, FPGA, hash table, LZ4, LZ77, memory
architecture, performance comparison, status register.

I. INTRODUCTION
Lossy or lossless high-speed and low-latency compression
is important for many applications in real-time networking,
video transmissions or disk storage. The research in lossless
compression has led to the development of new types of
devices that perform compression in real-time. Over the last
decade, the throughput of these devices has increased up to
44.8 Gbps (Gigabit per second) [1] from a gigabit speed. The
progress has been made by improving designs step by step
with new techniques or tweaks that have made these designs
more efficient in terms of speed, logic resources utilization
or compression ratio. We focus on the improvement of the
specific area of compression algorithms – compression dic-
tionaries and how to increase their overall performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

II. BRIEF MOTIVATION AND CONTRIBUTIONS
In this paper, we focused on exploring newways of improving
the overall performance of hardware-implemented compres-
sion algorithms. We put emphasis on these design properties:
• maximum throughput,
• maximum frequency,
• resources utilization,
• computation latency,
• predictability.
The mentioned design properties have no direct impact on

the compression ratio; however, they may have an indirect
effect, such as using an original amount of logic resources
to implement a larger dictionary when a resource-efficient
architecture was selected over the original one (due to saved
resources).

In some specific use cases, the compression ratio may
be less important than the design throughput, latency, and
predictability. These requirements are considered to be

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 183101

https://orcid.org/0000-0002-6035-1019
https://orcid.org/0000-0001-6829-2263


M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

fundamental for Real-Time systems [2]. To achieve a great
compression ratio, some sophisticated techniques for a match
search are usually used (re-hashing principle, for example).
On the other hand, these sophisticated techniques introduce
variability in data processing, which results in stalls in a
compression engine datapath; thus, computation latency is
variable and unpredictable.

Several hardware architectures focused on maximizing
the design throughput have been introduced in the past few
years [1], [3], [4]. On the other hand, no current architecture
has emphasized lowering an architecture overhead to reduce
the respective architecture computation latency or resource
utilization. It has been identified [5] that the overhead (a
compression dictionary initialization) necessary for the com-
pression process (computation phase) could require more
time than the compression itself.

Our goal is to reduce the computation latency and resource
utilization while increasing the operating frequency by
improving the compression dictionary architecture.

The contributions of the paper are:
• We analyzed three existing techniques suitable for
implementing a compression algorithm dictionary,
including our new technique [5].

• We created a new methodology for evaluating the ana-
lyzed techniques.

• We performed an experimental test to obtain results.
• A conclusion has been made that our method (‘‘Dis-
tributed Memory’’) shows better results than the other
techniques in terms of maximum frequency, computa-
tion latency, and amount of required logic gates for our
specific use case. This statement has been supported by
quantitative analysis and experimental results.

III. THEORETICAL BACKGROUND
Implementations of lossless compression algorithms in hard-
ware (in both FPGAs and ASICs – Application Spe-
cific Integrated Circuit) appeared right after the moment
when software implementations were unable to satisfy the
desired performance requirements such as throughput or
latency. In the last two decades, a device realizing real-time
compression of network communication using IP (Internet
Protocol) principles became a widespread use case. The
authors would like to summarize the properties of such
implementations [1], [3], [7]–[32] as follows:

• The majority of designs are based on the LZ77
algorithm [33] or derived algorithms such as LZ78 [34]
or LZW [35].

• The latest designs experiment with new derived
algorithms focused on better compression ratio
(LZMA [12]–[14], [36]) or speed (LZ4 [4], [31], [32],
[37]).

• The compression speed is improved by massive pipelin-
ing or parallelization (systolic arrays) [24] of the match
searching mechanism [38].

• There is a direct proportion between the compression
ratio and the size of a compression dictionary. However,

most of the mentioned implementations use (FPGA)
embedded memory blocks (kilobytes in size) rather than
external memory [8] such as DRAM (Dynamic Ran-
domAccessMemory) or SRAM (Static RandomAccess
Memory) chips.

• Compression dictionaries use three fundamental
approaches: CAM (Content Addressed Memory) [39],
hash table [40], and small (shift) register array for stream
operating implementations [9], [17], [32], where the
dictionary stores a few processed data words.

• Many implementations have small (size of kilobytes
on average) input/output buffers optimized towards a
block-oriented compression thatmakes them suitable for
IP packet oriented compression [31].

A representative example of a hardware implementation of
a lossless compression algorithm has the following features:
It is based on LZ77 with massive parallelization of a match
search mechanism with particularly small data/compression
dictionary buffers.

A. LZ77 PRINCIPLES AND THE IMPACT
OF THE DICTIONARY
LZ77 is a universal compression algorithm that is asym-
metrical (the compression requires more time or resources
than decompression) and single pass (data to be compressed
are processed only once). LZ77 is a fundamental lossless
compression scheme used in many further algorithms such as
DEFLATE [41] or GIF (Graphics Interchange Format). The
technique of the ‘‘Sliding Window’’ [6] for searching match
candidates is used by the LZ77 algorithm (see Fig. 1).

The sliding window is usually divided into a search buffer
(a dictionary) and a look-ahead buffer. The longest found
prefix of the look-ahead buffer starting in the search buffer
is encoded as a triplet (i, j, X), where i is the distance of
the beginning of the found prefix from the end of the search
buffer; j is the length of the found prefix; and X is the first
character after the prefix in the look-ahead buffer. The size
(and the architecture) of the dictionary has a great influence
on the compression ratio. A larger or better organized dic-
tionary improves the compression ratio of the implemented
compression algorithm because of the increased probability
of finding a match over the larger sliding window [5].

There are three most common architectures of a dictionary.
We would like to summarize their advantages and disadvan-
tages from the perspective of their suitability for IP packet
compression.

1) SHIFT REGISTERS FOR STREAM OPERATING
IMPLEMENTATIONS
This type of a dictionary focuses on maximum performance
in terms of operating frequency and the implementation
architecture is carefully designed to process data in a (deep)
pipeline to achieve maximum throughput. This seems to
be an optimal solution for IP packets aware compression
(a continuous stream of IP packets) with minimal latency
[9], [32], but the compression ratio is quite low compared to

183102 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 1. LZ77 sliding window technique. [6].

other approaches. The depth of the pipeline limits the sliding
window of the dictionary to several words of processed data.
The dictionary content does not have to be initialized because
the match is only being searched in the pipelined data.

2) CONTENT ADDRESSED MEMORY (CAM)
The CAM based approach utilizes data spacial locality
where the dictionary can accommodate more entries if the
processed data are highly repetitive. The disadvantage is
that each CAM memory cell is usually implemented by
flip-flops and requires its own comparator for searching a
match, requiring many logic resources. Therefore the enor-
mous logic consumption consequently slows down the entire
design by reducing the maximal operating frequency of such
design [42].

Several techniques [42], [43] were introduced to improve
some design properties such as reducing the amount
of (some) required logic resources via the usage of other
design primitives like embedded memory block. Another
disadvantage is a latency of five clock cycles for a search
operation.

On the contrary, a CAM based dictionary could easily be
initialized via a dedicated reset/clear input of these flip-flops.
Overall, we found the usage of CAM based dictionary not
viable for our specific case requiring low-latency operations.

3) HASH TABLE
The hash table principle became popular when fast, modern
compression algorithms (LZ4 [37], LZO [44]) appeared. The
common idea of these algorithms is improving the throughput
by increasing the width of the processed data word (the word
width is 32 or 64 bits to match the ALU (Arithmetic Logic
Unit) register width in modern processors [45]). These word
widths are too large to be used as a direct address to the
dictionary (the dictionary will have 4 gigabytes for the 32-bit
word width). The CAM technique will make these algorithms
slower [46] but fairly large dictionaries became required for
a decent compression ratio. This led to implementing the
dictionary as a hash table [1], [3]. The important features of
a hash table implementation are the following:

• The hash algorithm can be extremely fast (just a constant
multiplication in LZ4 [31], [47], the result is trimmed
to an appropriate number of address bits to match the
dictionary size).

• Produced hashes can collide with each other reduc-
ing the compression ratio a little (but saving memory
required for the dictionary).

• Dictionaries are usually implemented in embedded
memory blocks. In our particular example, the used
Xilinx BlockRAMs are RAM based blocks with den-
sities of 36 kilobits [48]. The content (a dictionary)
in embedded/DRAM memory cannot be cleared in a
single clock cycle [48], [49] like flip-flop (SRAM)
based memory. This embedded memory block design
is a trade-off between the memory capacity and the
number of transistors required for the memory cell
matrix [48].

• IP Packet optimized designs require clearing the entire
dictionary before each run of the implemented com-
pression algorithm (each IP packet is considered as one
block).

B. REQUIREMENTS FOR THE DICTIONARY DESIGN
The requirements are set with emphasis to the particular
use case: the IP protocol packet compression accelerators
implementing LZ77 algorithm.
• The dictionary design should be suitable for IP packet
compression (block compression oriented).

• The maximum payload will be 9 kB (the maximum size
of a jumbo packet) [50].

• 10 Gbps throughput requirement leads to a 64-bit dat-
apath clocked at 156.25 MHz at least because a design
with 8-bit datapath will require a 1.25 GHz system clock
which is significantly above the FPGA limits.

• The time required for loading the processed data from
the buffer is 1150 clock cycles in the worst case.

• The dictionary size should be in the range of 1k–16k of
entries (larger dictionary makes no sense compared to
input/output buffer size).

• The dictionary will be implemented as a hash table.
Therefore, we have to deal with the problem of poten-
tially slow (re-)initialization.

The problem to be solved: the dictionary will be imple-
mented as embedded/DRAM based memory. We have to find
an efficient method (in terms of time) for (re-)initialization
of the dictionary content. The efficiency in terms of logic
resources can lead to a trade-off with a time sub-optimal
solution.

VOLUME 8, 2020 183103



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 2. Common phases of a hardware implemented compression algorithm.

C. COMPUTATION TIME OF A COMPRESSION
HARDWARE BLOCK
A general (hardware) implementation of a compression algo-
rithm has several phases where most of them are not orig-
inally related to the compression itself. However, they are
needed for proper operation of the compression block. Some
of these phases (see Fig. 2) can overlap each other because
they were implemented [1], [3], [17], [26] in a smart way.
Further details about each phase follow:

1) LOADING DATA INTO AN INPUT BUFFER
The time required for storing data into the input buffer is
dependent on the type of application, and on the size and
throughput of the respective buffer. The (maximum) required
time [51] can easily be determined as a ratio between the
throughput and the size. This phase can run in parallel with
the next phase (initialization); however this phase is essential
for proper operation of the compression block.

2) COMPRESSION BLOCK INITIALIZATION
The initialization of the compression block is intended to
set-up default values of design registers or any other data
structures like a compression dictionary, acquiring the size
of the data, etc.

Despite the fact that the initialization phase can run in
parallel with the data loading phase, the computational time
of this phase is heavily affected by the overall architecture of
the particular design. Initialization of complex data structures
(used by a compression dictionary, for example) could easily
be more time consuming than the data loading phase.

3) COMPRESSION
The most important phase is the compression itself, which is
supposed to search for matches in a compression dictionary
and encode respective output with particular examples of LZ
based algorithms [38]. The maximum computation time can
be estimated as the ratio between the input buffer size and the
respective throughput of the compression phase. The compu-
tational time could be lower than the time of the initialization
phase in our particular case (see Section III-B).

4) SAVING COMPRESSED DATA TO AN OUTPUT BUFFER
This phase is intended to store the compressed data into an
output buffer. This functionality is usually implemented in
the compression phase, therefore, these phases can overlap.
In certain situations, the compression ended, but some data

are still not copied to the output buffer. It is obvious that the
computational time will be low.

D. SUMMARY
The conclusion is quite simple – calculating the overall
latency is not simple, because it involves latencies of some
other phases besides the compression phase as the primary
function. The time (latency) required for transferring the
processed data to/from input/output buffers has the same
lower bound asymptotic complexity as the compression itself,
the �(n). The question is, which compression dictionary
architecture can match or decrease such lower bound asymp-
totic complexity, especially when the required dictionary can
be larger than the buffers [5]?

IV. STATE OF THE ART – EVALUATED METHODS FOR
INITIALIZING A DRAM BASED MEMORY STRUCTURES
We have selected a hash table for implementing a dictio-
nary for a lossless compression algorithm. The choice has
been made based on the analysis in the previous chapter.
We are looking for a design for IP packet compression
based on LZ77 with a minimum throughput of 10 Gbps per
implemented block for applications in 10 gigabit ethernet
networks. We put emphasis on the latency of the dictionary
(re-)initialization phase.

We assume optimizations and techniques introduced by
modern fast lossless compression, such as LZ4, can improve
the ratio between logic gates count and throughput. This
might allow implementing multiple compression blocks in
a single FPGA. In the following sections, we will discuss
three alternative techniques suitable for the hash table (imple-
mented using BlockRAMs) based compression dictionary
architecture. These techniques can be used in other architec-
tures that are also BlockRAM based.

A. LINEAR PASSAGE APPROACH
The linear memory passage is a fundamental method for
initializing memory to a default (constant) value [7].

The fundamental part is a counter with the same width as
the memory address vector, thus all addresses are generated
(including other control signals like write enable) for the
(re-)initialization purpose. The data input port (vector) is
multiplexed by the default value during the (re-)initialization
process.

Advantages of the linear passage method are a simple
and straightforward design and low resource requirements.

183104 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 3. Architecture of the ‘‘Elementary Block’’. [5].

Disadvantages are that the initialization process requires a
lot of clock cycles to pass through all addresses and that the
adder used by the counter has a long carry chain that limits
the maximum design frequency. These two disadvantages
increase the latency of the design. This method is the only
suitable approach for clearing a high density memory (with
millions of entries) such as entire (external) DRAM [52]
chips.

B. FLIP FLOP BASED APPROACH FOR A STATUS REGISTER
The second approach [53] uses a flip-flop based status register
file, where each flip-flop preserves a single-bit wide flag
indicating the status of the related memory cell (written or
not written). When a memory read occurs before a write
operation, the memory output will be multiplexed to the
default read value.

Advantages of the flip-flop based approach are a higher
operating frequency than with the linear passage and the
latency of one clock cycle, because all flip-flops can be effec-
tively cleared in parallel. Disadvantages are the exponential
growth of required resources with respect to the memory
address vector width. When a large memory is used, the oper-
ating frequency will drop significantly due to FPGA routing
and synthesis issues.

C. DISTRIBUTED MEMORY BASED APPROACH
FOR A STATUS REGISTER
We proposed an approach [5], [54] that combines previ-
ous approaches to get as many advantages (like the same
asymptotic complexity [51] requiring less FPGA resources
than the flip flop based approach) and to mitigate as many
disadvantages from both techniques. The idea is to use an
alternative way of storing data in an FPGA-based design
instead of ordinary flip-flops, using the distributed memory
block [55] in our particular case. This approach is comparable
to the LVT (Live Value Table) [56], [57], where the idea is to
split the design into two parts. Each part uses a different type
of memory (flip-flop & BlockRAM) instead of a single type
(flip-flop).

The flip flop based array of single-bit wide flag registers
is split into small segments with the same size as a single
distributed memory block (64-bits for the Xilinx 7-series
architecture). The distributed memory block based design is

divided into two parts: the ‘‘Elementary Block’’ (EB) and the
‘‘Address Control Logic’’ (ACL).

1) ELEMENTARY BLOCK
The EB (see Fig. 3) is composed of one distributed memory
block with the size of 64 individual bits (the maximum size
for a single 6-input LUT (Look-Up Table) [55] implementa-
tion). The distributed memory block has to be cleared (ini-
tialized) by the linear passage approach requiring 64 clock
cycles. The linear passage approach also requires a multi-
plexer for switching address vectors between the standard
and initialization mode (selected via the reset signal). The
standard address vector input of the EB is the last (low-
est) six bits of the address range for the status register.
The second (initialization mode) address vector input is ded-
icated to the logic of the linear passage of the ACL block.
The ‘‘Written’’ signal represents the information indicating
whether a particular memory cell had a write request and
the related record in a dictionary contains valid data. The
default value for the initialization of the ‘‘Written’’ signal
is logic zero (therefore, all bits in the distributed memory
block).

2) ADDRESS CONTROL LOGIC
The ACL architecture (see Fig. 4) shows four individual parts
of the status register:
• ‘‘CNT M64’’– The 6-bits wide counter (counting as
modulo 64) for generating the address vector for the
elementary blockswhile the initializationmode is active.

• ‘‘SPLIT’’& ‘‘EB SEL’’ – The ‘‘SPLIT’’ block splits
the address vector input into the upper and lower part.
The lower part has six bits to match the address range
of the EB. The upper part is forwarded to ‘‘EB SEL’’
implementing an address decoder. The address decoder
is generating the ‘‘Chip Enable’’ (CE) encoded as one-
hot value for each EB in the design. Consequently, only
one EB is selected at each clock cycle.

• Output Masking – Only the output of the chosen EB is
passed to the ‘‘Written’’ signal via AND/OR logic gates.
Outputs of rest EBs are masked.

V. A QUANTITATIVE ANALYSIS
This section presents a discussion about which design param-
eters have an impact on such compression dictionary design.
The general observed properties for a hardware accelerator
implementing a compression algorithm are:
• compression ratio,
• throughput,
• latency,
• operating frequency,
• amount of logic resources.
As stated earlier in Section III-A, the compression dic-

tionary size significantly affects the respective compression
ratio. In the case of a hardware accelerator, input/output
buffers and compression dictionary are often implemented
using embedded memory blocks (called BlockRAM/M9K

VOLUME 8, 2020 183105



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 4. Architecture of the ‘‘Status Register’’ based on EBs and the ACL. [5].

in the case of Xilinx and Intel/Altera FPGAs, respectively).
Therefore the sizes of (the example) dictionaries in our case
are simulated by modifying the ‘‘W’’ parameter [5], which
stands for a memory address bus width. The relation between
memory capacity (which accommodates a compression dic-
tionary, for example) and the address width can be expressed
as formula (1). The formula assumes a digital system. There-
fore, the address is a binary number, and the number of entries
is also a power of two (cases where an address range does not
match a number of entries are not considered because they
are rare in digital design).

W = log2

(
Memory capacity
Memory entry width

)
= log2(Number of memory entries) (1)

The operating frequency and the amount of used logic
resources are also affected by the used FPGA type (techno-
logical parameters).

A. ARCHITECTURE INFLUENCE
The particular architecture of such a dictionary affects the
remaining observed properties, which usually depend on the
used FPGA. In general, the architecture complexity affects
the number of logic resources needed for an implementation
in hardware and properties as such the latency required for
clearing them off. It is assumed that more complex architec-
tures will require a higher amount of logic resources. There
is no such assumption on (theoretical) architecture latency.

These logic resources have to be placed (‘‘floor-
planned’’) [58] in the 2D space of the integrated circuit and

183106 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

interconnected by wires. It is clear that a higher number of
logic resources must occupy a larger area in a silicon. There-
fore the higher the area occupied, the longer the respective
wires will be, and they will contain more junctions.

Consequently, the increased wire lengths and increased
logic gate output load will increase the signal propagation
delay, and thus the maximum operating frequency of such
accelerator will be limited by the ‘‘slowest’’ signal [59]. The
reduced frequency will also reduce the respective throughput
of a compression accelerator.

In the particular case of a hardware compression accelera-
tor, it is a common attitude to design the accelerator to min-
imize the number of (system) clocks; only one clock signal
is being used in most cases. Such a compression accelerator
usually consists of several smaller ‘‘building blocks’’, for
example: input and output buffers, compression dictionary,
match search unit [38], encoding unit, etc. It is obvious that
the lowest frequency of these ‘‘building blocks’’ will be the
resulting operating frequency of the particular accelerator.
Therefore, the motivation is to design an accelerator where
all blocks are close to each other in terms of frequency to
improve the overall accelerator frequency, thus improving the
performance.

From this perspective, the architecture used for implement-
ing a compression dictionary has an impact on the amount of
required logic resources, thus frequency, and thus the overall
accelerator performance. In case the respective architecture
saves a lot of logic resources (against previously used com-
pression dictionary architecture), it will increase the overall
accelerator frequency. Despite the fact that there is no direct
influence on the compression ratio, a more resource-efficient
architecture could allow hardware designers to implement a
bigger dictionary with the same amount of resources as it was
originally, using to achieve a better compression ratio [5],
[38]. On the other hand, the extra logic resources can also
be used for implementing multiple accelerators with a higher
overall throughput while keeping the same (constrained) area
of an integrated circuit.

B. ESTIMATIONS
The amount of logic resources needed is affected by the
‘‘W’’ parameter and the capabilities of the used FPGA for
this estimation. The frequency parameter is usually indirectly
proportional to the amount of logic resources. The latency of
initialization of a compression dictionary is architecture spe-
cific. The compression ratio parameter cannot be estimated
in this particular case.

1) XILINX CONFIGURABLE LOGIC BLOCK (CLB)
ARCHITECTURE
As an abbreviation, FPGA is quite self-explanatory. It is a
giant array of fundamental blocks (CLBs [55] in the Xilinx
case) interconnected by a matrix of wires (FPGA fabric)
which can realize a desired logic function. This principle has
been shared among all major FPGA vendors. CLB can be
divided further into two slices. Each slice consists of four

LUTs and eight flip-flops (registers) plus an interconnection
fabric.

The most common LUT width is 6 bits in most FPGAs
(LUT6). However, some older FPGAs had 4-bit LUTs
only. Some LUTs have available alternative use cases
such as distributed memory blocks or wide shift registers.
The 6-bit LUT can usually be split further into two 5-bit
LUTs, which are more suitable for implementing less com-
plex logic functions. It seems a wider LUT is not going to
be introduced by FPGA vendors in the near future. Not all
elements in a CLB have to be utilized.

2) LINEAR PASSAGE APPROACH
As stated in the above text, the approach uses a counter
(counter width is equal to the ‘‘W’’ parameter) generating
all addresses (4), which is connected to the BlockRAMs
address input via a multiplexer. The multiplexer switches the
normal and reset operation addresses. The amount of logic
resources can be estimated [59] in the following way: the
counter will require at least ‘‘W’’ LUT5s and ‘‘W’’ regis-
ters. The multiplexer will require ‘‘W’’ LUT5s only for the
implementation. Therefore the linear passage approach will
likely require several LUTs (2) and registers (3) in total.

LUTLinear = 2 ∗W (2)

REGLinear = W (3)

LatencyLinear = 2W . (4)

3) FLIP-FLOP BASED APPROACH
This approach requires generating an array of registers equal
to the number of entries in a dictionary (2W in our case).
An address decoder is also required to select the individual
register during the operation. Therefore at least one LUT
will be required for each register resulting in estimations (5)
and (6)

LUTFlip−Flop =
⌈
log6(W )

⌉
∗ 2W (5)

REGFlip−Flop = 2W (6)

LatencyFlip−Flop = 1. (7)

4) DISTRIBUTED MEMORY BASED APPROACH
The numbers of required LUTs and registers are expressed
in formulas (8) and (9); thus they can be described as a
difference between the Distributed and the Flip-Flop based
approach:
• Each EB replaces 64 flip-flops; therefore, the total num-
ber of EBs is 2W−6.

• Individual address decoder for each EB is less complex
because it decodes 6 fewer address bits, which are omit-
ted by the SPLIT function.

• Each EB consists of 7 LUTs.
• The output masking function uses the 2-input AND
logic gates, which can be packed into the OR logic gate
(log6(W − 6) originally).

VOLUME 8, 2020 183107



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

TABLE 1. Estimated properties for all techniques depending on the ‘‘W’’
parameter.

• CNT64 requires only 6 LUTs and 6 registers in total.
However, the counter itself might be replicated several
times by a synthesis tool (principle of locality [60]).

Therefore, the number of logic resources for the Dis-
tributed approach can be expressed in the following way:

LUTDist =
⌈
log6(W − 6)

⌉
∗ 2(W−6) + 7 ∗ 2(W−6)

+ 2 ∗
⌈
log6(W − 6)

⌉
+ 6

≈
⌈
log6(W − 6)

⌉
∗ 2(W−6) (8)

REGDist = 6 (9)

LatencyDist = 26 = 64. (10)

5) ESTIMATION DISCUSSION AND SUMMARY
We estimated several properties (latency, resource utilization)
of respective techniques (see Table 1) by using formulas
mentioned in the previous section. Therefore we discussed
our expectations (design complexity and frequency) for indi-
vidual techniques.

The Linear Passage technique requires the least amount
of logic resources and also has the potential to reach high
frequencies. However, the latency will grow exponentially,
and this prevents this technique from being suitable for com-
pression dictionaries unless a large external memory is used
(memory is initialized only once during a power-up phase, for
example), and the latency of initialization is not an issue.

Therefore, the Flip-Flop and Distributed based techniques
were found suitable for implementations requiring dictionar-
ies to be (re-)initialized before each run of a compression
accelerator where the low latency is one of the requirements.

The Flip-Flop based approach having the best latency of
one clock cycle is redeemed by enormous logic consumption
(both LUTs and registers), which grows exponentially. The
Distributed memory based approach seems to have the same
advantage (constant latency) and disadvantage (the number of
logic resources growing exponentially), however, the amount
of required logic resources is decreased by a factor of 64.

TABLE 2. Brief estimations and expectations.

On the other hand, the latency is increased by the same factor
to 64 clock cycles.

Thus the Distributed memory technique consumes less
logic resources than the Flip-Flop technique, and it is
assumed the frequencies will be higher in favor of the
Distributed memory technique. The respectively increased
latency will not be an issue in our case because the com-
pression dictionary initialization could run in parallel with
the loading data phase (see section III-C1). We assume this
phase will take more clock cycles than the compression dic-
tionary initialization phase for both Distributed and Flip-Flop
techniques.

The general expectations for all approaches are summa-
rized in Table 2. We assume the combination of latency, logic
resources consumption, and frequency in the ‘‘sweet spot’’
range [5] (‘‘W’’ between 6 to 15) will favor the Distributed
technique. It is assumed that the final properties and results
of individual techniques will change after implementation
due to the various optimization used by synthesis tools [58],
[59], such as resource sharing [61], [62], logic duplication,
or register balancing [63] may be applied.

VI. THE DISADVANTAGE OF THE PREVIOUSLY
USED METHODOLOGY
The initial set of measurements [5] was performed on a single
computer with the Xilinx ISE toolset using the same initial
conditions as those discussed in the following section VII-B.
We used the ‘‘Random PAR’’ (Place & Route) mode in
ISE, which allows to synthesize and PAR the design without
setting-up physical constraints such as FPGA pins assign-
ment. The creation of timing constraints such as a clock
period is not affected by this mode. The disadvantage of this
procedure is that designs (representing different approaches)
with the same value of the ‘‘W’’ parameter have different pin
placements. The observed randomness of the pin placements
may affect the process of the synthesis, the PAR, and the STA
in the final consequence. This might make an advantage (pins
can be placed closer to an evaluated design) for one approach
and penalize other approaches. This led us to prepare a new
workflow to prevent this issue and to be supported by both
ISE and Vivado.

VII. OUR APPROACH
We decided to choose a universal FPGA (in term of support
in the Xilinx tools) to perform objective measurements. Thus
we have selected the Xilinx Virtex-7 690T (XC7V690T-
2FFG1158) due to its size and being a representative

183108 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

TABLE 3. Computer systems used for the evaluation.

FIGURE 5. Architecture of the design wrapper.

example of the Xilinx 7-Series FPGAs. The 7-Series archi-
tecture is the basis for the latest Xilinx FPGAs, such as the
UltraScale(+) [64] platform. An advantage of Virtex-7 is
that it is supported by both Xilinx development toolsets: the
Xilinx ISE (Integrated System Environment) and the Xilinx
Vivado in latest versions (version 14.7 and 2017.2 respec-
tively). The reason to chose both tools is that the research
started in 2015 (on Virtex-6 platform) when Vivado wasn‘t
recognized as a ‘‘mature’’ product. Usage of the ISE also
allows us to evaluate and compare the synthesis process
against Vivado without violating Xilinx ISE license [65].
All tests were performed on several computer systems (see
Table 3) representing trends in the last decade.

The synthesis process uses randomized algorithms;
however, each system has it‘s own ‘‘seed’’. Therefore,
we included the information that the used computer systems
were different (and their respective configuration).

All systems have been following the requirements for
Xilinx ISE [66] and Xilinx Vivado [67].

A. EXPERIMENTAL SETUP
We developed the design implementing all three mentioned
approaches (linear passage, flip-flop array and distributed
memory based approach) with a unified interface (see Pro-
gram 1) in VHDL language.

The implemented approach and some other parameters
(such as LUT size and the address vector width ‘‘W’’) are
set by generic constants. We assume the following design
properties:

• Xilinx 7-Series architecture with 6-input LUTs.
• A memory cell width of 36 bits (one of the native
BlockRAMwidths [48], intended for simulating a 32-bit
memory pointer like software version of LZ4 does. This
dictionary cell width has also been used elsewhere [16]),

• ‘‘W’’ parameter stands for the intended memory address
vector width and defines the memory capacity (36*2W

bits).
As a precaution, we designed a test ‘‘Wrapper’’, which

embeds an evaluated technique into a register array. The
architecture (see Fig. 5) of the ‘‘Wrapper’’ will prevent the
paths between physical FPGA I/O pins and the respective log-
ical signals to have any impact on timing analysis. Therefore
any path length could be virtually unlimited. Thus the tech-
nique designs can be substantially dense and floorplanned
almost anywhere in an FPGA.

Program 1 A Unified VHDL Interface for All Implementa-
tion Types. [5]
entity top is port (
clk, reset, we: in std_logic;
adri: in std_logic_vector(W-1 downto 0);
din: in std_logic_vector(35 downto 0);
dout: out std_logic_vector(35 downto 0);
written: out std_logic);
end top;

B. ADDITIONAL SETTINGS FOR SYNTHESIS TOOLS
We changed some of the parameters from the defaults for
Xilinx ISE and Xilinx Vivado to force the tools to favor the
design speed instead of area. Some additional parameters
were set to overcome some of the synthesis issues, such as
a memory overflow.

1) Xilinx ISE [63]
• Synthesis – Optimization Effort = Fast (Synthe-
sis consumes less memory allowing synthesis of
larger designs without a crash of Xilinx XST).

• Synthesis – Register Balancing = Yes
• Map – Register Duplication = On
• Map – Allow Logic Optimization Across
Hierarchy = Yes

2) Xilinx Vivado (Strategies) [68]
• Synthesis – PerfOptimized_High
• Implementation – Performance
_ExplorePostRoutePhysOpt

C. OUR TEST METHODOLOGY WITH THE LINEAR
PASSAGE APPROACH AS AN EXAMPLE
The new workflow improves the original workflow [5] by
removing of the observed randomness of physical con-
straints via fixing the used constraints across all implemented
approaches. The new workflow is depicted in Fig. 6, and
some of these phases will be described in an example (the
Linear Passage technique in our case) in a more detailed way.

VOLUME 8, 2020 183109



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 6. The test flow used for experimental measurements.

183110 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

The respective workflow paths for Linear Passage, Flip-Flop,
and Distributed methods are highlighted with colors (blue,
orange, and green).

1) PHASE ONE
The source files (HDL and initial timing constraints) are
generated for implementation inXilinx ISE. The best-reached
clock period is extracted from the STA (Static Timing Analy-
sis) report of the fully (randomly) routed design. The clock
period is decreased by 0.05 ns (the smallest available step
recognized by the Xilinx ISE) for the next iteration. The pre-
vious step is repeated until timing errors occur. The physical
constraints (pin placement) and other reports (such as STA
and PAR resources utilization report) are extracted at the end
of phase one.

2) PHASE TWO
Phase two uses the extracted physical constraints (of the
Linear Passage) to perform the implementation of the two
remaining approaches (Flip-Flop and Distributed Memory
based Status Register). The search for the best timing is the
same as in phase one. The result of phase two is a set of
three designs representing all approaches with their timing
& physical constraints and resources utilization. These best
frequencies (of the measured designs) are averaged over all
approaches to reduce the influence of the random pin place-
ment.

3) PHASE THREE
The collected ISE constraints are converted to a constraints
format suitable for Xilinx Vivado. The designs are evaluated
in the same manner as in phase one and phase two in Xilinx
ISE.

D. COLLECTED DATA SETS
Nine data sets were collected after all three phases in the
Xilinx ISE. Each approach had its own subset of three mea-
surements:

• Linear Passage

– Native constraints set (randomly generated)
– Flip-Flop constraints set (fixed)
– Distributed memory constraints (fixed)

• Flip–Flop

– Native constraints set (randomly generated)
– Linear Passage constraints set (fixed)
– Distributed memory constraints (fixed)

• Distributed Memory

– Native constraints set (randomly generated)
– Linear Passage constraints (fixed)
– Flip-Flop constraints set (fixed)

Each measurement had 10 fully routed designs with the
STA report ranging the addresses with the ‘‘W’’ parameter
from 6 to 15 bits. The measured datasets from the Xilinx
Vivado had the same structure as the Xilinx ISE datasets.

TABLE 4. Properties of measured designs like logic gates count,
frequency, etc. depending on the ‘‘W’’ parameter.

VIII. EXPERIMENTAL RESULTS
We evaluate and comment on the measured data (see Table 4)
in terms of design speed, FPGA resources utilization, and
suitability for compression dictionary design. These results
are also visualised as graphs (Figures 7a, 7b, 8a, 8b).

A. LINEAR PASSAGE APPROACH
The Xilinx Vivado seems to be a better tool for implement-
ing the linear passage approach in terms of chip area, thus
consuming less FPGA resources in all cases. A synthesis
or implementation issue appears to be in the Xilinx ISE.
There is an unexpected ‘‘step’’ in the ISE frequencies, and
results do not scale down in relation to the ‘‘W’’ parame-
ter. The use of fast carry logic between neighboring slices
might be the reason when no DSP48 [69] blocks are used

VOLUME 8, 2020 183111



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 7. Overall results, part I.

(the number of DSP48 blocks used is zero after PAR). How-
ever we were unable to determine the actual reason for the
‘‘step’’ even with a detailed analysis of respective floor-
planned designs. It seems the implementation of such small
designs in the such a large FPGA can lead to unpredictable
results.

The initial results [5] showed that higher (better) frequen-
cies were reached for the entire range while the graph curve
is converging down for the Xilinx Vivado frequencies. This
behavior needs to be further analyzed by performing the
measurements on multiple computers.

This approach is not suitable for larger dictionaries due to
the enormous latency (growing exponentially) required for

memory initialization. The approach is optimal in terms of
used chip area.

B. FLIP-FLOP APPROACH
Implemented designs based on the flip-flop approach are
comparable in terms of frequency for both Xilinx toolsets.
TheXilinx ISE frequencies start on a lower point thanVivado,
but convergence is slower compared to the Vivado results.
The Xilinx Vivado is a better tool in terms of used FPGA
resources saving 15%–55% of used slices with 32.5% on
average. The solution of the flip-flop based status register is
optimal in terms of latency (a single clock cycle, and it is
constant for the entire range of the ‘‘W’’ parameter).

183112 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 8. Overall results, part II.

C. DISTRIBUTED MEMORY APPROACH
The last evaluation deals with the distributed memory
approach of a status register. We prepared an additional table
(see Table 5) to show the differences between the Xilinx ISE
and the Xilinx Vivado results (see Fig. 9). The formula (11)
used for calculating the differences follows

Difference =
(
1−

Vivado
ISE

)
∗ 100 [%]. (11)

The Xilinx ISE results show that the frequency start lower
than Vivado for the first two smallest designs, but for the rest
of the measured range, ISE is better than Vivado in terms of
speed. On the other hand, the Xilinx Vivado has better results

in terms of resource consumption over the entire range, but
the advantage of Vivado is gradually diminishing (we assume
the Xilinx ISE will be better for ‘‘W’’ parameter above the
value of 15). There is no obvious winner in the end, because
any single advantage of ISE or Vivado converges to zero
while the ‘‘W’’ parameter rises (see Fig. 9).

D. SUITABILITY FOR A DICTIONARY DESIGN
We evaluated all approaches with respect to the requirements
discussed in Section III-B. All approaches satisfy the require-
ment of the minimum design speed of 156.25 MHz. We have
to exclude the linear passage approach due to its latency (it
didn’t meet the requirements, and it was too high compared

VOLUME 8, 2020 183113



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

FIGURE 9. Differences for distributed memory approach.

TABLE 5. Differences between Vivado and ISE for distributed memory
approach related to the ‘‘W’’ parameter – positive values represents the
Vivado advantage.

TABLE 6. Advantage of distributed memory approach compared to
flip-flop for the Xilinx Vivado results.

to the other two approaches). The flip-flop approach and the
distributed memory approaches are comparable in terms of
latency. The asymptotic complexity of both approaches is
constant (1 respectively 64 clock cycles). The minor disad-
vantage of the distributed memory approach (the latency is
slightly higher, but meets the requirements) is balanced by its
better speed (higher frequencies are reached over the entire
range), and less FPGA resources are consumed (see Table 6).
The average saving was 75% in terms of FPGA resources

for the distributed memory approach. The issue of the flip-
flop approach is the FPGA resources required for implemen-
tations. For example, the flip-flop approach will consume
almost all resources in the Xilinx Virtex-7 690T FPGA for
the ‘‘W’’ parameter equal to 20 (such design will support 1
million entries in a dictionary). The flip-flop approach cannot
be used effectively with larger embedded memory such as the
Xilinx UltraRAM feature [70], which increases the amount of
FPGA embedded memory available by 600% from previous
FPGA generations.

E. THE ‘‘DISTRIBUTED MEMORY’’ METHOD
COMPATIBILITY WITH OTHER FPGA VENDORS
We considered four different FPGA vendors (Xilinx,
Intel/Altera, Lattice, Microsemi/Actel) for compatibility with
our method. Xilinx seems to have the most comprehensive
support of LUT based ‘‘Distributed Memory’’ feature since
the introduction of the very first Virtex/Spartan FPGAs [71].

Intel/Altera’s FPGA support for the ‘‘Distributed Mem-
ory’’ feature varies across families. In general, modern and
expensive FPGAs [72] do support the feature, while low-
cost oriented and older families lack the support for the fea-
ture [73], [74]. Some FPGAs of Lattice and Microsemi/Actel
also support the feature in certain more recent families
[75], [76]. Due to the fact that these four vendors have 99%
market share [77], our technique can be ported to nearly every
modern FPGA.

IX. CONCLUSION
We presented a comprehensive analysis of three methods
(linear passage, flip-flop, and distributed memory) suitable
for initializing memory oriented data structures, including
our distributedmemory based approach. A performance com-
parison was performed in terms of the maximum reached
operating frequency, FPGA resources consumption, and the
requirements of the lossless compression dictionary design.

All approaches were measured over the range of hash table
sizes suitable for IP compression devices. We presented the
new test flow to support the Xilinx ISE and the Xilinx Vivado
toolkits in the measurement process.

According to our methodology, the distributed memory
approach shows the best combined performance against
remaining techniques. This method is probably the only
technique to satisfy the needs of future FPGA based

183114 VOLUME 8, 2020



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

implementations of various compression algorithms where a
larger embedded memory such as the Xilinx UltraRAM fea-
ture is used. The presented technique is compatible and can
be ported to any modern SRAM based FPGA architecture.

REFERENCES
[1] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck, ‘‘A scalable high-

bandwidth architecture for lossless compression on FPGAs,’’ in Proc.
IEEE 23rd Annu. Int. Symp. Field-Program. Custom Comput. Mach.
(FCCM), May 2015, pp. 52–59.

[2] G. C. Buttazzo,Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, 3rd ed. New York, NY, USA: Springer,
2011.

[3] B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad, ‘‘High-throughput,
lossless data compresion on FPGAs,’’ in Proc. IEEE 19th Annu. Int. Symp.
Field-Program. CustomComput. Mach. (FCCM), May 2011, pp. 113–116.

[4] T. Beneš, M. Bartík, and P. Kubalák, ‘‘High throughput and low latency
LZ4 compressor on FPGA,’’ in Proc. Int. Conf. ReConFigurable Comput.
FPGAs (ReConFig), Dec. 2019, pp. 1–5.

[5] M. Bartík, S. Ubik, and P. Kubalík, ‘‘A novel and efficient method to
initialize FPGA embedded memory content in asymptotically constant
time,’’ in Proc. Int. Conf. ReConFigurable Comput. FPGAs (ReConFig),
Nov. 2016, pp. 1–6.

[6] P. E. Bender and J. K. Wolf, ‘‘An improved sliding window data compres-
sion algorithm based on the Lempel-Ziv data compression algorithm [mag-
netic recording],’’ in Proc. Global Telecommun. Conf. Exhib. Commun.
Connecting Future (GLOBECOM), Dec. 1990, pp. 1773–1777 vol. 3.

[7] S. Rigler, W. Bishop, and A. Kennings, ‘‘FPGA-based lossless data com-
pression using Huffman and LZ77 algorithms,’’ in Proc. Can. Conf. Electr.
Comput. Eng., Apr. 2007, pp. 1235–1238.

[8] S. Rigler, ‘‘FPGA-based lossless data compression using GNU Zip,’’
M.S. thesis, Dept. Elect. Comput. Eng., Univ. Waterloo, Waterloo, ON,
Canada, 2007. [Online]. Available: http://hdl.handle.net/10012/2692

[9] R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal, and M. Shahbaz, ‘‘Multi-
gig lossless data compression device,’’ IEEE Trans. Consum. Electron.,
vol. 56, no. 3, pp. 1927–1932, Aug. 2010.

[10] R. Mehboob, S. A. Khan, and Z. Ahmed, ‘‘High speed lossless data
compression architecture,’’ in Proc. IEEE Int. Multitopic Conf., Dec. 2006,
pp. 84–88.

[11] I. Shcherbakov, C. Weis, and N.Wehn, ‘‘A high-performance FPGA-based
implementation of the LZSS compression algorithm,’’ in Proc. IEEE 26th
Int. Parallel Distrib. Process. Symp. Workshops PhD Forum (IPDPSW),
May 2012, pp. 449–453.

[12] E. J. Leavline and D. A. A. G. Singh, ‘‘Hardware implementation of
LZMA data compression algorithm,’’ Int. J. Appl. Inf. Syst., vol. 5, no. 4,
pp. 51–56, 2013.

[13] B. Li, L. Zhang, Z. Shang, and Q. Dong, ‘‘Implementation of LZMA
compression algorithm on FPGA,’’ Electron. Lett., vol. 50, no. 21,
pp. 1522–1524, Oct. 2014.

[14] P. M. Parekar and S. S. Thakare, ‘‘Hardware implementation of lossless
LZMA data compression algorithm,’’ Prog. In Sci. Eng. Res. J., vol. 2,
no. 3, pp. 201–205, May-Jun. 2014.

[15] M. Morales-Sandoval and C. Feregrino-Uribe, ‘‘On the design and imple-
mentation of an FPGA-based lossless data compressor,’’ in Proc. Sociedad
Mexicana Ciencias Computación (ReConFig), 2004, pp. 29–38. [Online].
Available: https://www.tamps.cinvestav.mx/~mmorales/research.html

[16] S. Naqvi, R. Naqvi, R. A. Riaz, and F. Siddiqui, ‘‘Optimized RTL design
and implementation of LZW algorithm for high bandwidth applications,’’
Przegląd Elektrotechniczny Elect. Rev., vol. 87, no. 4, pp. 279–285, 2011.

[17] J. L. Nunez, S. Jones, and S. Bateman, ‘‘X-MatchPRO:A high performance
full-duplex lossless data compressor on a ProASIC FPGA,’’ in Proc. Int.
Workshop Intell. Data Acquisition Adv. Comput. Syst. Technol. Appl., 2001,
pp. 56–60.

[18] J. L. Nunez and S. Jones, ‘‘Gbit/s lossless data compression hard-
ware,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3,
pp. 499–510, Jun. 2003.

[19] J. L. Nunez, C. Feregrino, S. Bateman, and S. Jones, ‘‘The X-MatchLITE
FPGA-based data compressor,’’ in Proc. 25th EUROMICRO Conf., vol. 1,
1999, pp. 126–132.

[20] J. L. Nunez and S. Jones, ‘‘Lossless data compression programmable
hardware for high-speed data networks,’’ in Proc. IEEE Int. Conf. Field-
Program. Technol. (FPT), Dec. 2002, pp. 290–293.

[21] M. Milward, J. L. Nunez, and D. Mulvaney, ‘‘Design and implementation
of a lossless parallel high-speed data compression system,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 15, no. 6, pp. 481–490, Jun. 2004.

[22] J. L. Nunez-Yanez and V. A. Chouliaras, ‘‘Gigabyte per second streaming
lossless data compression hardware based on a configurable variable-
geometry CAM dictionary,’’ IEE Proc.-Comput. Digit. Techn., vol. 153,
no. 1, pp. 47–58, Jan. 2006.

[23] Helion Technology. LZRW Compression Cores. Accessed: Aug. 21, 2020.
[Online]. Available: http://www.heliontech.com/comp_lzrw.htm

[24] M. A. A. El ghany, A. E. Salama, andA. H. Khalil, ‘‘Design and implemen-
tation of FPGA-based systolic array for LZ data compression,’’ in Proc.
IEEE Int. Symp. Circuits Syst., May 2007, pp. 3691–3695.

[25] M. A. A. El ghany, A. E. Magdy, and A. E. Salama,Design and Implemen-
tation of FPGA-Based Systolic Array for LZ Data Compression. Rijeka,
Croatia: InTech, 2010, pp. 75–92.

[26] K. Papadopoulos and I. Papaefstathiou, ‘‘Titan-R: Amultigigabit reconfig-
urable combined compression/decompression unit,’’ ACM Trans. Recon-
figurable Technol. Syst., vol. 3, no. 2, pp. 7:1–7:25, May 2010.

[27] W. J. Huang, N. Saxena, and E. J. McCluskey, ‘‘A reliable LZ data
compressor on reconfigurable coprocessors,’’ in Proc. IEEE Symp. Field-
Program. Custom Comput. Mach., Apr. 2000, pp. 249–258.

[28] M. Morales-Sandoval and C. Feregrino-Uribe, ‘‘A hardware architec-
ture for elliptic curve cryptography and lossless data compression,’’ in
Proc. 15th Int. Conf. Electron., Commun. Comput. (CONIELECOMP),
Feb. 2005, pp. 113–118.

[29] K. Papadopoulos and I. Papaefstathiou, ‘‘Titan-R: A reconfigurable hard-
ware implementation of a high-speed compressor,’’ inProc. 16th Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), Apr. 2008, pp. 216–225.

[30] A. Khu. (Sep. 25, 2001). Xilinx FPGA Configuration Data Compres-
sion and Decompression. Accessed: Aug. 21, 2020. [Online]. Available:
http://www.xilinx.com/support/documentation/white_papers/wp152.pdf

[31] M. Bartík, S. Ubik, and P. Kubalík, ‘‘LZ4 compression algorithm on
FPGA,’’ in Proc. IEEE Int. Conf. Electron., Circuits, Syst. (ICECS),
Dec. 2015, pp. 179–182.

[32] S. M. Lee, J. H. Jang, J. H. Oh, J. K. Kim, and S. E. Lee, ‘‘Design
of hardware accelerator for Lempel-Ziv 4 (LZ4) compression,’’ IEICE
Electron. Exp., vol. 14, no. 11, p. 6, 2017.

[33] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data compres-
sion,’’ IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977.

[34] J. Ziv and A. Lempel, ‘‘Compression of individual sequences via variable-
rate coding,’’ IEEE Trans. Inf. Theory, vol. IT-24, no. 5, pp. 530–536,
Sep. 1978.

[35] T. A.Welch, ‘‘A technique for high-performance data compression,’’Com-
puter, vol. 17, no. 6, pp. 8–19, Jun. 1984.

[36] I. Pavlov. (2016). LZMA SDK. Accessed: Aug. 21, 2020. [Online]. Avail-
able: http://www.7-zip.org/sdk.html

[37] Y. Collet. (May 26, 2011). LZ4 Explained. Accessed: Aug. 21, 2020.
[Online]. Available: http://fastcompression.blogspot.cz/2011/05/lz4-
explained.html

[38] T. Beneš, M. Bartík, and P. Kubalák, ‘‘Design of a high-throughput match
search unit for lossless compression algorithms,’’ in Proc. IEEE 9th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2019, pp. 0732–0738.

[39] W. A. Crofut andM. R. Sottile, ‘‘Design techniques of a delay-line content-
addressed memory,’’ IEEE Trans. Electron. Comput., vol. EC-15, no. 4,
pp. 529–534, Aug. 1966.

[40] F. J. Burkowski, ‘‘A hardware hashing scheme in the design of a multiterm
string comparator,’’ IEEE Trans. Comput., vol. C-31, no. 9, pp. 825–834,
Sep. 1982.

[41] D. Salomon, Data Compression: The Complete Reference. Berlin,
Germany: Springer-Verlag, 2007.

[42] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, ‘‘Z-TCAM: An SRAM-
based architecture for TCAM,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 23, no. 2, pp. 402–406, Feb. 2015.

[43] Z. Ullah, K. Ilgon, and S. Baeg, ‘‘Hybrid partitioned SRAM-based ternary
content addressable memory,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 12, pp. 2969–2979, Dec. 2012.

[44] M. F. Oberhumer. Lempel-Ziv-Oberhumer. Accessed: Aug. 21, 2020.
[Online]. Available: http://www.oberhumer.com/opensource/lzo/

[45] J. Kane and Q. Yang, ‘‘Compression speed enhancements to LZO for
multi-core systems,’’ in Proc. IEEE 24th Int. Symp. Comput. Archit. High
Perform. Comput., Oct. 2012, pp. 108–115.

[46] O. Fiedler, ‘‘LZ-family data compression methods,’’ M.S. thesis, Dept.
Theor. Comput. Sci., CTU FIT, Prague, Czechia, 2014.

VOLUME 8, 2020 183115



M. Bartík et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

[47] D. E. Knuth, The Art of Computer Programming: Sorting and Searching,
vol. 3, 2nd ed. Redwood City, CA, USA: Addison Wesley, 1998.

[48] Xilinx Inc. (2019). UG473 (v1.14)—7-Series FPGAs Memory Resources.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug473_7Series_Memory_
Resources.pdf

[49] F. E. Goetting and T. J. Bauer, ‘‘Block RAM with reset,’’ U.S.
Patent 6 101 132 A, Feb. 3, 1999. [Online]. Available: https://patents.
google.com/patent/US6101132

[50] M. Bencivenni et al, ‘‘Performance of 10 gigabit Ethernet using commodity
hardware,’’ IEEE Trans. Nucl. Sci., vol. 57, no. 2, pp. 630–641, Apr. 2010.

[51] J. Hartmanis and R. E. Stearns, ‘‘On the computational complexity of
algorithms,’’ Trans. Amer. Math. Soc., vol. 117, pp. 285–306, May 1965.

[52] C. Yoo, ‘‘High-speed DRAM interface,’’ IEEE Potentials, vol. 20, no. 5,
pp. 33–34, Dec. 2002.

[53] M. Stohanzl and Z. Fedra, ‘‘The FPGA implementation of dictionary; HW
consumption versus latency,’’ in Proc. 36th Int. Conf. Telecommun. Signal
Process. (TSP), Jul. 2013, pp. 82–85.

[54] M. Bartík and S. Ubik, ‘‘System for implementation of a hash
table,’’ U.S. Patent 10 262 702, May 3, 2019. [Online]. Available:
https://patents.google.com/patent/US10262702B2/en

[55] Xilinx Inc. (2016). UG474—7-Series FPGAs Configurable Logic Block.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug474_7Series_CLB.pdf

[56] C. E. LaForest and J. G. Steffan, ‘‘Efficient multi-ported memories for
FPGAs,’’ in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), New York, NY, USA, 2010, pp. 41–50.

[57] C. E. LaForest, Z. Li, T. O’Rourke, M. G. Liu, and J. G. Steffan, ‘‘Com-
posing multi-ported memories on FPGAs,’’ ACM Trans. Reconfigurable
Technol. Syst., vol. 7, no. 3, pp. 16:1–16:23, Sep. 2014.

[58] V. Sklyarov, I. Skliarova, A. Barkalov, and L. Titarenko, Synthesis and
Optimization of FPGA-Based Systems. Cham, Switzerland: Springer,
2014.

[59] C. Woods and B. Holdsworth, Digital Logic Design, 4th ed. Burlington,
MA, USA: Newnes, 2002.

[60] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative
Approach, 6th ed. San Francisco, CA, USA: Morgan Kaufmann, 2017.

[61] B. Ronak and S. A. Fahmy, ‘‘Improved resource sharing for FPGA
DSP blocks,’’ in Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL),
Aug. 2016, pp. 1–4.

[62] S. Hadjis, A. Canis, J. H. Anderson, J. Choi, K. Nam, S. Brown, and
T. Czajkowski, ‘‘Impact of FPGA architecture on resource sharing in high-
level synthesis,’’ in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), New York, NY, USA, 2012, pp. 111–114.

[63] Xilinx Inc. (2013).UG627-XSTUser Guide for Virtex-4, Virtex-5, Spartan-
3 andNewer CPLDDevices. Accessed: Aug. 21, 2020. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_
7/xst.pdf

[64] Xilinx Inc. (2017). DS890—UltraScale Architecture and Product
Data Sheet: Overview. Accessed: Aug. 21, 2020. [Online]. Available:
https://www.xilinx.com/support/documentation/data_sheets/ds890-
ultrascale-overview.pdf

[65] Xilinx ISE 14.7 EULA, Xilinx, San Jose, CA, USA, 2013.
[66] Xilinx Inc. FPGA Memory Recommendations Using the ISE Design Suite

14. Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/
products/design-tools/ise-design-suite/memory.html

[67] Xilinx Inc. FPGA Memory Recommendations Using the Vivado Design
Suite. Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.
com/products/design-tools/vivado/memory.html

[68] Xilinx Inc. (2017). UG904—Vivado Design Suite User Guide—
Implementation. Accessed: Aug. 21, 2020. [Online]. Available: https://
www.xilinx.com/support/documentation/sw_manuals/xilinx2017_
2/ug904-vivado-implementation.pdf

[69] Xilinx Inc. (2018). UG497—7 Ser. DSP48E1 Slice User Guide.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.
com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

[70] Xilinx Inc. (2016). WP447—UltraRAM: Breakthrough Embedded
Memory Integration on UltraScale+ Devices. Accessed:
Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/white_papers/wp477-ultraram.pdf

[71] Xilinx Inc. (2005). XAPP464 (v2.0)—Using Look-Up Tables
as Distrib. RAM in Spartan-3 Generation FPGAs. Accessed:
Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/application_notes/xapp464.pdf

[72] Altera Corporation. (2011). Logic Array Blocks and Adaptive Logic
Modules in Stratix V Devices. Accessed: Aug. 21, 2020. [Online].
Available: http://www2.engr.arizona.edu/~ece506/readings/project-
reading/6-cad/stx5_51002.pdf

[73] N. Pramstaller and J. Wolkerstorfer, ‘‘A universal and efficient AES co-
processor for field programmable logic arrays,’’ in Field Programmable
Logic and Application, J. Becker,M. Platzner, and S. Vernalde, Eds. Berlin,
Germany: Springer, 2004, pp. 565–574.

[74] Altera Corporation. (2011). Memory Blocks Cyclone IV Devices.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-
iv/cyiv-51003.pdf

[75] Lattice Semiconductor Corporation. (2013). Technical Note
TN1201—Memory Usage Guide for MachXO2 Devices. Accessed:
Aug. 21, 2020. [Online]. Available: https://www.latticesemi.com/-/media/
LatticeSemi/Documents/ApplicationNotes/MO/MemoryUsageGuidefor
MachXO2Devices.ashx?document_id=39082

[76] Lattice Semiconductor Corporation. (2018). AC476 Application
Note—Design Migration Guidelines From Xilinx 7-Series to
PolarFire. Accessed: Aug. 21, 2020. [Online]. Available: https://www.
microsemi.com/document-portal/doc_download/1243552-ac476-design-
migration-guidelines-from-xilinx-7-series-to-polarfire

[77] J. Johnson. (Jul. 15, 2011). List and Comparison of FPGA Com-
panies. Accessed: Aug. 21, 2020. [Online]. Available: http://www.
fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html

MATĚJ BARTÍK (Member, IEEE) was born in
Prague, Czech Republic. He received the B.Sc.
degree in computer science from the Faculty of
Electrical Engineering, Czech Technical Univer-
sity in Prague, in 2012, and the M.Sc. degree in
informatics from the Faculty of Information Tech-
nology, Czech Technical University in Prague,
in 2014, where he is currently pursuing the Ph.D.
degree.

He joined CESNET, as an FPGA and an Elec-
tronics Designer, in 2014. His research interests include electronic and PCB
design, embedded system design, including embedded safety and security
topics, and low-level FPGA optimizations.

TOMÁŠ BENEŠ (Student Member, IEEE) was
born in Prague, Czech Republic. He received the
B.Sc. and M.Sc. degrees in informatics from the
Faculty of Information Technology, Czech Techni-
cal University in Prague, in 2017 and 2019, respec-
tively, where he is currently pursuing the Ph.D.
degree.

Since 2016, he has been an FPGA Hard-
ware Designer with the Research and Develop-
ment Department, CESNET. His research interests

include hardware design, low-level optimization, and hardware network
monitoring.

PAVEL KUBALÍK was born in Hořice, Czech
Republic. He received theM.Sc. and Ph.D. degrees
in informatics from the Faculty of Electrical Engi-
neering, Czech Technical University in Prague,
in 2002 and 2007, respectively.

From 2004 to 2009, he was an Assistant Pro-
fessor with the Faculty of Electrical Engineering,
Czech Technical University in Prague. Since 2009,
he has been an Assistant Professor with the Fac-
ulty of Information Technology, Czech Technical

University in Prague. His research interests include fault-tolerant design in
FPGA, digital design in FPGA, self-testing circuits-based on FPGA, HW
design of networks, high-speed wireless networks, arithmetic in FPGA, error
control, and self-repair codes in FPGA.

183116 VOLUME 8, 2020


