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ABSTRACT Frequent itemset mining is a fundamental problem in data mining area because frequent
itemsets have been extensively used in reasoning, classifying, clustering, and so on. To mine frequent item-
sets, previous algorithms based on a prefix tree structure have to construct many prefix trees, which is very
time-consuming. In this paper, we propose a novel frequent itemset mining algorithm called DPT (Dynamic
PrefixTree) which uses only one prefix tree.Wefirst introduce the concept of the post-conditional database of
an itemset, and analyze the distribution of an itemset’s post-conditional database in a prefix tree representing
a database. Subsequently, we illuminate how DPT adjusts the prefix tree to mine frequent itemsets and give
three optimization techniques. An interesting advantage of DPT is that the algorithm can directly output
a prefix tree representing all frequent itemsets after slight modifications. Using only one dynamic prefix
tree, DPT avoids the high cost of constructing many prefix trees and thus gains significant performance
improvement. Experimental results show that DPT remarkably outperforms previous algorithms with respect
to running time and memory usage, and that a prefix tree representing all frequent itemsets DPT outputs can
be used more efficient than a list representing them previous algorithms output.

INDEX TERMS Frequent itemset, post-conditional database, dynamic prefix tree.

I. INTRODUCTION
Frequent itemsets are useful and important information from
databases and can be used in many data mining tasks such
as association rules mining [1], clustering [2], classification
[3], [4], prediction [5], and so on. However, frequent itemsets
cannot be easily identified from a database because there are
2n candidates for a database with n items. Mining frequent
itemsets from a database has been a fundamental and crucial
research topic in data mining area [8].

The problem of frequent itemsets mining can be described
as follows. Let I = {i1, i2, i3, · · · , in} be a set of distinct items
and DB (Database) be a transaction database, where each
transaction is a subset of I . An itemset is a subset of I , and it
is called k-itemset if it contains k distinct items. If all items
of an itemset are contained in a transaction, this transaction
satisfies the itemset. In a database, the number of trans-
actions satisfying an itemset is the support of this itemset.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Luo .

Given a database and a minimal support threshold (denoted
as min_sup), an itemset is frequent if its support is no smaller
than min_sup. The task of frequent itemsets mining is to
find out all frequent itemsets with their supports. The task is
intractable, because there is an enormous number of frequent
itemsets in a database, especially for dense databases or small
min_sups.

The Apriori algorithm [9] is an effective method for fre-
quent itemset mining. In order to obtain all frequent itemsets,
Apriori iteratively scans a database. It can find out all frequent
k-itemsets (k = 1, 2, 3, . . . ) after the kth database scan.
Generating and testing a large number of candidate itemsets,
Apriori and the Apriori-like algorithms are called candidate
generation-and-test approaches. Although these approaches
can mine all frequent itemsets from a database, they are
unavoidably confronted with two problems: (1) the database
is scanned many times, and the time of database scan is
exactly equal to the length of the longest frequent itemset;
(2) the number of candidate itemsets is very large, and gener-
ating and testing these candidates is very costly, especially

183722 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2252-8757
https://orcid.org/0000-0003-1554-4388
https://orcid.org/0000-0001-5821-2733
https://orcid.org/0000-0002-5070-0182
https://orcid.org/0000-0001-8054-884X
https://orcid.org/0000-0002-1348-5305


J.-F. Qu et al.: Efficient Mining of Frequent Itemsets Using Only One DPT

when the database or all candidate itemsets cannot be
completely loaded in main memory.

Pattern growth approaches such as FP-Growth [10] can
avoid the above problems and mine frequent itemsets from
a database. In FP-Growth, a database is represented as a
highly compact prefix tree structure named as FP-tree. After
constructing an initial FP-tree from a database, FP-Growth
recursively constructs conditional FP-trees to mine frequent
itemsets.

A. MOTIVATION
Many previous works [10], [26]–[31], [33]–[35] have shown
that pattern growth approaches based on prefix trees are more
efficient than candidate generation-and-test approaches.
However, pattern growth approaches are confronted with a
problem that they have to spend much time in constructing
many (conditional) prefix trees. The construction of a con-
ditional prefix tree involves several steps: identifying fre-
quent items, constructing a branch for each transaction, and
inserting the branch into the tree. FP-Growth-like algorithms
iteratively and recursively execute these steps, which is very
time-consuming. To obtain a frequent itemset containing k
items, these algorithms have to construct k conditional prefix
trees. Frequently constructing prefix trees spends much time
and many prefix trees also lead to poor data locality.

From the application perspective [4]–[7], frequent itemsets
usually play an important role as an intermediate product. For
example, some applications need to judge whether an itemset
is frequent or not or fetch the support of a frequent itemset.
Factually, there are generally a large number of frequent
itemsets especially for dense databases or small min_sups.
However, previous algorithms simply output a list of fre-
quent itemsets, no matter what candidate generation-and-test
approaches or pattern growth approaches these algorithms
belong to. This list is really too large to be efficiently used.
Before frequent itemsets are further used, it is important to
use an appropriate form of representing them.

B. CONTRIBUTIONS
This work focuses on the efficient mining of frequent itemsets
and the convenient usage of them. The main contributions of
the work are as follows.

(1) We propose a novel pattern growth algorithm for min-
ing frequent itemsets. Different from previous pattern growth
algorithms constructing many prefix trees, our algorithm
needs only one prefix tree for mining all frequent item-
sets with their supports. Frequently constructing prefix trees
spends much time and operating on many prefix trees also
leads to poor data locality, which is avoided by our algorithm
using only one prefix tree. After constructing an initial prefix
tree from a database, our algorithm repeatedly adjusts the tree
to mine frequent itemsets. Thus, the algorithm is named as the
dynamic prefix tree algorithm (abbreviated as DPT).

(2) Another interesting advantage of DPT is that it can
directly output a prefix tree representing all frequent itemsets,
while previous algorithms always output a frequent itemset
list. Compared with a list representing all frequent itemsets,

a prefix tree representing them is compact and can be used
more efficiently and easily. For example, when an application
judges whether an itemset is frequent or not or fetches the
support of a frequent itemset, operations on a prefix tree
are more efficient than those on a list, especially for a large
number of frequent itemsets.

(3) We have done extensive experiments. Experimental
results show the performance improvement of DPT over
previous algorithms and the advantage of a prefix tree
representing frequent itemsets over a frequent itemset list.

The remainder of the paper is organized as follows.
Section 2 reviews two kinds of search space for the frequent
itemset mining problem and the prefix tree structure, and
related work is also discussed in this section. Section 3 intro-
duces the post-conditional database of an itemset which is
a fundamental concept used in DPT, and there are several
lemmas on which DPT is based. In Section 4, we describe the
main frame of DPT, give three optimization techniques used
in DPT, and also illuminate howDPT directly outputs a prefix
tree representing all mined frequent itemsets. Experimental
results are given in Section 5, and the paper ends in the
conclusion of Section 6.

II. BACKGROUND
A. SEARCH SPACE
Mining all frequent itemsets with their supports is an
intractable problem because the search space is huge.
Suppose |I |= n, a mining algorithm has to check 2n itemsets,
i.e., there are 2n nodes in the search space. If n is small
enough, it is possible to directly count the supports of all
itemsets by only one database scan. Bigger n is, more impor-
tant it is to organize itemsets in an appropriate search space.
All itemsets can be organized in two kinds of search space: a
lattice structure and a set-enumeration tree. Each node in the
search space represents a subset (i.e. an itemset) of I .

1) LATTICE STRUCTURE
Consider as an example that there is a set of items I =
{a, b, c, d}, and then 2|I | = 16 subsets can form a lattice
structure as depicted in Figure 1(a). Given a min_sup, each
itemset corresponding to a node in the lattice structure may
be frequent, which means that an algorithm has to check all
nodes.

The Apriori algorithm [9] searches the lattice structure
for frequent itemsets in a bottom-to-top way. After obtain-
ing the set of frequent 1-itemsets by scanning a database,
Apriori iteratively generates the set of candidate k-itemsets
(k = 2, 3 . . . ) from the set of frequent (k − 1)-itemsets.
Subsequently, Apriori identifies frequent k-itemsets from
candidate k-itemsets by scanning the database again. This
process progresses until either all candidate itemsets are not
frequent or no new candidate k-itemset can be generated from
the set of frequent (k-1)-itemsets. Apriori represents a priori
which means all subsets of a frequent itemset are frequent
and all supersets of an infrequent itemset are infrequent. For
example, in Figure 1(a), if itemset {ab} is infrequent, itemsets
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FIGURE 1. Search space.

{abc}, {abd}, and {abcd} must be infrequent. In the pro-
cess of the bottom-to-top search, Apriori successively checks
1-itemsets, 2-itemsets, 3-itemsets, . . . , and the qualification
as a candidate k-itemset is that all of its subsets containing
(k-1) items must be frequent. In this way, Apriori can prune
the search space well.

2) SET-ENUMERATION TREE
For I = {a, b, c, d}, a set-enumeration tree [23] representing
all itemsets is depicted in Figure 1(b), and it is another kind
of search space for frequent itemset mining. Each node in
the tree represents an itemset composed of all items from the
node to the root.

Different from the lattice structure in which there is no
order among items, all items in a set-enumeration tree are
sorted. The item order in a set-enumeration tree can be their
lexicographic order, their frequency-ascending/descending
order, and so on. The tree in Figure 1(b) uses the
lexicographic order, i.e., a < b < c < d .
Note that all child nodes of each node in a set-enumeration

tree are sorted according to the item order. Mining algo-
rithms can search a set-enumeration tree for frequent item-
sets in depth-first order or in breadth-first order. In [23],
Agarwal et al. proposed tree projection algorithms based on a
set-enumeration tree. Their algorithms project all transactions
containing an itemset to a node representing the itemset, and
these transactions are stored in a matric related to the node.
Frequent itemsets with their supports can bemined from these
matrices. Based on a set-enumeration tree, depth-first mining
algorithms and breadth-first mining algorithms are studied
and compared in [23].

B. DATE STRUCTURE
Frequent itemset mining is based on databases stored on disk.
Apriori and Apriori-like algorithms have to scan a database
on disk many times for mining frequent itemsets. FP-Growth
and FP-Growth-like algorithms [10], [25]–[29] use a prefix

Algorithm 1 Construct a Prefix Tree
Input:

DB a database
min_sup the minimum support threshold

Output:
T a prefix tree representing DB

1: scan DB and obtain all frequent items
2: generate a null node as the root of T
3: for each transaction T in DB do
4: eliminate infrequent items from T
5: sort frequent items in the item order
6: construct a new branch from the sorted frequent items

7: insert this new branch into T
8: end for

TABLE 1. Database and frequent items.

tree structure to mine frequent itemsets. After an initial prefix
tree is constructed from a mined database, the task of mining
frequent itemsets based on prefix trees takes place inmemory.
A prefix tree looks like a set-enumeration tree in Figure 1(b)
with respect to structure. Each node in a prefix tree represents
an itemset composed of all items from the node to the root.
Besides an item, each node in a prefix tree also contains a
counter that records the partial support of the itemset. All
items are sorted in a prefix tree as they do in a set-enumeration
tree. Given a database, a min_sup, and an item order,
Algorithm 1 can construct a prefix tree.
It should bementioned that all child nodes of each node in a

prefix tree are sorted according to the item order. An example
of constructing a prefix tree from a database is illustrated as
follows. The database is shown in Table 1, and min_sup is set
to 3. The item order is the frequency-decreasing order. After
a database scan, a set of frequent items with their supports is
obtained, i.e., {(a: 5), (b: 6), (c: 3), (d : 4)}. Thus, the item
order is b < a < d < c. During the second database scan,
infrequent items are eliminated and frequent items are sorted
for each transaction. Then, a branch constructed from ordered
frequent items is inserted into a prefix tree. The generated
prefix tree is shown in Figure 2.

C. RELATED WORK
The FP-Growth algorithm [10] based on modified prefix
trees called FP-trees is more efficient than Apriori and the
Apriori-like algorithms. All nodes containing the same item
are linked in a node-link in a FP-tree. A header table cor-
responding to a FP-tree stores the information about each
item in the tree. The information related to an item includes

183724 VOLUME 8, 2020



J.-F. Qu et al.: Efficient Mining of Frequent Itemsets Using Only One DPT

FIGURE 2. Prefix tree.

the item’s name, its support and a pointer pointing to the
first node of the node-link of the item. After constructing
an initial FP-tree from a database, FP-Growth recursively
processes each item in the tree. First, a frequent itemset
composed of the item and the prefix itemset (assigned as ∅
for the initial FP-tree) is output. Second, FP-Growth identifies
frequent items in the conditional database of the item by
traversing nodes and related branches along the node-link of
the item. Third, FP-Growth constructs a conditional FP-tree
of the item with frequent items in its conditional database by
traversing nodes and related branches along the node-link.
Finally, FP-Growth recursively processes each item in the
conditional FP-tree.

There are many FP-Growth-like algorithms such as [10],
[25]–[29]. A significant optimization of FP-Growth is to
reduce the traversal cost when it constructs conditional
FP-trees. Two traversals of a tree are necessary for con-
structing a conditional FP-tree. Using an array technique,
G. Grahne et al. proposed the FP-Growth* algorithm which
constructs a conditional FP-tree by only one traversal [30].
FP-Growthmines frequent itemsets by processing prefix trees
from bottom to top. Another important FP-Growth-like algo-
rithm, AFOPT, mines frequent itemsets by processing prefix
trees from top to bottom. The prefix tree used in AFOPT is
different from FP-trees. FP-Growth adopts prefix trees using
the frequency-descending item order in order to maximize the
compactness of prefix trees. However, AFOPT adopts prefix
trees using the frequency-ascending item order in order to
maximize pruning efficiency. AFOPT was proposed first in
[31] (detailed in [32]).

Frequent itemset mining is a seminal problem, there are
many extended itemset mining problems and related algo-
rithms. For example, Li Bo et al. proposed the TT-Miner
algorithm [11] for mining frequent closed itemsets. Sheng
Chen et al. proposed the APFI-MAX algorithm [12] to mine
maximal frequent itemsets over uncertain sensed data. Xiang
Li et al. proposed the IPDI+ algorithm [13] to mine produc-
tive itemsets in dynamic databases. Bay Vo et al. proposed
the CPHUI-List algorithm [14] for mining closed potential
high utility itemsets. Naji Alhusaini et al. proposed the LUIM
algorithm [15] which is a new low utility itemset mining
framework.

With the great advances on hardware and software, many
researchers start to make the use of these conveniences

to mine frequent itemsets. For example, GPUs computa-
tion has been a powerful tool for frequent itemset mining.
Using GPUs, A. Cano et al. proposed an algorithm for min-
ing association rules derived from frequent itemsets [16].
Exploiting GPU and cluster parallelism, Y. Djenouri et al.
proposed a frequent itemset mining algorithm which needs
only one database scan [17]. G. Teodoro et al. proposed a
tree projection-based frequent itemset mining algorithm on
multicore CPUs and GPUs [18]. Based on the MapReduce
framework, there are some algorithms revised from Apriori
that can mine frequent itemsets from big databases [19],
[20]. Further, there are frequent itemset mining algorithms
adopting MapReduce and genetic programming [21], [22].

In this paper, we only focus on the frequent itemset mining
problem on a traditional computing configure. A nice solution
to the problem is bound to contribute to solutions to the
variants and extensions of the problem.

III. CONCEPT AND PRINCIPLE
DPT searches a set-enumeration tree for frequent itemsets
in a depth-first manner. DPT uses a prefix tree represent-
ing a database. The section introduces several concepts and
principles on which DPT is based.

A. PROPERTIES OF A SET-ENUMERATION TREE
Convention 1:According to the item order of a set-enumeration
tree, a hind item is larger than a front item and a front item is
smaller than a hind item.

A set-enumeration tree holds the following properties
according to Convention 1.
Property 1: In a set-enumeration tree, the maximal item in

an itemset represented by node N is larger than the maximal
item in an itemset represented by any N ’s left sibling node.
Property 2: In a set-enumeration tree, the maximal item in

an itemset represented by nodeN is smaller than the maximal
item in an itemset represented by any N ’s right sibling node.
Property 3: In a set-enumeration tree, the maximal item in

an itemset represented by nodeN is smaller than the maximal
item in an itemset represented by any N ’s descendant node.

B. CONDITIONAL AND POST-CONDITIONAL DATABASE
For an itemset X , its conditional database and its
post-conditional database are defined as follows.
Definition 1: The conditional database of an itemset X is

composed of all transactions containing X , and infrequent
items and X itself are removed from these transactions.

Each node in a set-enumeration tree represents an itemset.
Suppose a mining algorithm searches a set-enumeration
tree in the depth-first way, and then the generation order
of frequent itemsets is according to the item order which
the set-enumeration tree holds. For example, suppose that
a depth-first algorithm searches the set-enumeration tree
in Figure 3(a) for frequent itemsets and all itemsets are fre-
quent, and then the generation order of frequent itemsets is
according to the item order: b < a < d < c. Figure 3(b)
lists frequent itemsets that are generated in the top-to-bottom
order.
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FIGURE 3. Generation order of frequent itemsets.

TABLE 2. Conditional and post-conditional database.

When a depth-first mining algorithm arrives at the node
representing itemset {a} in Figure 3(a), those nodes rep-
resenting itemsets {ba}, {bad}, {badc}, {bac} have been
explored, while those nodes representing itemsets {ad},
{adc}, {ac} are still not explored. In order to judge whether
itemsets {ad}, {adc}, {ac} are frequent or not, the algo-
rithm only needs to analyze a part-rather-than-whole of {a}’s
conditional database. This part of {a}’s conditional database
only relates to the items that are larger than item a, and they
are items d and c. Note that the part of {a}’s conditional
database related to item b can be discarded, because all nodes
representing itemsets containing items b and a have been
explored by the depth-first algorithm. When a depth-first
mining algorithm arrives at a node in a set-enumeration tree,
the requisite part of the conditional database of the itemset
represented by the node is the itemset’s post-conditional
database.
Definition 2: The post-conditional database of an itemset

X is the conditional database of X without these items smaller
than the maximal item in X .
For example, the frequency-descending order is b <

a < d < c for the database in Table 1. Using the
item order, the conditional database of itemset {a} and the
post-conditional database of {a} are listed in Table 2, given
min_sup = 3.
Lemma 1: When a depth-first mining algorithm arrives

at a node in a set-enumeration tree, the algorithm can mine
frequent itemsets by only using the post-conditional database
of the itemset represented by the node.

FIGURE 4. Distribution of the post-conditional database of {bd }.

Proof: Lemma 1 can be deduced from the generation
order of frequent itemsets mined by a depth-first algorithm
and Definition 2.

C. SET-ENUMERATION TREE VS. PREFIX TREE
Given the same item set and the same item order, there are
several properties between a set-enumeration tree and a prefix
tree.
Property 4:After eliminating the counter of each node in a

prefix tree, the tree is an exact part of a set-enumeration tree
with the same item set and the same item order.

For example, the prefix tree in Figure 2 after eliminating
the counter of each node is an exact part of the
set-enumeration tree in Figure 3(a).
Lemma 2: A prefix tree holds Property 1, Property 2, and

Property 3 of a set-enumeration tree with the same item set
and the same item order.

Proof: This lemma can be deduced from Property 4.

D. POST-CONDITIONAL DATABASE DISTRIBUTION
Lemma 3: For an itemset represented by a node in a prefix
tree, its conditional database is completely distributed in the
prefix tree.

Proof: According to Algorithm 1, a prefix tree stores
all transactions without infrequent items in a database, thus
Lemma 3 holds.
Lemma 4: For an itemset represented by a node in a prefix

tree, its post-conditional database is completely distributed in
the prefix tree.

Proof: Lemma 4 can be deduced from Definition 1,
Definition 2 and Lemma 3.

Suppose a prefix tree contains items i1, i2, i3, . . . , in,
and the item order is i1 < i2 < i3 < · · · < in.
For itemset X = {ik1ik2ik3 . . . ikm} (1 ≤ k1 < k2 <

k3 · · · < km ≤ n), its post-conditional database is distributed
in both the subtree rooted at the node representing itemset
{ik1ik2ik3 . . . ikm} and those subtrees rooted at the left sib-
ling nodes of the nodes representing itemsets {ik1}, {ik1ik2},
{ik1ik2ik3}, . . . , {ik1ik2ik3 . . . ikm}. For example, in Figure 4,
the post-conditional database of itemset {bd} is composed
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of part I, II, III and IV. Part I is the subtree rooted at the
node representing itemset {bd}. Parts II, III and IV are in
the subtrees rooted at the nodes representing itemsets {a}
and {bc}, and these two nodes are the left sibling nodes of
the nodes representing itemsets {b} and {bd} respectively.
The counter in each node in the prefix tree in Figure 4 is not
depicted, which does not influence our discussions. For the
post-conditional database of itemset X = {ik1ik2ik3 . . . ikm},
the following lemma holds.
Definition 3: In a prefix tree, the subtree rooted at the node

representing X is a part of X ’s post-conditional database, and
this part is called D-part (direct part) of X ’s post-conditional
database.
Definition 4: In a prefix tree, those parts of X ’s

post-conditional database in the subtrees rooted at the left sib-
ling nodes of the nodes representing X and the prefix itemsets
of X are called I-parts (indirect parts) of X ’s post-conditional
database.
Convention 2: All items in an itemset are sorted according

to the item order.
Lemma 5: In a prefix tree, the post-conditional database of

X consists of the D-part and I-part(s) of X ’s post-conditional
database.

Proof: First, it is obvious that the subtree rooted at
the node representing X is a part of X ’s post-conditional
database. Second, for X or its prefix {ik1ik2ik3 · · · ik(i−1)iki}
(1 ≤ i ≤ m) represented by node N in the prefix tree, a N ’s
left sibling node Nl represents itemset {ik1ik2ik3 · · · ik(i−1)il},
and a N ’s right sibling node Nr represents itemset
{ik1ik2ik3 · · · ik(i−1)ir}. It can be deduced from Lemma 2 and
Property 1 that il is smaller than iki. Therefore, accord-
ing to Property 3, it is possible that there is a descendant
node of Nl representing itemset {ik1ik2ik3 · · · ik(i−1)il · · · iki}.
We can conclude from Property 3 that it is possible
that there is a descendant node N ′ of Nl representing
itemset {ik1ik2ik3 · · · ik(i−1)il · · · iki · · · ik(i+1) · · · ikm}. If N ′

does exists, the subtree rooted at N ′ is an I-part of the
post-conditional database of itemset X . For Nr , it can be
deduced from Lemma 2 and Property 2 that iki is smaller
than ir . According to Property 3, none of descendant nodes
of Nr can represent itemset {ik1ik2ik3 · · · ik(i−1)ir · · · iki}.
Therefore there is no node representing itemset {ik1ik2ik3 · · ·
ik(i−1)ir · · · iki · · · ik(i+1) · · · ikm} in the subtree rooted at Nr .
Therefore, this lemma holds.

For example, for the node representing itemset {bd} in
Figure 4, its post-conditional database is composed of part
I, part II, part III, and part IV. Part I is the D-part of the
post-conditional database of {bd}, while Parts II, III, and IV
are the I-parts of the post-conditional database of {bd}.

IV. MINING FREQUENT ITEMSETS
In this section, we introduce the main frame of the DPT
algorithm and three optimization techniques, and we also
discuss the advantage of DPT in representing the set of all
frequent itemsets.

A. THE MAIN FRAME OF DPT
FP-Growth and FP-Growth-like algorithms are more efficient
than Apriori and Apriori-like algorithms, but FP-Growth
and FP-Growth-like algorithms have to spend much time
in constructing many conditional prefix trees when mining
frequent itemsets, which degrades the performance of these
algorithms. The DPT algorithm uses only one prefix tree
rather than many prefix trees to mine all frequent itemsets
with their supports.

DPT is a depth-first mining algorithm. Based on
Lemma 1 and Lemma 3, the basic idea of DPT is that the
post-conditional database of an itemset represented by a
node can be incrementally constructed before DPT arrives
at the node. Thus, the complete post-conditional database
of the itemset can be used when DPT arrives at the node.
To construct the complete post-conditional database of an
itemset, the major operation of DPT is, when it arrives at a
node, to copy the subtree rooted at the node to the right sibling
nodes of the node. Using copying operations, the I-parts of
the post-conditional database of an itemset are added to the
D-part of the post-conditional database of the itemset. When
DPT arrives at the node representing the itemset, the algo-
rithm has added all I-parts of the itemset to the D-part of the
itemset. At this time, the complete post-conditional database
of the itemset is just the subtree rooted at the node. The
justification of the above statement is based on Lemma 4 and
Lemma 5.

After constructing a prefix tree from a database, DPT
recursively processes each node in the tree as follows. For
node N , DPT first copies the subtree rooted at N into its
right sibling nodes. Subsequently, if N .counter is no smaller
than a given min_sup, DPT outputs an itemset composed
of the items contained in the path from the root node to N
with N .counter as its support. After recursively processing
all child nodes of N , DPT frees N . If N .counter is smaller
than min_sup, DPT frees the whole subtree rooted at N after
copying the subtree. For a prefix tree, the counters of all
descendant nodes ofN are equal to or smaller thanN .counter ,
and then these counters are smaller thanmin_sup ifN .counter
is smaller than min_sup. Therefore, all itemsets represented
by descendant nodes of N are infrequent if N .counter is
smaller than min_sup, and DPT can free the subtree rooted
at N .
Algorithm 2 gives the main frame of the DPT algorithm.
After a prefix tree rooted at R is constructed from an

original database and F is assigned as ∅, all frequent
itemsets with their supports can be output by calling
DPT(F, R, min_sup).

Note that all child nodes of a node in a prefix tree are sorted
in the item order. Line 1 in Algorithm 2 is to add I-parts of the
post-conditional databases of the itemsets represented by N ’s
right sibling nodes to D-parts of the post-conditional database
of these itemsets. If N .counter is no smaller than min_sup,
which indicates that the itemset represented by N is frequent
and thus be output (lines 3 and 4). Subsequently, each of N ’s
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FIGURE 5. An illustrated example of DPT.

Algorithm 2 DPT_Frame(F, N, min_sup)
Input:

F a prefix itemset, initially ∅
N the node representing itemset F∪{N.item}
min_sup the minimum support threshold

Output:
all frequent itemsets with F as prefix

1: copy the subtree rooted at N into N’s right sibling nodes
2: if N.counter ≥ min_sup then
3: F’ = F ∪ {N.item}
4: output F’ and N.counter as support
5: for each child node C of N do
6: DPT_Frame(F’, C, min_sup)
7: end for
8: free N
9: else

10: free N and the subtree rooted at N
11: end if

child nodes is recursively processed (lines 5-7). After that,
DPT frees N . If N .counter is smaller than min_sup, it can
be deduced that the counters of all descendant nodes of N
is also smaller than min_sup definitely and thus the itemsets
represented by these nodes are infrequent. In this case, DPT
frees N and the whole subtree rooted at N (line 10).

Figure 5 illustrates how the DPT algorithm processes the
prefix tree in Figure 2, given min_sup = 3.

B. OPTIMIZATIONS
It can be observed from Algorithm 2 that there are many
copying, freeing, and traversing operations, which are very

time-consuming We propose three optimization techniques
aiming at reducing these operations as follows.

1) EFFICIENTLY PROCESSING SMALL NODES
Definition 5: A node N in a prefix tree is a big node if
N .counter is no smaller than min_sup, when DPT arrives
at N .
Definition 6: A node N in a prefix tree is a small node if

N .counter is smaller than min_sup, when DPT arrives at N .
The first step of DPT is to copy the subtree rooted at N

to N ’s right sibling nodes, in which DPT has to generate
branches that are in the subtree rooted at N but not in the
subtrees rooted at N ’s right sibling nodes. These branches are
appended to the subtrees rooted at N ’s right sibling nodes.
However, the subtree rooted at a small node is no longer used
according to Algorithm 2, and therefore we can first cut the
subtree off and merge the subtree with the subtrees rooted at
the right sibling nodes of the small node. This is an efficient
technique to process small nodes because there is no need to
generate any new branch.

2) A SINGLE BRANCH OPTIMIZATION
As the AFOPT algorithm [31], [32] does, for a node at
which a single-branch subtree is rooted, we can generate all
combinations of the items contained in the single-branch and
the support of each combination is the counter in the lowest
level node. Compared with recursive calls, this way is more
efficient.

To implement this optimization, AFOPT [31] has to tra-
verse the subtree rooted at each node when the algorithm
arrives at the node. An improved AFOPT algorithm [32]
uses a array structure to store a single-branch. The former
spends extra time and the latter complicates data structure.
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Different from these algorithms, a single-branch subtree
rooted at a big node can be directly identified instantly after
the copying operation, and thus our algorithm can easily
perform the optimization.

3) FILTERING NODES CONTAINING INFREQUENT ITEMS OUT
The DPT algorithm spends much time in performing copying
subtrees and merging subtrees. In fact, when DPT processes a
node, the algorithm can filter its descendant nodes containing
infrequent items out, which can lead to the decrease in the size
of the subtree rooted at the node.

Suppose node N ′ representing itemset X ′ is a child node
of node N representing itemset X , and then X is a prefix
itemset of X ′. Because the post-conditional database of X ′

is a part of the post-conditional database of X , infrequent
items in the post-conditional of X are also infrequent in
the post-conditional database of X ′. Thus, nodes containing
infrequent items for X can be removed.
According to the main frame of DPT, the post-conditional

database of X ′ is just represented by the subtree rooted at N ′

when DPT arrives atN ′. IfN ′ is a big node, the frequencies of
items in the subtree rooted atN ′ can be counted in the process
of copying the subtree. Relatively infrequent items that are
frequent in the post-conditional database of X but infrequent
in the post-conditional database of X ′ can be identified after
the copying operation. Nodes containing relatively infrequent
items for X ′ can be also filtered out when DPT processes all
descendant nodes of N ′.

Therefore the lower the level of a node is, the fewer
frequent items there are in post-conditional databases and
consequently the fewer nodes DPT needs to copy or merge.

C. THE DYNAMIC PREFIX TREE ALGORITHM
After incorporating the above optimization techniques into
the main frame of DPT, Algorithm 3 shows the DPT
algorithm.

The DPT algorithm first judges whether node N is a small
node or not (line 1). If N is a small node, the algorithm
merges its subtree into its right sibling nodes (line 2). If N
is a big node, the algorithm copies its subtree into its right
sibling nodes (line 4). For a big node, DPT further processes
its subtree as follows (lines 5-20). If the subtree is a single
branch, DPT locates the lowest level big node L in the branch
(lines 5-6). Then, DPT generates all combinations of the
items contained in the path from N to L. Each combination
is joined to the prefix itemset F , which results in a new
frequent itemset F ′ (line 8). DPT outputs F ′ with its support
that is the smallest one among counters in nodes with items
in the combination (line 9). At last, the single branch is freed
(line 11). If the subtree is not a single branch, N.item is joined
to the prefix itemsetF , which results in a new frequent itemset
F ′ (line 13). DPT outputs F ′ with N.counter as its support
(line 14). In the process of copying the subtree rooted at
N, DPT also counts the frequencies of items in the subtree
and thus can identify relatively infrequent items for N . After
eliminating the relatively infrequent items for N from SFI,
the algorithm obtains the frequent item set SFI’ for N ’s child

Algorithm 3 DPT(F, SFI, N, min_sup)
Input:

F a prefix itemset, initially ∅
SFI the set of frequent items in the post-conditional
database of F
N the node representing itemset F∪{N.item}
min_sup the minimum support threshold

Output:
all frequent itemsets with F as prefix

1: if N.counter < min_sup then
2: merge the subtree rooted at N into N’s right sibling

nodes without considering nodes with items /∈ SFI
3: else
4: copy the subtree rooted at N into N’s right sibling

nodes without considering nodes with items /∈ SFI
5: if the subtree is a single branch then
6: L = the lowest level big node in the branch
7: for each item combination X from N to L do
8: F’ =F ∪ X
9: output F’ with its support

10: end for
11: free the single branch
12: else
13: F’ = F ∪ {N.item}
14: output F’ and N.counter
15: SFI’ = SFI - the relatively infrequent items for N
16: for each child node C of N do
17: DPT(F’, SFI’, C, min_sup)
18: end for
19: end if
20: end if
21: free N

nodes (line 15). Subsequently, DPT recursively calls itself
for each child node C of N . In the end, the algorithm frees
node N .

After constructing a prefix tree rooted at R from a database
and identifying the set S of frequent items in the database,
all frequent itemsets with their supports can be mined using
Algorithm 4.

D. REPRESENTING ALL FREQUENT ITEMSETS
Previous algorithms output all frequent itemsets in a list form.
However, it is very inconvenient to make use of frequent
itemsets in a list.

A prefix tree is a better alternative of representing all fre-
quent itemsets, because its compact structure needs less space
than a list structure. Moreover, when applications judges
whether an itemset is frequent or not or fetches the support
of a frequent itemset, operations on a prefix tree are faster
than those on a list. This is because the time complexity of
these operations on a prefix tree is proportional to the length
of an itemset for these applications, but the time complexity
of these operations on a list is proportional to the total num-
ber of frequent itemsets. Generally, the number of frequent

VOLUME 8, 2020 183729



J.-F. Qu et al.: Efficient Mining of Frequent Itemsets Using Only One DPT

Algorithm 4Mine Frequent Itemsets
Input:

R is the root of a prefix tree from a database
S is the set of frequent items in the database
min_sup the minimum support threshold

Output:
all frequent itemsets with their supports

1: F = ∅
2: SFI = S
3: for each child node C of R do
4: DPT(F, SFI, C, min_sup)
5: end for

FIGURE 6. A prefix tree representing all frequent itemsets in the example
database.

itemsets greatly exceeds the length of the longest frequent
itemset.

Although a prefix tree representing frequent itemsets can
be constructed from a list of frequent itemsets, it is evident
that the extra time is spent in constructing such a prefix tree.
An interesting advantage of the DPT algorithm is that a prefix
tree representing all frequent itemsets with their supports can
be directly output so long as the DPT algorithm is slightly
modified as follows. (1) The single branch optimization is
removed from the algorithm. (2) The algorithm does not free
big nodes after processing them. For example, using these
modifications, the algorithm can output a prefix tree depicted
in Figure 6, which represents all frequent itemsets in the
example database in Table 1, given min_sup = 3.

V. EXPERIMENT
We have done experiments to evaluate the performance of the
proposed DPT algorithm. This section reports experimental
results.

A. EXPERIMENTAL SETUP
Six databases were used in our experiments. These databases
were downloaded from the FIMI repository [37]. Database
Accidents is traffic accidents data from a region of Bel-
gium. Databases Chess and Connect are derived from
game states. Database mushroom describes characteristics
of 23 species of mushrooms. Database Pumsb contains cen-
sus data. T40I10D100K is a synthetic database generated
from IBM Almaden synthetic data generator. Table 3 lists
statistical information about these databases, including the
number of transactions, the number of distinct items, the aver-
age number of items in a transaction, and the attribute
of a database. The attribute of a database is defined as the

TABLE 3. Statistical information about databases.

ratio of the average transaction length to the number of dis-
tinct items. The bigger the ratio for a database is, the denser
the database is.

All codes were written in C++, used the same libraries,
and were compiled using GCC (version 7.2.0). The experi-
ments were performed on a 2.10 GHz machine (Intel Xeon
E5-2620 v4) with 32 GB of memory, running the Debian 9.1
(Linux 4.9.0-4) operating system.

B. POST-CONDITIONAL DATABASE EVALUATION
We first evaluated the post-conditional database which is
the core data of the DPT algorithm. Each post-conditional
database is represented by a subtree in a prefix tree con-
structed from a database. Therefore, we measured the total
size of all post-conditional databases with the number of all
nodes generated by DPT.

The proposed three optimization techniques can effectively
reduce the total size of all post-conditional databases, i.e., the
number of generated nodes. We first turned off the three opti-
mization techniques and recorded the number of nodes gen-
erated by DPT. Subsequently, we turned on these techniques
one by one and recorded the number of nodes generated by
DPT. For comparison, we also recorded the number of nodes
generated by FP-Growth. Using only one prefix tree, DPT
always generates fewer nodes than FP-Growth. Therefore,
we denote the number of nodes generated by FP-Growth
as 1, and denote the number of nodes generated by DPT as
a ratio of the number to the number of nodes generated by
FP-Growth.

Figure 7 depicts these ratios on databases Accidents (mod-
erate), Chess (very dense), and T10I4D100K (very sparse).
For moderate database Accidents, each of the three opti-
mization techniques can significantly reduce the number of
nodes as shown in Figure 7(a). For dense database Chess,
it is not very remarkable to reduce the number of nodes using
these techniques because (conditional) prefix trees from the
database are very small. However, the decrease in generated
nodes still achieves about 10%, when the three techniques are
used together for the database as shown in Figure 7(b). Sparse
database T10I4D100K leads to large and bushy (conditional)
prefix trees, and thus the techniques of both efficiently pro-
cessing small nodes and filtering infrequent items work well
as shown in Figure 7(c). Compared with the number of nodes
generated by FP-Growth, the number of nodes generated by
DPT decreases by 20% at least even though the algorithm
does not use any optimization technique as shown by black
lines in Figure 7. Using the three optimization techniques
together, the number of nodes can decrease by about 50% as
shown by red lines in Figure 7.
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FIGURE 7. Node number comparison between FP-Growth and DPT (with or without optimization techniques).

C. PERFORMANCE COMPARISON
We compared the DPT algorithm against Apriori [9],
FP-Growth [25], AFOPT [32], and LCM [38]. Apriori and
FP-Growth are two classic mining algorithms, and their
implementations were downloaded from [36]. The AFOPT
algorithm also involves subtree merging operations, but it has
to construct many prefix trees as FP-Growth does. The LCM
algorithm shows very competitive and robust performance in
the first IEEE ICDM Workshop on frequent itemset mining.
The implementations of AFOPT and LCM were downloaded
from [37].

There are a number of recent algorithms for mining
frequent itemsets [16]–[22], and these algorithms make the
best use of high performance hardware and software such
as GPU and MapReduce. However, these algorithms are
still based on classic mining algorithms such as Apriori and
FP-Growth. It is inappropriate to compare DPT with these
algorithms because DPT does not utilize these conveniences
and runs on a traditional computing configure. DPT can be
also further improved using these conveniences, but this is
out of the topic of the paper and is future work. To the best
of our knowledge, FP-Growth, AFOPT, and LCM are ones of
the best algorithms on a traditional computing configure, and
thus we compared DPT with these algorithms.

Given a database and a min_sup, the runtime of an
algorithm was recorded, which is calculated as the sum of the
time for reading an input file, mining patterns, and writing the
results to an output file. The outputs of all algorithms are the
same for each mining task and were written to ‘‘/dev/null’’.

Figure 8 depicts the running times of the five algorithms
on the six databases. On database Accidents as shown in
Figure 8(a), all the algorithms can finish mining tasks for
high min_sups. For low min_sups such as 6%, the running

time of Apriori is so long that we had to terminate the
algorithm. DPT performs best on this database. On database
Chess as shown in Figure 8(b), the five algorithms similarly
perform for high min_sups. When min_sups become low,
DPT is the fastest one but the other algorithms become slow.
FP-Growth and AFOPT similarly perform on database Con-
nect, and their curves almost overlap as shown in Figure 8(c).
For min_sup = 70% on Connect, the five algorithm have
almost the same running time. However, for min_sup =
20%, the difference of their running times achieves to several
thousand seconds. As shown in Figure 8(d), DPT and LCM
are two fastest algorithms on database Mushroom for all
min_sups. On this database, AFOPT is faster than FP-Growth
for high min_sups but FP-Growth is faster than AFOPT for
low min_sups. DPT is faster than the other algorithms on
database Pumsb for all min_sups as shown in Figure 8(e).
Database T10I4D100K is very sparse, which results in large
prefix trees with many branches. Therefore, LCM is faster
than FP-Growth, AFOPT, and DPT that are based on prefix
trees.

D. MEMORY USAGE AND SCALABILITY
Figure 9 depicts the peakmemory usages of DPT, FP-Growth,
LCM and AFOPT on the six databases. Each chart in the
figure corresponds to a chart in Figure 8. We didn’t record
the peak memory usage of Apriori because the algorithm ran
too much time and we had to terminate it for some mining
tasks.

It can be observed from Figure 9 that AFOPT consumes the
largest amount of memory compared with DPT, FP-Growth,
and LCM in most cases. This is because that AFOPT adopts
the frequency-ascending order to construct prefix trees that
have a low compression ratio. In most cases, DPT using only
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FIGURE 8. Runtime.

FIGURE 9. Memory usage.

one prefix tree consumes less memory than FP-Growth and
AFOPT using many prefix trees. DPT consumes the least
amount of memory on databases Accidents, Chess, and Con-
nect. Databases Pumsb and T10I4D100K are sparse, which
leads to prefix trees with many branches, and thus LCM
consumes the least amount of memory on the databases in
most cases.

In order to test the scalability of the DPT algorithm, we var-
ied the size of Accidents and that of T10I4D100K from 10%
to 100% at an interval of 10%. Figure 10(a) depicts the run-
times for Accidents with min_sup = 2%, and Figure 10(b)
is the runtimes for T10I4D100K with min_sup = 0.005%.
It can be observed from experimental results that the
runtimes of all algorithms increase with the increasing
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TABLE 4. A frequent itemset list vs. a prefix tree representing all frequent itemsets.

FIGURE 10. Scalability.

number of transactions and that DPT also shows good
scalability.

E. APPLYING FREQUENT ITEMSETS
As introduced in Section I, frequent itemsets usually play an
important role as an intermediate product in many applica-
tions [6]–[8]. In order to access frequent itemsets as fast as
possible, they should be stored in an appropriate form. As
stated in Section IV, a significant advantage of DPT is that
the algorithm can directly output a prefix tree representing
all frequent itemsets.

Table 4 compares a frequent itemset list and a prefix tree
representing all frequent itemsets in term of size and search-
ing time. We considered six mining tasks, and the number
of frequent itemsets of each task is listed in the second line
in Table 4. After finishing a task, we stored a frequent itemset
list previous algorithms generate and a prefix tree represen-
tation DPT generates in memory. The third and fourth lines
are the sizes of lists and prefix trees, respectively. It can be
observed that the size of a prefix tree is far smaller than that
of a corresponding list. Subsequently, we randomly selected
100 frequent itemsets from resultant frequent itemsets and
recorded the total time of searching lists and prefix trees for
these 100 itemsets in the fifth and sixth lines. It is evident

that searching operations on a prefix tree is about two orders
of magnitude faster than those on a list.

VI. CONCLUSION
In this paper, we proposed the DPT algorithm for mining all
frequent itemsets from a database.

The DPT algorithm is characterized by using only one
prefix tree for mining the complete set of frequent itemsets,
whereas most of algorithms have to construct many prefix
trees. Constructingmany prefix trees is very time-consuming,
which is avoided by the DPT algorithm. We gave the concept
of the post-conditional database of an itemset and analyzed
the distribution of the post-conditional database of an itemset
in a prefix tree. Using post-conditional databases, DPT can
mine frequent itemsets by simply adjusting a prefix tree. We
also discussed three optimization techniques, and they had
been incorporated into the DPT algorithm. An interesting
feature of the DPT algorithm is that it can directly output
a prefix tree representing all frequent itemsets after slight
modifications, most of mining algorithms only can output a
plain list of frequent itemsets.

Experimental results show that the DPT algorithm signif-
icantly outperforms FP-Growth-like algorithms and is also
competitive with the LCM algorithm, and that a prefix tree
representing all frequent itemsets DPT directly outputs can
be used more efficient than a list representing them previous
algorithms output.
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