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ABSTRACT Generative adversarial networks (GANs) have been increasingly used as feature mapping
functions in speech enhancement, in which the noisy speech features are transformed to the clean ones
through the generators. This article proposes a novel speech enhancement model based on a cycle-
consistent relativistic GAN with Dilated Residual Networks and a Multi-attention mechanism. Using the
adversarial loss, improved cycle-consistency losses, and an identity-mapping loss, a noisy-to-clean generator
G and an inverse clean-to-noisy generator F simultaneously learn the forward and backward mappings
between the source and target domains. To guarantee the stability of the training process, we replace
vanilla GAN loss with relativistic average GAN loss and use spectral normalization in discriminators so
that they conform to Lipschitz continuity. Furthermore, we employ two attention-based components as
multi-attention mechanism to reduce importing signal distortion: attention U-net gates and dilated residual
self-attention blocks. By employing these components, our proposed generators can capture long-term inner
dependencies between elements of speech features and further preserve linguistic information. Experimental
results on a public dataset indicate that the proposed model achieves state-of-the-art speech enhancement
performance, especially in reducing speech distortion and improving signal overall quality. Compared with
the representative GAN-based approaches, the proposed method significantly achieves the best performance
in terms of STOI, CSIG, COVL, and CBAK objective metrics. Moreover, we demonstrate the contribution
of each proposed component including relativistic average loss, attention U-net gate, self-attention layers,
spectral normalization, and dilation operation by ten comparison systems.

INDEX TERMS Speech enhancement, cycle-consistent GAN, relativistic average loss, multi-attention,
dilated residual network, U-net.

I. INTRODUCTION
Speech enhancement removes additive noisy interferences
from noisy speech signal while preserving the intelligibility
of the original clean speech. Speech enhancement approaches
not only improve the speech intelligibility and quality but
also work as a preprocessor for other downstream speech
applications, such as robust automatic speech recognition [1],
speaker identification [2], and hearing aids [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Lefei Zhang .

Past speech enhancement methods fall into two categories:
statistical-based approaches and data-driven approaches.
Statistical-based methods are based on particular proba-
bilistic models of noisy speech [4], [5], such as spectral
subtraction methods [6], Wiener filtering [7], and mini-
mum mean-square error (MMSE) of the spectral ampli-
tude [8]. Recently, data-driven approaches use deep neural
networks (DNNs) to estimate the ideal ratio mask (IRM) or
ideal binary mask (IBM) and have demonstrated significant
performance improvement over the conventional statistical-
based methods [9], [10]. However, these methods have the
presumption that the scale of the masked signal is the same
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as the source speech and the noise is strictly additive, which
are uncommon in the real environment. To address these limi-
tations, some approaches (e.g., denoising auto-encoders [11])
train a direct mapping network from the noisy input features
to the enhanced ones. A recent breakthrough comes from the
application of generative adversarial networks (GANs) [12]
as the featuremapping networks. GAN consists of a generator
network (G) and a discriminator network (D) that play a min-
max game between each other and achieves impressive results
in the computer vision field. By using the adversarial training,
D tries to distinguish the generated data by G from the real
data, on the other hand, G forces the generated data to be
indistinguishable from the real one. In the speech area, GANs
have been widely used in speech generation [13], speech
enhancement [14]–[18], voice conversion [19], and acoustic
model adaptation [20].

Conventional GAN-based models achieve state-of-the-
art performance for speech enhancement, but for improv-
ing the generalization of the models, they always require
a large quantity of parallel datasets. However, it is diffi-
cult to obtain parallel clean speech and noise data from a
real scenario. To solve this problem, using cycle-consistent
GAN (CycleGAN) [21] for speech enhancement becomes a
good strategy, preserving the speech structure and improv-
ing speech enhancement performance. Inspired by recent
studies on CycleGAN-based approaches for speech pro-
cessing [22]–[24], we propose a relativistic-loss cycle-
consistent GAN with multi-attention and dilated residual
network (DRN) for single-channel speech enhancement. This
model contains a noisy-to-clean generator G and an inverse
clean-to-noisy generator F , which transforms the noisy fea-
tures into the enhanced ones and vice versa. In this model,
the forward noisy-clean-noisy cycle and backward clean-
noisy-clean cycle are jointly trained with the adversarial
loss, a cycle-consistency loss, cycle-adversarial losses, and an
identity-mapping loss. Subsequently, to address the difficulty
of finding a Nash equilibrium of a min-max game between
generators and discriminators in GAN training, the relativis-
tic average least-square loss [25] is adopted to substitute
conventional cross-entropy loss or least-square loss [26].
Spectral normalization [27] is also applied to stabilize GAN
training and generate better samples.

To further preserve linguistic information and capture con-
textual relationship in enhancing process, a multi-attention
mechanism is employed in U-shape generators, which con-
sist of encoding layers, transformation blocks, and decoding
layers. Attention mechanism can compute the long-range rel-
ative dependencies among elements in sequences [28], which
has been widely used both in the computer vision field and
speech area [29], [30]. The proposed multi-attention uses
attention mechanism in two different ways: attention gates
in U-net [31] encoding-decoding layers (AU gate) and self-
attention [32] in dilated residual networks [33] (DRN-SA
block). With the AU gate, the encoding-decoding layers yield
multi-scale features that are better for making predictions
by connecting the encoding layers to homologous decoding

layers, selectively focusing on salient speech linguistic infor-
mation in feature enhancing procedure. The DRN-SA block
models the long-term relative dependencies between different
positions of compressed feature maps and also inherits the
advantages of the residual network, better maintaining the
contextual temporal structure of features through residual
connections. Moreover, the DRN-SA block can make up
the reduction of the receptive field with dilation operation,
demonstrating a strong ability in modeling local contextual
relationships. The objective evaluation results on a public
dataset [34] demonstrate that the proposed method obtains
state-of-the-art performance in terms of perceptual evalua-
tion, speech intelligibility, overall signal quality, and speech
distortion. Moreover, the ablation study indicates each com-
ponent, including the relativistic loss, spectral normalization,
AU gates, and DRN-SA blocks, obviously improves speech
enhancement performance.

The rest of this article is organized as follows: In Section II,
the whole network training procedure of our speech enhance-
ment approach is illustrated, followed by a description of
the detailed network architectures of proposed generators
and discriminators in Section III. Then, the experimental
setup and preprocessing are presented in Section IV, before
we show the objective evaluation and results in Section V.
Finally, we conclude the paper and suggest future work in
Section VI.

II. CYCLE-CONSISTENT RELATIVISTIC GAN FOR SE
Cycle-consistent GANs learn the forward and backwardmap-
pings between source features x ∈ X and target features
y ∈ Y with generators G and F . For the speech enhancement
task, G learns a noisy-to-clean mapping and F learns an
inverse clean-to-noisy mapping which reconstructs the noisy
features from the enhanced ones. DiscriminatorsD are trained
to classify samples from the target speech features as real
and the generated speech features from generators as fake.
The whole architecture of the proposed algorithm is shown
in Figure 1.

As illustrated in Figure 2, the forward noisy-clean-noisy
cycle and backward clean-noisy-clean cycle are jointly
trained to constrain G and F to be cycle-consistent. Our
model uses the following losses to jointly optimize the
enhancement process, namely relativistic adversarial loss,
improved cycle-consistency loss, and identity mapping loss.

A. RELATIVISTIC ADVERSARIAL LOSS
For the noisy-to-clean mapping, the adversarial loss is used
to make the enhanced speech features GX→Y (x ) indistin-
guishable from the clean ones y. Simultaneously, we intro-
duce a similar adversarial loss for the inverse clean-to-noisy
mapping.

To stabilize the training process and improve the quality of
the generated features, we introduce relativistic GAN loss to
substitute the conventional GAN loss. As discussed in [25],
the original GAN loss misses a key property that as the prob-
ability of generated data being real (i.e., DY (GX→Y (x )))

VOLUME 8, 2020 183273



Y. Wang et al.: Improved Relativistic Cycle-Consistent GAN With Dilated Residual Network and Multi-Attention

FIGURE 1. The tent Relativistic GAN for speech enhancement. Forward noisy-clean-noisy cycle and backward clean-noisy-clean cycle are shown in yellow
and red lines, respectively. Generators Gnoisy→clean(x) and Fclean→noisy (y ) learn the mapping functions between noisy features x and clean features y.
Discriminators DX and DY measure the relativistic adversarial loss LRaLSadv , while two cycle discriminators DcycleX and DcycleY calculate the
cycle-adversarial loss Lcycleadv . Conventional cycle-consistency loss Lcycle

(
GX→Y

)
and Lcycle

(
GX→Y

)
are jointly optimized to force the mapping

functions to be
cycle-consistent.

FIGURE 2. The training procedure for Cycle-GAN. Forward
noisy-clean-noisy cycle maps the noisy features x to the clean ones and
back again, while backward clean-noisy-clean cycle maps the clean
features y to the noisy ones FY→X (y ) and reconstruct back to the clean
ones G(FY→X (y )).

increases, the real data (i.e.,DY (y)) should be simultaneously
more difficult to be distinguished as real. To encode this infor-
mation, the relativistic discriminator estimates a relativistic
probability Drel

(
xr , xg

)
, which is defined as,

Drel
(
xr , xg

)
= D (xr )− D

(
xg
)

(1)

where xr is from the real data and xg is from the generated
data. This probability denotes how much more likely that the
given features are real than the generated ones. In contrast,
when optimizing generators, this model focuses on another
exactly opposite relativistic probability D′rel

(
xr , xg

)
as,

D′rel
(
xr , xg

)
= D

(
xg
)
− D (xr ) (2)

In this article, we adopt the relativistic average least-square
GAN (RaLSGAN) losses as our adversarial losses, which are
defined as follow:

LRaLSadv (DY )
= Ey∼PY (y)

[
(DY (y)− Ex∼PX (x)DY (GX→Y (x ))− 1)2

]

+Ex∼PX (x)[(DY (GX→Y (x ))− Ey∼PY (y)DY (y)+ 1)2]

(3)

LRaLSadv (GX→Y )

= Ex∼PX (x)
[
(DY (GX→Y (x ))− Ey∼PY (y)DY (y)− 1)2

]
+Ey∼PY (y)[(DY (y)− Ex∼PX (x)DY (GX→Y (x ))+ 1)2]

(4)

whereLRaLSadv (DY ) indicates the adversarial loss of discrim-
inator DY , and LRaLSadv (GX→Y ) indicates the adversarial
loss of noisy-to-clean generator GX→Y . In the above equa-
tions, the generatorGX→Y tries to generate enhanced features
that can deceive the discriminatorDY , andDY attempts to find
the best decision boundary between the clean features and
enhanced ones. Similarly, we impose two relativistic average
adversarial losses LRLSadv (DX ) and LRLSadv (FY→X ) for the
inverse noisy-to-clean mapping.

B. IMPROVED CYCLE-CONSISTENCY LOSS
Using adversarial training, G can map noisy features to any
random permutation of the clean features, so any learned
mapping functions can produce an output distribution that
matches the target distribution. In other words, the adversarial
loss alone cannot guarantee the contextual information of fea-
tures x and enhanced featuresGX→Y (x ) are cycle-consistent.
Therefore, as introduced in [21], the cycle-consistency is
enforced to preserve speech context integrity by minimizing
the cycle-consistency loss as:

Lcycle (GX→Y ,FY→X )

= Ex∼PX (x)
[
‖ FY→X (GX→Y (x ))− x ‖1

]
+Ey∼PY (y) [‖ GX→Y (FY→X (y)) − y ‖1] (5)

where ‖ . ‖1 indicates the L1 reconstruction error.
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Besides, two additional discriminators DcycleX and DcycleY
are introduced to avoid over-smoothing caused by statistical
averaging in traditional cycle-consistency loss (e.g., L1 and
L2 distances). We propose two novel cycle-adversarial losses
Lcycleadv

(
FY→X ,DcycleX

)
and Lcycleadv

(
GX→Y ,DcycleY

)
as:

Lcycleadv
(
FY→X ,DcycleX

)
= Ex∼PX (x)

[
logDcycleX (x)

]
+Ex∼PX (x)

[
log(1− DcycleX (FY→X (GX→Y (x))))

]
(6)

Lcycleadv
(
GX→Y ,DcycleY

)
= Ey∼PY (y)

[
logDcycleY (y)

]
+Ey∼PY (y)

[
log(1− DcycleY (GX→Y (FY→X (y))))

]
(7)

C. IDENTITY-MAPPING LOSS
We regularize Generators G and F to be close to iden-
tity mappings by minimizing identity-mapping loss as
in [21]. This loss preserves the compositions ((i.e., linguis-
tic information) of the input source features and the target
ones [22], [23], and helps the generators better map the target
distribution.

Lidentity (GX→Y ,FY→X )

= Ex∼PX (x)
[
‖ FY→X (x)− x ‖1

]
+Ey∼PY (y)

[
‖ GX→Y (y)− y ‖1

]
(8)

where real speech features of the target domain (i.e., x and
y) are provided as the input to the generators (i.e., FY→X and
GX→Y ), respectively.
The full loss function is written as follows, in which

includes above two adversarial losses, a cycle-consistency
loss, two cycle-adversarial losses, and an identity-mapping
loss:

LFull = LRaLSadv (GX→Y ,DY )+ LRaLSadv (FY→X ,DX )

+ λcycleLcycle (GX→Y ,FY→X )

+Lcycleadv
(
GX→Y ,DcycleY

)
+Lcycleadv

(
FY→X ,DcycleY

)
+ λidLidentity (GX→Y ,FY→X ) (9)

where λcycle and λid are tunable hyper-parameters.

III. ARCHITECTURE
As mentioned above, two generators, GX→Y and FY→X ,
and four discriminators, DX , DY ,DcycleX , and DcycleY , are
together employed in our speech enhancement task. For
generators, we introduce a multi-attention mechanism and
dilated residual networks for speech feature transformation to
capture contextual relative dependencies and enlarge recep-
tive field, respectively. Moreover, gated linear units [35] are
applied in convolutional layers to model speech sequential
structure. As for discriminators, we use spectral normaliza-
tion [27] in discriminator to limit the weights’ numerical
ranges and avoid vanishing or exploding gradients

A. IMPROVED TECHNIQUES FOR OUR MODEL
1) GATED LINEAR UNITS
RNN-based approaches are effective to model the sequential
and hierarchical structures of speech, but they are computa-
tional demanding due to its difficulty of parallelism. Instead,
we apply gated CNNs [35] in our architecture, which achieves
state-of-the-art performance in languagemodeling. Similar to
the gating mechanisms in long short-term memories (LSTM)
and gated recurrent units (GRU), gated CNNs with gated
linear units (GLUs) as activation function can selectively
propagate information, depending on the previous layers’
states. Also, GLUs can alleviate the gradient vanishing prob-
lem by providing a linear path for the gradient propagation
while simultaneously keeping nonlinear capabilities through
a sigmoid gate. The i+ 1th layer output Hi+1 of GLU is
calculated by the ith layer interval features Hi as,

Hi+1 = (Hi ∗Wi + bi)⊗ σ (Hi ∗ Vi + ci) (10)

where ⊗ denotes the element-wise product, ∗ denotes the
convolution operation, and σ indicates the sigmoid activation
function. Wi and Vi are convolutional filters with biases bi
and ci, respectively. The value of the sigmoid function ranges
from 0 to 1, by which the network can learn to focus on
corresponding speech features and ignore the unrelated ones.

2) IMPROVED NORMALIZATION
We employ instance normalization and spectral normaliza-
tion in generators and discriminators, respectively. Instance
normalization (IN) [36] is successfully used in image styl-
ization and generation, and achieves better performance
with less computational cost than batch normalization (BN)
or virtual batch normalization (VBN). IN layer applies
mean-variance normalization to every channel and single
instance instead of a whole batch. Motivated by this, we pro-
pose to use instance normalization in generator architecture,
reducing the computational cost and improving the enhance-
ment performance of the model.

Spectral normalization (SN) is a novel weight nor-
malization method and can stabilize the training of
discriminators [27]. SN constrains the Lipschitz constant of
the discriminator by limiting the spectral norm of the weight
matrix W in each layer, such that it satisfies the Lipschitz
constraint σ (W ) = 1:

WSN = W/σ (W ) (11)

where σ (W ) is the spectral norm ofW.
Compared with other normalization techniques for GANs

(e.g., weight normalization, weight clipping, and gradient
penalty), SN does not require intensive tuning of Lipschitz
constant, since it is the only hyper-parameter to be tuned.
Moreover, the implementation is simple and the computa-
tional complexity is also relatively small.

3) MULTI-ATTENTION MECHANISM
Multi-attention mechanism models the relative dependencies
between elements in feature maps and further preserve source
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FIGURE 3. The parallel structure of attention mechanism. The ⊗ denotes
matrix multiplication. The softmax operation is performed on each row.

linguistic information, considerably enhancing the salient
speech information importing in the feature learning proce-
dure. The proposed multi-attention consists of two attention
mechanisms, attention U-net gates (AU gates) and dilated
residual self-attention blocks (DRN-SA blocks), in encoding-
decoding layers and transformation block, respectively.

As shown in Figure 3, attention mechanism maps an input
query and a set of key-value pairs to an attention output
that is computed as a weighted sum of the values [28]. The
weight assigned to each value is calculated by a compatibility
function using the input query and the corresponding key.
We compute the attention function on a set of queries, keys,
and values simultaneously, packing them together into feature
maps Q[[space]] ∈ RC×N , K ∈ RC×N and V ∈ RC×N ,
respectively. Here, C is the number of channels and N is the
number of features. Firstly, the feature mapsQ andK are pro-
jected into two feature spaces g and f by 1× 1 convolutional
layers to calculate attention map β s,

βj,i = softmax
(
(Wf Ki)T (W gQj)

)
(12)

where Wf ∈ RC×C and Wg ∈ RC×C are weight matrices,
which are learned by 1× 1 convolutions; βj,i denotes the
extent to the long-term dependency between the ith position
in feature map K and the jth position in feature map Q.
Then, we compute the output of the attention layer o =

(o1, o2, · · · , oj, · · · ,oN ) ∈ RC×N as,

oj =
∑N

i=1
βj,i(WhVi) (13)

whereWh ∈ RC×C is a weightedmatrix of 1× 1 CNN layers.
The final output y is the weighted sum of the attention

output and the input Q,

y = λo+ Q (14)

where λ is a learnable scalar coefficient and initialized as 0.

B. 2-1-2D ATTENTION-BASED GENERATOR
We design our network based on recent researches on voice
conversion and speech modeling [22], [24]. The generator
contains three components: the encoding layers, homologous
decoding layers, and a transformation block (Figure 4).

As described in [24], two-dimensional (2-D) CNNs are
more suitable for feature-transformation while preserving the
original speech structures, because it restricts the transfor-
mation process focus more on the local region. Inspired by

this, we use 2-D convolution in the encoding and decoding
layers. In contrast, one-dimensional (1-D) CNNs are better
to capture the relationship among the overall features with
the feature dimension. 1-D CNNs in residual blocks can
mitigate the loss of the original structure, but 1-D CNNs in
encoding-decoding layers (which are necessary for capturing
the wide-range structures) causes this degradation, so we
use 1-D convolution in the feature transformation block (i.e.,
DRN-SA blocks). 1×1 convolution is used to adjust the chan-
nel dimension before or after reshaping the feature map. In a
forward pass, the source speech features are first projected
and compressed into higher-level representation using two
convolutional encoding layers. Either encoding layer here
takes 2-D convolution, followed by instance normalization,
and a GLU. The channel sizes per layer increase so that the
feature depths get larger as the widths get narrower. In each
2-D CNN, we use the same padding to produce the output
with the same resolution as the input. Instance normalization
is used in each layer to improve the performance and stability
of generators.

Subsequently, the compressed features are fed into the
transformation block which consists of six DRN-SA blocks,
in which 1-D casual dilated CNN is employed, followed
by instance normalization (IN), GLUs, residual connec-
tion, and self-attention layers. This architecture enables the
DRN-SA blocks can exploit the long-term relative depen-
dencies of elements with different positions in compressed
feature maps, progressively capturing the contextual relation-
ship in enhancement procedure. In each self-attention layer
of DRN-SA blocks, all of the keys, values and queries come
from the same sequence, which is the output of the previous
dilated residual layers. Each position in the self-attention
layers can attend to all positions in the same compressed
feature map.

The dilated residual network (DRN) is developed from [33]
by using dilated operation in the residual network [37]. With
dilation, the network can compensate for the reduction of the
receptive field, proving a strong ability to incorporate larger
local context. Before our transformation block, we reshape
the compressed feature maps to 1-D, thus more effectively
capturing the overall relationship. Our transformation block
consists of six successive DRN-SA blocks. In the proposed
DRN-SA block, for ith layer in the residual block Bji (j =
1, 2, 3, 4, 5, 6), the output of each dilated convolution layer
is calculated by,(

Bji ∗ u
j
i [k]

)
(i) =

∑K

k=1
x (i+ r · k)uji [k] (15)

where r is the dilation rate and uji[k] is a filter of kernel size K.
We use dilation rates r = 1, 1, 2, 2, 4, 4 in six successive
residual blocks, respectively.

Figure 5 illustrates the dilation operation and conventional
convolution operation on 1-D input features. In the con-
ventional CNN structure, the receptive field size is thirteen
after six successive convolutional layers (kernel size = 3,
stride = 1). As shown in Figure 5, when using increasing
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FIGURE 4. The network architecture of generators. In convolutional layers, c, k, and s denote numbers of output channels, kernel size, and stride,
respectively. IN, GLU, SA, and AU gate indicate instance normalization, gated linear unit, self-attention, and attention U-net gate, respectively. 5 DRN-SA
blocks denote five successive dilated residual self-attention blocks with increasing dilation rate r = 1, 2, 2, 4, 4.

FIGURE 5. (a) Six layers CNN using 1D conventional convolution operation. (b) Six layers dilated CNN with increasing dilation rates (r = 1, 1, 2, 2, 4, 4).

TABLE 1. The detailed parameters of the six DRN-SA blocks, as well as the receptive field of each layer.

dilated rates in six dilated CNNs, the receptive field size
increases to 29. In our DRN-SA blocks, the causal dilated
convolutional layers are used twice per residual block, thus
enlarging the size of the receptive field to 57 in the last
convolutional layer. The parameters of six DRN-SA blocks
are shown in Table 1.

Finally, the decoding layers reverse the encoding stage by
transposed CNNs and reconstruct the target speech features.
Here we use AU gates in decoding layers so that the encoding
layers directly pass the salient information of source speech
features to the decoding stage by attention gates. In the AU
gates, the queries Q come from the output of the previous
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FIGURE 6. The network architecture of discriminators. SN and GLU are
short for spectral normalization and the gated linear unit, respectively.

decoding layer or DRN-SA blocks, and the memory keys
K and values V come from the output of the homologous
encoding layers. This allows every position in the decoder
to attend overall positions in the input features. In this way,
the decoding layers to preserve source linguistic information
in the reconstruction stage. Moreover, the U-net structure
enables the gradients to flow deeper through the whole net-
work [17], [31], and achieves more effective training.

C. SN PATCH DISCRIMINATOR
The proposed discriminator is illustrated in Figure 6. The
generated features and target features are transformed into
high-level representations, using 2-D CNNs with spectral
normalization and GLUs. In previous GAN-based speech
processing models [16], [22], the conventional discriminator
has been extensively used, in which the last layer is fully
connected. However, it requires more parameters to achieve
wide-range receptive fields, thus, it is computationally expen-
sive in training. Inspired by previous studies in image-to-
image translation [38], [39], we designed our discriminator as
Markovian (Patch) discriminator which penalizes the struc-
ture at the scale of a patch.

This patch discriminator replaces the last fully connected
layer with a convolution layer and discriminates the realness
of features on each N × N patch.

IV. EXPERIMENTS SETUP
A. DATASET
We evaluate our proposed method on the same dataset as
proposed in [30]. We choose this public dataset because it
has various types of non-stationary noise and we can com-
pare our results with other published work. The dataset is
a selection of the Voice Bank corpus [40] with 30 speakers.
The training dataset includes 28 speakers’ 11572 utterances in
the same accent region (England), while the test set contains
2 speakers’ (one male and one female) 824 utterances. The
total duration of the training set is around 10 hours and
the duration of the test set is around 30 mins. For both the
training and testing sets, the average speech signal length was
three seconds.

For the training set, audio samples are added with one of
the 10 noise types (2 artificial and 8 from the DEMAND
database [41]) at four signal-to-noise ratios (SNRs) of 0,
5, 10 and 15 dB. The noise is from different environments
including offices, public spaces, transportation stations, and
streets. The test set is created with 5 test-noise types (all from
the DEMAND database, but totally unseen in the training

set) at SNRs of 2.5, 7.5, 12.5 and 17.5 dB. The five types
of chosen noise are living room, office, bus, and street noise.
In our experiment, the utterances are down-sampled from
48 kHz to 16 kHz, so that the dataset size fits better for the
speech enhancement task.

B. FEATURE PREPROCESSING
The WORLD speech synthesis system [42] is used to extract
Mel-cepstral coefficients (MCEPs), logarithmic fundamental
frequency (log F0), and aperiodicities (APs) at a frequency
of 5ms. TheMCEPs and log F0 features are concatenated and
form a 36-dimensional input acoustic feature vector to our
model. The acoustic parameters are much easier to enhance
using our models than the raw audio. After the enhancing pro-
cess, MCEPs and log F0 are separated from the concatenated
output acoustic features to reconstruct the enhanced speech
waveform with APs by the WORLD vocoder. Aperiodicities
are directly used without any enhancement because modi-
fying APs does not significantly affect speech quality [43].
To randomize each batch, we randomly crop a fixed-length
segment (128 frames) from a randomly selected audio file as
the input sequence.

C. IMPLEMENTATION DETAILS
The network architectures are shown in Figure 4 and Figure 6.
The detailed parameters of generators and discriminators are
shown in Table 2. The number of filters, kernel size and stride
of each convolutional layer in encoding-decoding layers of
generators are: [128, (5, 15), 1], [256, (5, 5), 2], [512, (5,
5), 2], [256, (5, 5), 2], [128, (5, 5), 2], and [1, (5, 15), 1].
The patch discriminators use six 2-D convolutional layers
with the number of filters, kernel sizes and strides as follows:
[128, (3, 3), 1], [256, (3, 3), 2], [512, (3, 3), 2], [1024, (6, 6),
1], [1024, (3, 3), 1], and [1, (1, 3), 1].

We adopt the Adam optimizer [44] with the momentum
term β1 = 0.5 and train the networks with an initial learning
rate of 0.0002 for discriminators and 0.0001 for generators,
respectively. The same learning rates are maintained for the
first 35 epochs, while they linearly decay in the remaining
iterations. We set the batch size to 1 and use Lidentity only for
the first 2× 105 iterations to guide the enhancement process.
The λcycle and λid are set to 5 and 10 for the best performance,
respectively. TensorFlow 1.14.0 is employed to implement
the proposed framework as well as the baseline systems.

V. OBJECTIVE EVALUATION
A. EVALUATION METRICS
We use the following objective metrics to evaluate speech
enhancement performance [45]. The metrics measure the
similarity between the enhanced signal and the clean refer-
ence of the test set files. Higher values of all metrics indicate
better speech performance.

1) PESQ
Perceptual evaluation of speech quality (PESQ) score [46]
is the most common metric to evaluate speech quality,
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TABLE 2. The parameter setup of the proposed networks.

especially using the wide-band version recommended in
ITU-T P.862.2. PSEQ is a weighted sum of the average
disturbance dsym and the average asymmetrical disturbance
dsym, which can be defined as follows,

PSEQ = α0 + α1 · dsym + α2 · dsym (16)

where α0 = 4.5, α1 = −0.1 and α2 = −0.0309. The PESQ
value ranges from −0.5 to 4.5.

2) STOI
Short-Time Objective Intelligibility (STOI) [47] is used
as a robust measurement index for nonlinear process-
ing of noisy speech, e.g., noise reduction on speech
intelligibility. The value of STOI is between zero and
one, in which the score closer to one indicates higher
intelligibility.

3) CSIG
The mean opinion score (MOS) prediction of the speech
signal distortion, using a five-point scale [45].

4) CBAK
The MOS prediction of the intrusiveness of background
noise, ranging from 1 to 5 [45].

5) COVL
The MOS prediction of the overall effect (1= bad, 2= poor,
3 = fair, 4 = good, 5 = excellent) [45].

B. COMPARISON TO STATE-OF-THE-ART APPROACHES
Our method is compared with a variety of representative
baselines (see below). All these baselines have been trained
and evaluated on the same dataset in previous work, so we
directly take the reported scores from those papers.

1) Wiener method based on a priori SNR estimation
(Wiener) [7]: Wiener-filtering method reduces noise
with low computational load for frequency-domain
speech enhancement, based on a priori SNR estimation.

2) Speech Enhancement Generative Adversarial Network
(SEGAN) [14]: SEGAN is the first speech enhance-
ment approach based on the adversarial framework and
works end-to-end with the raw audio. It applies to
skip connection to generators, connecting each encod-
ing layer to its homologous decoding layer. A high-
frequency preemphasis filter is applied to all input
speeches.

3) Time-frequency masking-based method using GAN
along with L2 loss (MMSE-GAN) [16]: MMSE-GAN
is a time-frequency masking-based enhancement
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TABLE 3. The evaluation results of the proposed model compared with eight state-of-the-art approaches. Some metric scores are missing in this table,
because they are not reported in the original papers. The best results obtained are highlighted in bold font.

approach based on GAN and learns the mask implicitly
while predicting the clean T-F representation. It intro-
duces a regularized objective function with the use
of Mean Square Error (MSE) between predicted and
target spectrum to overcome the failure of vanilla GAN
in predicting the accurate mask.

4) Improved Speech Enhancement with the Wave-U-Net
(Wave-U-Net) [48]: This approach uses the Wave-U-
Net architecture for speech enhancement. It performs
end-to-end audio source separation directly in the time
domain.

5) GAN-based speech enhancement withWasserstein loss
and Gradient penalty (WGAN-GP) [15]: WGAN-GP
employs Wasserstein losses and gradient penalty in
the GANs’ framework for speech enhancement. This
method also operates at the time-domain waveform
level and has a similar structure to SEGAN.

6) Speech Enhancement using Relativistic Generative
Adversarial Network (SERGAN) [15]: SERGAN
introduces relativistic GANs with a relativistic cost
function at its discriminators and uses gradient penalty
to improve speech enhancement performance in time-
domain.

7) Speech Denoising with Deep Feature Losses
(DFL-SE) [49]: DFL-SE proposes an end-to-end
speech denoising approach and processes at the
raw waveform level directly. This approach trains a
fully-convolutional context aggregation network using
a deep feature loss, which is based on comparing the
internal feature activations in a different network.

8) Generative Adversarial Networks based Black-box
Metric Scores Optimization (MetricGAN) [50]:
Recently, some speech enhancement algorithms based
on multi-objective loss functions have demonstrated
great performance [50]–[52]. MetricGAN introduces
an aim to optimize the generator with respect to one or
multiple evaluation metrics such as PESQ and STOI,
thus guiding the generators in GANs to generate data

with improved metric scores. PESQ is used as the
optimized metric in the loss function of discriminators.

Table 3 presents these metric values for our approach and
the baselines, evaluated over the test set (824 utterances).
By employing the relativistic loss, multi-attention, and dilated
residual networks, our method outperforms all the base-
lines in terms of CSIG, COVL, and STOI measures, prov-
ing that our method focuses on reducing speech distortion,
as well as improving speech intelligibility and overall signal
quality.

As illustrated in Table 3, our method reduces the speech
distortion (CSIG) by 5.3% and the background noise intru-
siveness (CBAK) by 2.2%, while improving the overall signal
quality (COVL) by 1.8% with respect to the MetricGAN
method, which is the best previous GAN-based method.
In terms of PESQ, our model does not perform as well
as MetricGAN. This is because MetricGAN is based on a
function approximation of objective sound quality assess-
ments (OSQA) such as PESQ scores, in which PESQ score is
approximated by using the discriminator D. Thus, the gen-
erators can generate speech samples with improved PESQ
values than our model. However, as for other metrics, our
method significantly outperforms MetricGAN model. Com-
pared with the deep feature losses model (DFL-SE), the CSIG
and COVL values of our enhanced speech are respectively
increased by 8.8% and 8.1%, whilst providing near CBAK
scores, proving our method focuses on reducing speech dis-
tortion instead of background noise.

C. ABLATION STUDY
To further discuss the contribution of each proposed com-
ponent (relativistic losses, multi-attention, dilation opera-
tion, and spectral normalization), ten comparison systems
based on CycleGAN are implemented (see below). All the
extensions employ spectral normalization in discriminators
and use dilation operation in residual blocks to further
improve speech enhancement performance. In this experi-
ment, the log-likelihood ratio (LLR) is used to measure the
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FIGURE 7. An example of speech enhancement results using our method. (a), (b) The blue lines represent the noisy speech time signal, while the red
lines represent the clean speech time signal. (c) The corresponding enhanced speech time signal.

similarity between the enhanced signal and the clean signal,
of which lower values indicate better performance.

1) Cycle-consistent GAN for speech enhancement
(CycleGAN): CycleGAN is the baseline system for our
task. In this model, the generator has a similar structure
to Figure 3, including encoding-decoding layers and
the transformation block. However, it does not employ
an attention mechanism or U-net structure and only
uses residual blocks as the transformation block.

2) Relativistic CylcleGAN for speech enhancement
(CRGAN): Relativistic least-square average loss is
employed to improve the quality of the generated
features.

3) CRGAN with self-attention layers (SA-CRGAN):
Self-attention layers are employed in residual block to
model relative dependencies in feature transformation.

4) CRGAN with attention U-net gates (AU-CRGAN):
Attention gates are employed in U-net encoding-
decoding layers to preserve source linguistic informa-
tion in the reconstruction stage and alleviate the loss of
speech structure.

5) CRGAN with a multi-attention mechanism
(MA-CRGAN): Multi-attention mechanism composed
of the combination of attention u-net gates and
self-attention is employed to further enhance the sys-
tem performance.
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FIGURE 8. The enhancement results for the utterance of p232_052.wav in the test set with SNR = 2.5 dB. The spectrogram of (a) the noisy speech (b) the
clean reference speech (c) The enhanced speech by our proposed method.

6) ImprovedCycleGAN (iCycleGAN), improvedCRGAN
(iCRGAN), improved CRGAN-SA (iSA-CRGAN),
improved AU-CRGAN (iAU-CRGAN), and the pro-
posed iMA-CRGAN: Spectral normalization and
dilated residual networks are employed in each baseline
system. Spectral normalization is used to stabilize
GAN training in discriminators and dilation operation
is used to increase the receptive field of each residual
convolution layer in the transformation block.

As shown in Table 4, by employing spectral normalization
in discriminators and dilation operation in transformation

block, all improved models have gained better performance
on PESQ, CSIG, CBAK, and COVL, while achieving sim-
ilar STOI and LLR scores. By applying relativistic aver-
age least-square losses, CRGAN has gained +2.5%, +1.6%,
and +9.6% relative improvement respectively on PESQ,
CSIG, and COVL over the baseline CycleGAN system with
least-square loss functions, suggesting that relativistic dis-
criminators lead to better generated samples. Self-attention
in the transformation block results in better performance,
especially in reducing speech distortion (CSIG) and improv-
ing overall signal quality (COVL). Incorporating AU gates

183282 VOLUME 8, 2020



Y. Wang et al.: Improved Relativistic Cycle-Consistent GAN With Dilated Residual Network and Multi-Attention

TABLE 4. The evaluation results of the ten comparison models. All the extension models are all implemented by ourselves. IN and SN represent instance
normalization and spectral normalization in discriminators, respectively.

and self-attention in generators as multi-attention mechanism
yields further improvements over the SA-CRGAN model
and the AU-CRGAN model. With the combining usage of
relativistic losses, AU gates, DRN-SA blocks, and spectral
normalization, the proposed model achieves the best perfor-
mance, consistently improving all metrics by a significant
margin compared with other implemented models.

Figure 7 and Figure 8 illustrate the speech enhance-
ment result of a test sample (p232_052.wav) with a dura-
tion of 2.199 seconds under a low signal-to-noise (SNR =
2.5 dB) condition. The noisy speech signal comes from amale
speaker in background non-stationary noise (‘‘cocktail party’’
and musical noise). As shown in Figure 7, the enhanced
time signal filters out the background noise without the
speaker’s voice, while tracking the clean speech when the
foreground speaker starts talking. Figure 8 also demonstrates
the enhanced spectrogram significantly reduces the back-
ground noise in the first half of utterance dominated by the
noise components and preserves the texture and outline of
the speech in the second half, in which the noise components
and the speech components are not distinguished. In sum-
mary, the proposed method filters out the noise components
and retain the speech components, thus better restoring the
enhanced speech signal.

VI. CONCLUSION AND FUTURE WORK
Considering the impressive performance of Cycle-GANs in
domain transformation, this article investigates an improved
cycle-consistent relativistic GAN as feature mapping net-
works for speech enhancement. To stabilize GAN training,
we employ the relativistic average least-square GAN (RaLS-
GAN) loss and spectral normalization. Then, we pro-
pose a multi-attention mechanism in gated-convolutional
U-shape generators to preserve linguistic information and
exploit long-term dependency, whilst using dilation opera-
tion in residual blocks to enlarge the receptive field size in
feature transformation. Our proposed model achieves

state-of-the-art performance and significantly outperforms
WIENER filtering, SEGAN, Wave-U-Net, MMSEGAN,
SERGAN, DFL-SE, and MetricGAN on most objective met-
rics. Experiments also show that our method focuses on
reducing speech distortion (CSIG) while improving overall
speech effect (COVL) and speech intelligibility (STOI) in the
enhancement process.

In the future, we will apply this architecture in complex
spectral mapping for speech enhancement and research a
more effective attention mechanism with less computational
cost.
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