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ABSTRACT The random noise and anisotropic motion of atmospheric turbulence can cause different
degradation patterns, which make images of space targets observed from ground-based stations severely
disturbed. In recent years, benefit from the development of convolutional neural networks (CNNs), a large
number of effective end-to-end methods were proposed to restore images. However, a single-frame method
whose input is just a single image can hardly achieve a further improvement for the restoration image due
to the diversified degradation patterns of space-target images. In this paper, we proposed a multi-branch
network with a multi-frame input to restore space-target images. The multi-frame input contains space-
target images which own different degradation patterns at different moments. In this way, we can fully use
the complementary information between input frames. And in this network, two effective technologies are
introduced: one is the full resolution convolution module which extracts features by using convolutional
layers with different dilation rates to keep feature information complete; the other is the branch-attention
module which is used to pass effective information between different branches of the network. Furthermore,
we demonstrated the effectiveness of our method by comparing it with those state-of-the-art methods.

INDEX TERMS Multi-frame image restoration, multi-branch network, self-attention, branch-attention, full

resolution convolution, images of space targets.

I. INTRODUCTION

Image restoration aims to restore a clean image from a given
degraded image. From the perspective of restoration methods,
it can be divided into two main classes: the non-blind restora-
tion [1]-[4] and the blind restoration [5]-[8]. It is common to
find a de-convolution period which is always used to restore
images after determining the point spread function (PSF) and
some regularization rules in a non-blind method. Whereas
blind methods restore images in processes where the degrada-
tion information is unknown. Due to the necessity of priors,
the performance of non-blind methods is limited on real
degraded images or images with different degradation pat-
terns. With the development of deep convolutional neural net-
works (CNNG5), researchers proposed a lot of effective blind
restoration networks, most of which are in end-to-end manner
and do not need any prior. But these methods often require
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a large number of parameters and training images. In the
light of degradation manner, it can be divided into motion
blur [9]-[12], shaking blur [13], [14], defocus blur [15],
[16], physical blur [17], damaged image parts [18], atmo-
spheric turbulence blur [19]-[23] and various kinds of noise
[24]-[26]. Among them, atmospheric turbulence is the most
complicated factor. The atmospheric turbulence obstructs the
space targets from an astronomical telescope, which makes
the observed images severely degraded [19], [20], [27]. More-
over, the anisotropic motion of atmospheric turbulence and
random noise tend to introduce different degradation pat-
terns to space-target images captured at different moments.
On the basis of input data, it can be divided into single-
frame input [28]-[32] and multi-frame input [33]-[38]. The
methods with single-frame input are often suitable for condi-
tions where degradation obeys a uniform distribution. How-
ever, the multi-frame methods are often used in conditions
where the input frames own complementary information. The
complementary information can be positions and postures of
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different objects in continuous frames [39] or the relative
information of the same object at different moments [36].
Considering the degradation manner of space-target images,
it is reasonable to choose a multi-frame input for restora-
tion. Based on this, we proposed a multi-frame network
with a multi-frame input. And in this network, multiple
branches restore each input frame synchronously. Addition-
ally, the order of the input frames can be arbitrary.

Many popular restoration methods based on CNNs tend
to give preference to a U-net structure [40]. A normal part
in this structure is the encoder-decoder module [41], [42].
Firstly, the encoder performs downsamplings on input fea-
tures through pooling operation, and then the decoder does
the corresponding up-sample operations to restore features.
During a long period, researchers used pooling layers to
down-sample image features for large receptive field. But the
analysis in [43] showed that unlike clean images, the sharp
textures in degraded images change along with the scales
of features. Furthermore, Visin et al. [44] thought that the
pooling layers would drop some detailed information which
is important for image restoration. To solve these problems
above, Yu and Koltun [45] proposed the dilated convolu-
tion. Compared to pooling operation, dilated convolution can
not only obtain large receptive fields with different dila-
tion rates, but keep the feature resolution unchanged at the
same time [46]. Based on the advantages of dilated con-
volution, we designed a full resolution convolution (FRC)
module to extract image features for each branch in the
network.

Recently, self-attention mechanism [47]-[50] shows
extraordinary talents in natural language processing (NLP).
Compared with traditional recurrent neural networks (RNNs)
and CNNs, self-attention mechanism can take part into every
input item of the network. At the beginning, the attention
mechanisms that CNNs based on are channel attention [51]
and spatial attention [52]. After Wang et al. [53] proposing
to use non-local relation of pixels between image features,
the self-attention has been used widely in image restora-
tion [41], [54] till now. In this paper, we proposed a branch-
attention mechanism which based on self-attention to share
effective information from branch to branch in the network.
The main contributions of our method are:

(1) A multi-branch network with a multi-frame input was
proposed. The network’s input contains multiple degraded
image frames of space targets and each frame forms a restora-
tion branch. And all the branches are trained synchronously.

(2) A full resolution convolution module was introduced.
This module can get large receptive fields without changing
feature scales by using dilated convolutions with different
dilation rates.

(3) A modified self-attention module and a branch-
attention module were proposed. The branch-attention mod-
ule is used to share effective information between branches.

(4) Intensive experiments on the degraded images of space
targets were conducted and a lot of comparisons with those
state-of-the-art methods were analyzed.
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The rest of this paper is organized as follows. Section II
introduces the researches related to this paper. In section III,
we detail the proposed network and modules. In section IV,
we show the generation process of multi-frame data.
Section V is about experimental details and analyses, includ-
ing the details about data generation, the architecture details,
the ablation studies, the evaluations of the restoration results
and the demonstration of our restored images.

Il. RELATED WORKS

A. RESTORATION APPROACHES

The degradation process of images can be expressed as
follows:

D=CQ®k+N (D

where D means the degraded image, C means the clean
image, k represents the blur kernel and N represents noise.
® and + represent convolution operation and summation
operation, respectively. And according to (1), many tradi-
tional approaches used priors to predict a blur kernel first
and then did the inverse operation like deconvolution to get
the clean images [55]-[58]. Thanks to the development of
deep learning, many effective methods based on CNNs were
proposed. Gao et al. [19] proposed a neural network con-
sisting of stacked auto-encoders to restore turbulent blurred
images. In order to estimate and remove non-uniform motion
blur in images, Sun e al. [59] used a CNN to predict the
distribution of motion blur first and next removed it by a
deconvolution operation. Xu et al. [12] predicted the blur
kernel by restoring sharp edges of a degraded image and
then used a deconvolution operation to obtain a clean image.
Inspired by spatial pyramid matching, Zhang et al. [42] used
a fine-to-coarse manner to construct a multi-patch network
for restoring blur images. On the basis of multi-frame input,
Sim and Kim [38] used RDU and RUD modules to predict
kernels for each pixel and generated a residual image at the
same time. The final output was the weighted sum of the
locally convolved output and the residual image. Aittala and
Durand [37] proposed a multi-branch network with a multi-
frame input, each branch of it is an encoder-decoder module.
It computes the maximum value of each activation between
all tracks, and concatenates these ‘““‘global features” back
into the per-frame local features to share information. In the
field of video restoration, Pan et al. [60] proposed a method
which first develops a deep CNN model to estimate optical
flow from intermediate latent frames and then restores the
latent frames based on the estimated optical flow. To fully
recover the high frequency details, Liu et al. [61] proposed
a two-stage deblurring module to recover the blur images
of dynamic scenes based on high frequency residual image
learning. In order to explicitly incorporate the blur-kernel in
the network’s training, Kaufman and Fattal [62] proposed a
new architecture which breaks the deblurring network into
an analysis network which estimates the blur, and a synthesis
network that uses this kernel to deblur the image. To con-
nect maximum posterior and deep models, Ren et al. [63]
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presented two generative networks for respectively modeling
the deep priors of clean image and blur kernel, and propose
an unconstrained neural optimization solution to blind decon-
volution.

B. WHY CHOOSE DILATED CONVOLUTION ?

It is well known that expanding receptive fields of networks
can improve the performance in vision tasks. The ways to
achieve large receptive fields can be divided as follows:
increasing kernel size [64], stacking convolutional layers,
using pooling operations and exploiting dilated convolu-
tions [65]. The first two methods enlarge receptive fields
directly but increase the number of parameters at the same
time. In the last two methods, the pooling operation enlarges
receptive fields relatively by shrinking feature scales. And
the dilated convolution can reach the same purpose without
changing feature resolutions. Previous studies established by
Boureau et al. [66] and Scherer et al. [67] show that pool-
ing (especially max-pooling) can capture invariant features
in some particular tasks and adapting pooling operations
carefully can make networks be more competitive. However,
in some recent researches, pooling does not seem to be so
optimistic. Kauderer-Abrams [68] found that pooling is not
very critical by quantifying translation-invariance in CNNss.
Ruderman et al. [69] confirmed this point even more by show-
ing that pooling does have anti-deforming capability in the
early stage of training, but it makes no difference for the final
performance no matter using pooling or not. These researches
demonstrate shortcomings of max-pooling (the most widely
used pooling method): one is the loss of spatial information
which explains why we always use skip connections in
U-like structures to convey the features before pooling layers;
the other is that max-pooling cannot use information from
multiple activation features and in the back forward stage,
only activations from max pooling would be upgraded even if
other activations appear errors. Fortunately, it can effectively
avoid those problems by using dilated convolutions. The
researches of DeepLab [70]-[72] used dilated convolution to
get full resolution features on semantic image segmentation.
Li et al. [73] used dilated convolutions to extract multi-scale
features of input images to replace image pyramid and feature
pyramid structures for object detection. Inspired by these
works, we stacked dilated convolutional layers with different
dilation rates to replace the common encoder-decoder module
for feature extraction in an image-restoration task.

C. ATTENTION MECHANISM

In previous works, Hu et al. [51] proposed the SEnet which
uses a squeeze module and an exciation module to obtain
the importance of features along with channel dimension.
Later, Woo et al. [53] proposed the CBAM structure which
expands SEnet by adding a spatial attention mechanism.
On the basis of them, more and more complex attention
mechanisms were proposed [74], [75], but the efficiency of
these networks is hampered. For pursuing a balance between
performance and efficiency, Wang et al. [76] proposed the
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ECANet. ECANet uses an ECA module which only produces
k parameters but achieves an obvious improvement in both
performance and efficiency. ECA analyzes the relationship
between dimension reduction and channels first, and then
uses one-dimensional convolution with adaptive kernels to
realize information exchange between channels. Considering
the structure consistency and detail fineness, Wang et al. [18]
proposed a multistage attention module which operates in
a coarse-to-fine manner for large-scale irregular masks. For
removing non-uniform blur, Qi ef al. [77] proposed a channel
attention module and a pixel attention module to capture
long-range dependencies. Moreover, they introduced a scale
attention module to remove unfavorable features while retain-
ing features that facilitate image recovery. To address the
multi-scaled mapping between high-resolution (HR) and low-
resolution (LR) images of different scenes, Zhang et al. [78]
proposed a multiscale attention network (MSAN) to extract
the multilevel features of remote sensing images. To address
the challenge caused by different levels of blurriness,
Wu et al. [79] proposed a dual attention mechanism to
dynamically aggregate temporal cues for deblurring with an
end-to-end trainable network structure. In order to address
the limited capability of utilizing the hierarchical features,
Zhang et al. [80] proposed a memory-based latent attention
network (MLANet). In this work, a memory-based latent
attention block (MLAB) is stacked in MLANet and makes
better use of global and local features through the network.
With the success of transformer [47] in NLP, self-attention
mechanism has gradually been widely applied to visual
tasks. In the task of image generation, Parmar ef al. [81]
used self-attention mechanism to focus on neighborhood
pixels and improved texture performance in the generated
images. Liu et al. [82] merged self-attention mechanism with
RNN, and improved the robustness of network by utilizing
RNN’s characteristics of information broadcast. Purohit and
Rajagopalan [41] proposed a motion deblur network with fast
execution speed and strong performance ability by combining
deformable convolution and self-attention mechanism. In this
paper, we used a modified self-attention mechanism as that
used in [54] and based on it we designed a branch-attention
mechanism to broadcast information between all the restora-
tion branches.

Ill. PROPOSED METHODS

A. AN OVERVIEW OF THE NETWORK

For the purpose of restoring space-target images effectively,
we designed a multi-branch neural network which has a
multi-frame input (see Fig.1). The network’s input consists
of degraded frames with different degradation patterns and
each frame corresponds to a restoration branch. Note that the
input order of these frames can be arbitrary and all the restora-
tion branches in this architecture are trained simultaneously.
As shown in Fig.1, each input frame first goes through a full
resolution convolution (FRC) module that extracts features
with their resolutions unchanged. Next, the output of FRC in
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input frame N
A

input frame 1

FIGURE 1. The architecture of the network. The network has a multi-frame input and each frame corresponds to a restoration branch.The FRC means
full resolution convolution module. The SA and BA are self-attention mechanism and branch-attention mechanism respectively. The Cat represents
concatenate operation. For simplification, processes the same as previous units are replaced by dotted lines.
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FIGURE 2. The full resolution convolution module.

each branch enters an attention mechanism. It is worth noting
that the first branch uses a self-attention (SA) module but
other branches use branch-attention (BA) modules instead.
In the same period of all the branches, we can see that the
attention features of the previous branch will concatenate
with FRC’s output in the current branch and then the con-
catenated features will be fed into BA (Fig.4). Each branch
repeats the above process until the end of the network. The
outputs of all branches concatenate together at last and the
concatenated feature will be fed into a convolution layer to
generate the final restoration image.

B. FRC

Full resolution convolution (FRC) module is a very concise
module. As shown in Fig.2, compared to encoder-decoder
module, FRC increases receptive fields by stacking convo-
lution layers, which is the same as that in encoder. The
difference is that FRC uses dilated convolutions with increas-
ing dilation rates to achieve large receptive fields whereas
encoder tends to implement this by using pooling layers.
Moreover, the dilated convolutions used in FRC can keep
feature information more complete by maintaining feature
resolutions unchanged. However, pooling layers may produce
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some drawbacks as proved in [69]. From Fig.2 we can see
that the dilation rate of FRC first increases from 1 to n, and
then decreases from n to 1. It brings two benefits: one is
that different kinds of dilated convolutions help to extract
features from different regions which can enrich the diver-
sity of features [73]; the other is that using different dila-
tion rates can help all pixels participate in the convolution
process which can avoid losing information when pixels
come across the holes in dilated kernels. Note that, FRC
has no skip connections and samplings which are common
components in encoder-decoder structure. So it’s easy to
build a module like this and it can be used as a plug-in
in CNNs.

C. SELF-ATTENTION AND BRANCH-ATTENTION

In the tasks of computer vision, self-attention (SA) mech-
anism has introduced a non-local idea which can compute
the relationship between two distant positions directly. Given
an input tensor of shape (H, W, C), it will be first flattened
into two matrices in the shape of (HW, é‘) and (C’ , HW)
(C‘ < C) respectively. And then a matrix multiplication
(HW, C‘) X (é‘, HW) is conducted to get a (HW, HW) matrix
which will be activated by a softmax function in the next step.
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FIGURE 4. The branch-attention module.

The main drawbacks of this approach are high memory and
computation of matrix (HW, HW). In order to solve this prob-
lem, we do another matrix multiplication (C‘ ,HW)x(HW C )
to obtain a matrix in the shape of (C, C) and in this paper
C = C (see Fig.3). The final step is to get the output feature
after adding the input feature to the reshaped attention feature
generated by (HW, é‘) X (C‘, C‘).

In many deep learning methods, SA is mainly used to
enhance important pixels in the current input features. For the
multi-frame network in this paper, we could design an SA
module for each branch independently. But with SA alone
we cannot effectively use the complementary information
between the input frames. Thus, in order to broadcast useful
information between different branches, we designed a novel
branch-attention (BA) module that based on SA in Fig.4.
Different from delivering max pooling features to each branch
in [37], we deliver features enhanced by BA from previous
branch to the next branch. In Fig.4, the (N-1)-th branch’s
attention features will concatenate with the output features
of FRC from the N-th branch. And then the concatenated
features will go through an SA module and a convolutional
layer to get the N-th attention features. The following convo-
lutional layer is used to change the feature channels so as to
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match the (N+1)-th features from next branch. Every output
of SA and BA in each branch will enter into the next FRC
simultaneously to start a new round of feature extraction until
the end of the network. The process of FRC and SA/BA can
be expressed by formula (2) and algorithm].

SA(FRpco), N=1

AFY, =
BAT| Comv2D(SA(Cat(AFN, " Fiee))), N > 1

©))

where AF éVA represents the attention features generated by BA
module of the N-th branch, SA is the self-attention mecha-
nism, FRC is the full resolution convolution, F' zijc means the
output features of FRC module in the N-th branch, Conv2d
represents the 2D convolutional layer and Cat means the
concatenation operation.

IV. DATA GENERATION

A. DEGRADATION MODEL

Thanks to a lot of meaningful researches about atmospheric
turbulence, including researches on optical astronomy imag-
ing under the influence of atmospheric turbulence [83], exper-
iments of turbulence degradation by simulating Kolomogorov
phase screen [84], etc. Based on the above researches, in this
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FIGURE 5. The process of generating degraded images.

paper the structure function of atmospheric turbulence can be
descried by the PSF [19]:

PSF = exp{—3.44(afU /r)*/?} (3)

where U = +/u? +? is the frequency, (u,v) is the unit
pulse. « is the wavelength, f represents a focal length of the
optical system and r is the Fried parameter. Combined with
(1), the degradation model on the images of space targets can
be expressed as:

D = C ® PSF + N(}) “)

where N is the poisson noise in this paper and its distribution
parameter is A.

B. SIMULATION FOR DATA SET

Unlike other kinds of synthesized degradation images which
are easier to be generated from clean images due to the
availability of high-frame-rate cameras. It is hard to obtain
clean space-target images because of the irregularly motion
of atmospheric turbulence and the limitation of observation
equipment. In this paper, we obtain clean space-target images
from the STK toolkit. STK is a simulation toolkit produced by
the American Analytical Graphics company. It can not only
calculate the orbits and attitudes of satellites, but the positions
and actual illuminations of each space target depending on
real information. It also provides a lot of space targets’ texture
information and aerospace models, so it can simulate the
space scenes. In practice, we selected dozens of representa-
tive space targets and finally collected more than 1,200 clean
images.
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C. HOW TO GENERATE TRAINING DATA

In order to comply with the motion property of atmospheric
turbulence and the randomness of noise, we need to gener-
ate degradation patterns those conform to the real observed
space-target images. According to (3)(4), we can find that the
degradation process of space-target images mainly depends
on the parameters r and A. The r determines blur mode and
the A determines noise intensity. Assuming that the number
of input frames is K and there’re n clean images need to be
degraded in set C. Thus we need to generate K pairs (r, 1)
for each clean image C;(i = 1,2, ..., n). In order to deter-
mine the degradation range of » and A, we constantly com-
pared the evaluation scores between the generated degraded
images and the real observed images by using two non-
reference image quality evaluation methods (Variance and
Brenner) [85]. Eventually, the ranges of these two variables
are set to (ry, ry) and (Ay, Ay). As shown in Fig.5, the clean
images (groundtruth) are first convolved with K PSFs which
are randomly generated in range (ry, ry) through (3). Next,
the blurred images of each clean frame are added with the
corresponding noises which are randomly generated in range
(Ax, Ay). So that the final output frames are degraded images
with different degradation patterns.

V. EXPERIMENTS AND RESULTS

A. DETAILS ABOUT EXPERIMENTAL DATA

During the course of experiments, we set the ranges of r and A
in (3)(4) to [0.01, 0.015] and [35, 42] respectively. Different
PSFs and noise are generated randomly from these two ranges
and the clean images we selected from STK would go through
the process showed in Fig.5 to produce the multi-frame
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FIGURE 6. The degraded patches, restoration patches and clean patches.

TABLE 1. Average PSNR and SSIM values of various methods on the
test set.

methods PSNR SSIM
CBDnet 25.9593 009116
stack(4)-DMPHN  26.2110 0.9146
fastMBD 16.1321  0.6179
Sim 27.0416  0.9325
Aittala 27.4222  0.9386
Ours 27.5172 0.9405

degraded inputs for the network. Specially, there were more
than 1200 big and clean images of space targets. In experi-
ments, the number of input frames was 5 which means we
created 5 pairs of (PSF, noise) randomly and applied each of
them to a clean image to generate 5 different degraded frames
for the network in Fig.1. To increase the diversity of features,
we did a data augmentation and cropped training images into
patches which were in the size of (32, 32). Finally, we got
more than 577, 000 training images and more than 58, 000
images for validation. Moreover, we reserved 2000 images
for the test set.
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B. DETAILS OF ARCHITECTURE AND TRAINING PROCESS

As described above, the network in Fig.1 receives 5 frames
of degraded images as its input, so the number of branches
of this network is 5 as well. The maximum dilation rate we
set for each FRC (Fig.2) is 4, so the order of dilation rates
in each FRC block is (1, 2, 3, 4, 3, 2, 1). Note that when the
dilation rate equals 1, the corresponding size of the convo-
lution kernel is (3, 3). The output of FRC will enter into an
SA or BA module. The SA (Fig.3) is a modified self-attention
mechanism that uses less memory than the traditional version
and the BA is a branch-attention mechanism based on SA to
deliver important information between all branches. In prac-
tice, the maximum execution number of BA (algorithm 1) is
5 and the channels of each convolution layer in FRC will be
doubled after each SA or BA. Thus channels of FRCs are
(32, 64, 128, 256) which means each branch in the network
will go through 4 FRCs and 4 SAs/BAs as performed in
algorithm 1. The channel number of the last convolution layer
in the network is 1. In training process, we used mean square
error (MSE) as the loss function and Adam as the optimizer.
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TABLE 2. The ablation study on proposed modules.

Variations Modell Model2 Model3 Model4 Model5
FRC NV VA
SA Vv Vv Vi Vi
BA v v
PSNR 23.8403 24.2294 25.6013 25.6591 27.5172
SSIM 0.8441 0.8532 0.9223 0.9037 0.9405
parameters  11.6725M  11.6725M  14.4018M  11.6725M  14.4018M

Algorithm 1 The Process of FRC and SA/BA
Require:
FRC: the function of full resolution convolution;
SA/BA: the function of self-attention mechanism or
branch-attention mechanism;
DF: one output feature of FRC;
DFs: a list to store output features of FRC;
AF: one output features of SA/BA;
AFs: a list to store output features of SA/BA;
InputFrames: a list storing the input frames;
length: the number of input frames;
turns: the execution number of SA/BA;
Ensure:
1: DFs = []; \* initialize the DFs*\
2: for i in range(length) do
\* get the initial features of input frames™*\
3:  DF = FRC(InputFrames[i]);
\* do FRC for each input frame in InputFrames*\
4:  DFs.append(DF);
\* store the output of FRC for each input frame *\
5: end for
6: for j in range(turns) do
;
8

AFs = []; \ * initialize the AFs*\
for k in range(len(DFs)) do
\* do SA/BA for features from FRC *\

9: if j == 0 then
10: AFs.append(SA(DFs[j]))
11: else
12: AFs.append(BA(DFsl[j], AFs[j-1]))
13: end if

14:  end for
15:  if k <len(turns-1) then
16: for 7 in range(len(AFs)) do
17: DFs[t] = FRC(AFs[t])
18: end for
19:  end if
20: end for

The learning rate was set to le — 4 and it reduced half after
every 50000 iterations. The batch size of training set was 16
and in validation process it was 64. The training epochs of the
network was 100. To get the real generalization ability of the
proposed network and ensure fairness with other comparative
approaches, we only saved the best results on validation data.
At last, we applied these results of all the approaches to
the test set to analyze the final restoration effectiveness of
them.
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C. ABLATION STUDY

In order to reflect the effectiveness of the proposed mod-
ules, we conducted an ablation study on them and the
results are demonstrated in Table 2. In Table 2, there’re
5 models with different proposed modules and for the mod-
els (modell, model2 and model3) without FRC modules,
we have designed an encoder-decoder module for each of
them. Note that, the encoder-decoder module has the same
number of parameters as FRC module because they have the
same number of convolutional layers whose kernels are in
the shape of (3, 3). From modell and model2 we can find
that the SA module can improve the performance of the net-
work without producing extra parameters. From model2 and
model3 (or model4 and model5) we can see that the BA
module improves the network’s performance to a great extent,
which proves the existence of complementary information
between the multiple input frames. And from model3 and
model 5 (or model2 and model4) we find that compared to
the encoder-decoder module, the FRC module can achieve
better performance with the same number of parameters.

D. COMPARATIVE EXPERIMENT AND ANALYSIS
In order to better analyze and evaluate the performance of the
proposed algorithm, we selected five representative baseline
methods for experimental comparisons. Among them, there
are three multi-frame methods and two sing-frame methods.
Aittala and Durand [37] is a deep-learning based method that
put multiple frames into a neural network, and then perform-
ing image restoration. Sim and Kim [38] is a deep-learning
based method as well, it takes multiple frames as input and
makes each pixel learn an adaptive kernel. fastMBD [33] is a
traditional multi-frame deblurring method. CBDnet [26] is a
single-frame method that can restore the real degraded image
well. Stack(4)-DMPHN [43] is a single-frame method using
a deep stacked hierarchical multi-patch network for image
deblurring. For a fair comparison, all multi-frame methods
used the same training set, validation set and test set as those
used by our network. For all single-frame methods, the least
degraded images (with » = 0.01 and A = 35) are used
as training data, validation data and test data. The baseline
methods that need training are all re-trained by using the
source code and parameters provided by the corresponding
authors.

Fig.6 shows the degraded patches, our restoration patches
and clean patches of space-target images. Columns 1 to 5
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CBDnet
PSNR:24.6236
SSIM:0.9052

stack(4)-DMPHN fastMBD

PSNR:25.5588 PSNR:15.4840
SSIM:0.9162 SSIM:0.5240

Sim Aittala Ours
PSNR:26.2808 PSNR:26.2519 PSNR:26.6671 groundtruth
SSIM:0.9302 SSIM:0.9325 SSIM:0.9346
FIGURE 7. The restoration images of a whole space target.
TABLE 3. Models with different input frames.
Metrics Model(2frames)  Model(3frames)  Model(4frames)  Model(Sframes)  Model(6frames)
PSNR 25.1159 25.9014 26.9393 27.5172 27.5665
SSIM 0.8911 0.9106 0.9340 0.9405 0.9431
parameters 5.3515M 8.3682M 11.3851M 14.4018M 17.4186M

show the degraded patches in the training process, the 6-th
column shows the restoration results of our network and the
last column shows the clean images used as labels. And it
also shows that our method can restore the textures effec-
tively from degraded images. Fig.7 shows the restored images
from a perspective that can observe the whole space target.
Fig.8 demonstrates the restoration results generated by dif-
ferent approaches on a local part of a satellite from the close
view. In Fig.9 we chose the representative part that has a lot
of textures of a space-target. It can be seen that the image
restored by our method has more clean details.

Table 1 shows the average PSNR and SSIM values of our
method and the other five state-of-the-art methods on the test
set. From the table and the restored images showed in this
paper, it can be seen that in the condition of severely degra-
dation of blur and noise, the traditional method fastMBD
can effectively restore the outline and some textures of the
degraded images, but it cannot remove noise completely and
it brought many overlapped shadows as well. The result also
shows that the single-frame methods are inferior to multi-
frame methods even if they used the least degraded training
data. This phenomenon also suggests that the complementary
information indeed exists in multiple frames with
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different degraded patterns. In these two single-frame meth-
ods, the stack(4)-DMPHN cut the image into different parts
to restore them separately and then spliced them together to
get the clean image. Compared with the CBDnet who used
the whole image and residual operations, stack(4)-DMPHN
got a better performance. For the three multi-frame methods,
the Sim method used the adjacent frames to restore the target
frame, but in the condition where each frame was degraded
randomly it is inferior to the Aittala method and our method
that can accept arbitrary order of the input frames and prepare
a restoration branch for each frame. The Aittala method used
encoder-decoder for each branch which may course loss of
information. And the strategy Aittala used was using the
maximum features to deliver information between branches,
whereas we use an SA/BA module which is more targeted
on feature selection to extract important features for each
branch. So compared to Aittala method, our method has an
advantage. In general, our method can reach a better perfor-
mance with higher resolution and more details compared to
these similar methods.

We have conducted experiments on our network by using
different number of input frames as well and the restoration
results of these different models are provided in Table 3.
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Sim
PSNR:29.7166

Aittala
PSNR:31.1564
SSIM:0.9685

Ours
PSNR:33.1807

input frames Sim Aittala Ours
P PSNR:33.9061 PSNR:35.1007 PSNR:36.1357 groundtruth
SSIM:0.9502 SSIM:0.9671 SSIM:0.9787

FIGURE 8. The deblurred images of different multi-frame methods.

CBDnet
PSNR:24.3309
SSIM:0.9704

Sim Aittala
PSNR:26.5199 PSNR:27.1991
SSIM:0.9834 SSIM:0.9867

FIGURE 9. The restoration part of a satellite from a close view.

From Table 3 we can find that the PSNR and SSIM values
increased obviously in the first three models, whereas the per-
formance improved slightly of the last two models. And the
parameters changed with the input frames from less to more
because one more input frame means one more restoration
branch in the network. We can conclude that the improvement
of the network’s performance will be less and less with the
increasing number of input frames and parameters. It’s not
hard to understand this phenomenon: in Section IV.C we
determined the ranges of r and A, and in these ranges we
generated degraded images randomly. With the increasement
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stack(4)-DMPHN

fastMBD
PSNR:25.1646 PSNR:17.2378
SSIM:0.9777 SSIM:0.8570

Ours
PSNR:27.2848
SSIM:0.9871

groundtruth

of input frames (over 6 frames), the differences in degradation
patterns between them are being smaller, which means the
effective complementary information brought by these extra
frames are less. Thus, for the balance of effectiveness and
performance, we chose 5 as the final number of input frames
for our network.

Moreover, for verifying the robustness and generalization
of the proposed method, we have conducted the motion
deblurring experiments. Instead of utilizing the existing
motion-blur datasets in the form of continuous video frames,
we chose to generate motion-blur frames with random
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CBDnet
PSNR:32. 3010
SSIM: 0. 9442

Aittala
PSNR: 33. 4973 PSNR:33. 7276
SSIM: 0. 9602 SSIM: 0. 9630

FIGURE 10. The textures restored by various methods.

TABLE 4. Average PSNR and SSIM values of multi-frame methods for
motion deblurring.

methods PSNR SSIM
Sim 29.5164  0.9535
Aittala 29.7312  0.9664

Ours 31.2420 09772

differences which can reflect the characteristics of our
method better. Like the process in Section IV.C, we first
determined two degradation ranges to control the motion-
blur patterns and then generated motion-blur images in these
two ranges randomly. The key factors to generate motion-
blur images are angle and degree which represent the motion
direction and motion speed respectively. In practice, these
two ranges were set to [40°,50°] and [15p, 30p] (n-p means
n pixels). The datasets we used to generate training data are
Urban100, Set5, Set14, T91 and we used dataset BSD100 to
generate test data. We compared our method with Sim
method [38] and Aittala method [37], because they are preem-
inent multi-frame methods on motion deblurring in the two
years. The results of motion deblurring methods are shown
in Table 4 and Fig. 8. From the results we can find that our
method has an advantage.

VI. CONCLUSION

In this paper, we have proposed a multi-branch network with
multi-frame input. In this network, a full resolution convolu-
tion (FRC) module is used to extract image features. Com-
pared to pooling layers and other downsampling methods,
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stack (4) ~-DMPHN
PSNR:33. 3933
SSIM: 0. 9554

fastMBD
PSNR: 18. 3444
~SSIM:0. 7347

PSNR: 33. 8893
SSIM:0. 9644

GroundTruth

FRC keeps feature resolutions and scales unchanged. Thus,
it can keep feature information more complete. Moreover,
a modified self-attention (SA) module which has less mem-
ory usage and computation is proposed to enhance features.
Based on SA, a branch-attention (BA) mechanism is proposed
to broadcast effective information between all the branches
in the network. In addition, intensive experiments were con-
ducted to evaluate our method. At last, the experimental
results and analysis approve that our method performs better
than other similar methods.
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