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ABSTRACT Effective early warning of wind turbine failures is of great significance to reduce the operation
and maintenance costs of wind farms and improve power generation efficiency. At present, most wind farms
are installed with supervisory control and data acquisition (SCADA) system, and SCADA data contains a lot
of hidden information, which can be used for fault early warning. This paper uses the generator temperature
and gearbox oil temperature in the SCADA data as the entry point for fault warning. Firstly, the eXtreme
gradient boosting (XGBoost) algorithm is used to establish the normal temperature regression prediction
model of wind turbine components. Then, the residual between the predicted value and the actual value is
calculated, and the change trend of the residual is monitored by the principle of exponentially weighted
moving-average (EWMA) control chart. Finally, by setting an appropriate threshold, the variation trend
of the residual is judged to determine the occurrence and development of the fault. This paper uses two
fault detection methods: fixed threshold and dynamic threshold based on adaptive algorithm, and compares
the advantages and disadvantages of the two methods. Based on the SCADA data of a wind farm in Inner
Mongolia (China), this paper designs the fault early warning test of the wind turbine generator and gearbox.
The experimental results show that for the generator, the fixed fault threshold method can give the fault alarm
3 hours in advance, while the dynamic fault threshold determination method can give fault alarm 4.25 hours
in advance. For gearbox, the fixed fault threshold method can give the fault alarm 2 hours in advance, while
the dynamic threshold fault diagnosis method can send out the fault alarm 2.75 hours in advance.

INDEX TERMS Wind turbine, fault warning, eXtreme gradient boosting (XGBoost), exponentially
weighted moving-average (EWMA), supervisory control and data acquisition (SCADA).

I. INTRODUCTION
In recent years, with the continuous deterioration of global
ecological environment and the gradual depletion of fossil
fuels, countries all over the world have increased the research
on renewable energy [1], [2]. As a clean and pollution-free
renewable energy, wind energy has the advantages of wide
distribution and huge reserves [3]. Therefore, the use of wind
power generation has gradually become a new way to replace
the traditional power generation [4], [5]. The global wind
power industry has entered a period of rapid development,
and the cumulative installed capacity of global wind power is
increasing year by year [6]. The traditional wind power plant
maintenance strategy relies heavily on regular maintenance
and after-maintenance, and the deployment of spare parts
has a long cycle, which leads to the high cost of failure
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maintenance and has a huge impact on the operation and
maintenance economy of wind power plants [7]. Therefore,
how to make early warning before the occurrence of wind
turbine failure is of great significance to reduce the operation
and maintenance cost of wind farms and the long-term devel-
opment of wind energy industry [8], [9].

At present, many achievements have been made in the
research on fault prediction and diagnosis of wind turbine
[10], [11]. The research on fault diagnosis of wind tur-
bine based on condition monitoring system (CMS) is rel-
atively mature [12]. [13] analyzes the vibration signals in
time domain and detects the fault of components. However,
the CMS system relies on high-performance sensors, acqui-
sition cards and other hardware equipment, so it needs to add
corresponding interfaces on thewind turbine, which increases
the cost and brings inconvenience to the actual operation.
The fault diagnosis method based on wavelet theory and
neural network is mature and widely used in wind turbine
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gearbox and blade fault diagnosis [14], [15]. However, this
method needs additional vibration sensors and is only suit-
able for fault diagnosis of limited parts. The fault diagnosis
method based on analytical model needs to fully understand
the operation mechanism of the system, and can achieve the
ideal diagnosis effect under the construction of appropriate
mathematical model [16]. Wind turbine is a typical nonlin-
ear dynamic system with complex structure. It is difficult
to establish an accurate system mechanism model, and the
model can’t be applied to other industrial systems.

How to use more convenient data to study the fault of wind
turbine has become a new research hotspot. In recent years,
more and more wind farms use supervisory control and data
acquisition (SCADA) system to record the operation status
of wind turbines. SCADA data is widely used in wind turbine
condition monitoring [17]. HongWang et al. proposed a deep
confidence network based on SCADA data for feature learn-
ing and classification to realize sensor fault detection [18].
In addition to learning spatial correlation information
between several different variables, this method can also cap-
ture the temporal characteristics of each variable. However,
this method is only verified on the general benchmark model,
which requires a large amount of real SCADA running data
for further verification. [19] fits a support vector machines
(SVM) regression to model gearbox oil temperature using
selected variables in SCADA data as predictors, and uses the
residual between the predicted value and the real value to
predict the gearbox failure in advance. However, this method
has two shortcomings. Firstly, SVM is a non-linear method
in essence. When processing a large number of sample data,
SVM will become obviously weak and sensitive to missing
values in the data. However, thewind farmSCADAdata accu-
mulates quickly. In the long run, the regression prediction
model of SVM algorithm is not suitable for processing a large
number of SCADA data in the future. On the other hand, the
conclusion given in this paper is that the wind turbine fault
can be warned ten days in advance, which is obviously lack
of practicability in practical application. If the wind turbine
is stopped for maintenance ten days in advance due to the
possibility of early failure, the wind turbine will stop for a
long time and a large amount of power generation time will
be lost. Therefore, when using SCADAdata for fault warning,
attention should be paid to the large amount of SCADA data
and the setting of fault warning thresholds.

The development of machine learning and multi-sensor
data fusion technology provides new ideas for wind turbine
status monitoring and fault warning [20], [21]. Aiming at
the problem of early warning of key parts of wind turbine,
this paper proposes an early warning method for key parts
of wind turbine based on SCADA data. This method uses
XGBoost to establish the normal temperature regression pre-
diction model of wind turbine components, and uses the
residual change trend between the predicted value and the
actual value as an early warning indicator. When setting
the alarm threshold, this paper adopts the EWMA principle
to control and monitor the change trend of the residual error,

and divides the normal, early warning, and alarm intervals
by setting the control line to realize the gradual and multi-
level early warning of the key parts of the wind turbine.
However, since the complex operation conditions of wind
turbine, the normal value deviation of SCADA parameters
of wind turbine may occur in acceptable range under the
influence of some uncontrollable objective factors. If the
fault alarm system adopts fixed threshold setting, the residual
extreme value may be higher than the threshold, which may
lead to false alarm. In order to solve the problem of false alarm
caused by fixed fault threshold, this paper designs a dynamic
threshold settingmethod based on adaptive principle. In order
to verify the effectiveness of the algorithm, this paper uses the
SCADA of a wind farm in Inner Mongolia (China) in 2019 to
conduct early warning experiments on wind turbine generator
and gearbox failures. The results show that the fault early
warning method based on fixed threshold proposed in this
paper can detect the early fault characteristics of wind turbine
generator 7.25 hours in advance, send out the generator fault
alarm 3 hours in advance, find the early fault characteristics of
gearbox 3.75 hours in advance, and send out the fault alarm of
gearbox 1.75 hours in advance. While use the dynamic fault
threshold method determined the fault, not only can adapt
to the sudden residual extreme value and avoid false alarm,
but also, it can send out generator fault alarm 4.25 hours
in advance and gearbox fault alarm 2.75 hours in advance,
which is 1.25 hours and 0.75 hours earlier than the fixed fault
threshold.

The rest of this paper is organized as follows. Section II
introduces the overall framework and main algorithm of fault
early warning method. Fault warning of generator and gear-
box is described in Section III and section IV respectively.
Section V discusses the advantages of XGBoost compared
with SVM regression prediction model. Finally, section VI is
the conclusion and prospect of the whole paper.

II. ANALYSIS OF FAULT EARLY WARNING ALGORITHM
A. ALGORITHM OVERVIEW
The generator and gearbox of the wind turbine are the most
frequent fault locations [17], [22]. In order to ensure the
normal operation of the generator, the wind turbine generator
set will set the cooling system and lubrication system to
prevent the generator from overheating. The cooling system
mainly uses the high-power cooling fan to draw out the heat
generated by the generator operation to the outside of the
engine room to achieve the cooling effect. In the whole pro-
cess of heat dissipation, the temperature of the inner winding
of the generator will be high when occurs some failure in
generator such as the power of the fan motor decreases,
In theory, when the ambient temperature and wind speed
and power are in the same condition, if the temperature of
a certain wind turbine generator is higher or the tempera-
ture rises faster than other turbines, it is necessary to stop
and check if there is a fault in the generator. On the other
hand, through the lubrication system, the bearing wear of
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the generator is minimized to ensure the stable operation
of the generator. Generally, when the bearing is damaged,
it is often accompanied by bearing high temperature. The
hidden danger of gearbox can be detected by the operator
on duty by observing the temperature and temperature rise
of the gearbox or comparing the temperature of the same
position with other wind turbines. Usually, the wind turbine
is cooled by radiator and fan when the wind turbine runs at
high speed with strong wind. The oil temperature of gearbox
is usually controlled at 60 ◦C. However, if it is observed
that the gearbox oil temperature reaches 75 ◦C or even close
to 80 ◦C, It is necessary to check whether the gearbox has
radiator blockage, temperature control valve failure, fan blade
damage, bearing wear and other problems. The generator
and gearbox have complex internal structures, and the failure
principles are diverse and coupled. However, most of the
failures will eventually lead to abnormal temperature rise of
the generator and gearbox oil [16], [23].

Therefore, the generator temperature and gearbox oil tem-
perature in SCADA data can be used as the entry point of
fault warning. This paper designs a fault warning algorithm
based on temperature prediction of key components of wind
turbines. The specific fault warning algorithm diagram is
shown in Fig.1.

FIGURE 1. Block diagram of wind turbine fault warning algorithm.

The algorithm flow is as follows:
1) Get the modeling data set. The SCADA historical data

of a normal operating wind turbine is selected to estab-
lish the normal temperature predictionmodel of the key
parts of the wind turbine.

2) Select the characteristic quantity. Pearson correlation
coefficient (PCC) is used to determine the monitoring
items related to the temperature changes of wind tur-
bine components.

3) Establish a normal temperature regression prediction
model based on XGBoost algorithm. According to the

TABLE 1. Relationship between correlation coefficient value and
correlation intensity.

temperature related characteristic parameters selected
in step (2), a normal temperature regression prediction
model of wind turbine components based on XGBoost
algorithm is established.

4) The established model is used to predict the tempera-
ture of the key parts of the wind turbine running in real
time.

5) Fault diagnosis. By setting the threshold to judge the
change trend of the residual error, so as to judge the
occurrence and development of the fault.

B. SELECT THE CHARACTERISTIC QUANTITY
The first work of constructing the temperature regression pre-
diction model is to determine the input characteristic quan-
tity [24]. Since the working state of the wind turbine is easily
affected by weather conditions such as wind speed and wind
direction, the temperature changes of the internal components
of the wind turbine have the characteristics of randomness
and volatility. In this paper, the PCC of internal component
temperature data and other monitoring project data of wind
turbine is calculated to determine the relevantmonitoring data
of the component temperature change.

This paper calculates the correlation coefficient by uses
the SCADA data of wind turbine under normal operation
condition as the experimental data set. The temperature data
of a certain part of wind turbine in the experimental data set is
taken asX , and the other observation characteristic data series
are respectively taken as Y . The PCC Ri of X and Yi can be
obtained by substituting the temperature series X of a certain
part of wind turbine and other observed characteristic series
Y1,Y2 . . . . . .Yn into Eq.1.

Ri = rX ,Yi =
COV (X ,Yi)
σXσYi

=
E(XYi)− E(X )E(Yi)√

E(X2)− E2(X )
√
E(Y 2

i )− E
2(Yi)

(1)

After n times of calculation, n correlation coefficient val-
ues can be obtained. According to Eq.1, the value range of
correlation coefficient is in the interval [0,1]. The greater the
absolute value of correlation coefficient of any two vectors,
the stronger the correlation between the two vectors. The
relationship between the correlation value and correlation
strength adopted in this paper is shown in Table 1.
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In this paper, the monitoring items with correlation coef-
ficient greater than 0.6 are selected as part of the input
characteristics of the regression prediction model of wind
turbine component temperature. In addition, due to the time
continuity of the temperature signal, this paper uses the idea
of time series prediction to add the component temperature
value of the previous period to the input vector of XGBoost
temperature regression prediction model. Finally, the input
vector of the temperature regression prediction model con-
sists of two parts: the observed characteristic parameters of
SCADA system related to the temperature of the compo-
nent and the average temperature value of the component
within 15 minutes.

C. REGRESSION PREDICTION MODEL
BASED ON XGBoost
XGBoost is a special gradient boosting decision tree (GBDT)
algorithm, which is an improvement of the basic GBDT algo-
rithm. GBDT is a machine learning algorithm composed of
multiple classification and regression tree (CART) iterations
in accordance with the gradient lift method and integrated
learning ideas [25].

Like GBDT, XGBoost is composed of several CART trees.
The negative gradient (the first derivative) of the loss function
of the first mock exam model is needed in the GBDT training
process to fit the negative gradient value when construct-
ing the next model. In XGBoost, Taylor expansion is used
to expand the loss function into binomial function (second
derivative) to fit the tree model faster and better. The tree
model of XGBoost can be represented by Eq.2.

ŷi =
K∑
k=1

fk (xi) fk ∈ F (2)

where ŷi is the predicted value; xi is the i-th sample input; K
is the total number of trees; F represents the function space
of the decision tree (all CART trees); fk is a function in the
function spaceF . In order to better learn the abovemodel, it is
necessary to minimize the objective function. The objective
function of XGBoost is shown in Eq.3:

Obj(8) =
n∑
i=1

l(ŷi, yi)+
K∑
k=1

�(fk ) (3)

The objective function of XGBoost consists of two parts. The
first part is the loss function l, which is used to measure the
difference between the predicted value and the real value.
The second part is the penalty term � of model complexity,
which used to prevent over fitting of model output. The
expansion of � is shown in Eq.4:

�(f ) = γT +
1
2
λ||ω||2 (4)

where γ is the regularization parameter of the number of leaf
nodes, which is mainly used to inhibit the further splitting
of nodes. λ represents the regularization parameter of leaf
node weight to prevent leaf node weight from being too
large. T is the number of leaf nodes; ω is the score of leaf
node.

In the process of constructing CART decision tree,
XGBoost algorithm solves the problem of bifurcation feature
selection through greedy thought, and solves the problem of
how to get the predicted score by finding the maximum value
of objective function. When selecting bifurcation features,
XGBoost uses greedy strategy to enumerate the objective
function values and selects the feature with the minimum
objective function value at the current time as the bifurcation
feature. When calculating the prediction score of each leaf
node, XGBoost calculates theminimumvalue of the objective
function, and the maximum value point is the predicted score
of the leaf node.

Since the internal use of XGBoost algorithm is gradi-
ent promotion strategy, in the construction of classification
regression tree, not all the trees are obtained at once, but a
new tree is added each time, and the previous test results are
constantly patched while adding new trees. Assuming that
the predicted value of the model after generating t-th trees
is ŷ(t)i , the derivation process of the construction process of
the XGBoost model is shown in Eq.5.

ŷ(0)i = 0

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi)+ f2(xi) = ŷ(1)i + f2(xi)
...

ŷ(t)i =
t∑

k=1

fk (xi) = ŷ(t−1)i + ft (xi)

(5)

The objective function of each layer is shown in Eq.6:

Obj(t) =
n∑
i=1

l(ŷ(t)i , yi)+
t∑
i=1

�(fi)

=

n∑
i=1

l(ŷ(t−1)i + ft (xi), yi)+�(ft ) (6)

The purpose of each layer of model construction is to find a
ft to minimize the objective function. The Taylor expansion
of the objective function at ft= 0 is approximately shown in
Eq.7:

Obj(t) '
n∑
i=1

[
l(ŷ(t−1)i , yi)+ gift (xi)+

1
2
hif 2t (xi)

]
+�(ft )

(7)

where gi = ∂ŷ(t−1)i
l(yi, ŷ

(t−1)
i ) is the first derivative;

hi = ∂2
ŷ(t−1)i

l(yi, ŷ
(t−1)
i ) is the second derivative. By deleting

the constant term in the formula, the objective function for-
mula of step t is as shown in Eq.8:

Obj(t) '
n∑
i=1

[
gift (xi)+

1
2
hif 2t (xi)

]
+�(ft ) (8)
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By introducing �(ft ) into Eq.8, it is concluded that:

Obj(t) '
n∑
i=1

[
giwq(xi)+

1
2
hiw2

q(xi)
]
+ γT +

1
2
λ

T∑
j=1

w2
j

=

T∑
j=1

[
Gjwj +

1
2
(Hj + λ)w2

j

]
+ γT (9)

where Gj =
∑

i∈Ijgi, Hj =
∑

i∈Ijhi and Ij = {i|q(xi) = j}
are samples in the j-th leaf node sample set. By setting the
derivative of the objective function to zero, the point with
the minimum derivative value of the function is the predicted
score of the leaf node:

w∗j = −
Gj

Hj + λ
(10)

The minimum value of the objective function is obtained as
shown in Eq.11.

Obj∗ = −
1
2

T∑
j=1

G2
j

Hj + λ
+ λT (11)

The core of wind turbine fault warning algorithm is to
establish the normal temperature regression prediction model
of wind turbine components by using the historical SCADA
data of normal components. The construction process of
regression prediction model of wind turbine component tem-
perature is shown in Fig.2.

FIGURE 2. Temperature regression prediction process.

The specific construction process is as follows:
1) The model input parameters are extracted from the

original SCADAmonitoring data to construct the input
data set. Selecting the relevant parameters and the tem-
perature value of the previous period of time according
to the PCC, and then use the historical data of these
parameters to build the data set.

2) Divide the data set. According to the ratio of 7:2:1,
the sorted data sets are divided into training, verifica-
tion and test data sets.

3) Initialize XGBoost model. Set the model parameters,
including the maximum depth of constructing decision
tree, the learning rate of the model, the total number
of training times, the number of threads used, and the
method of specifying learning objectives and learning
tasks.

4) Training model with training data set. In training the
model, a CART decision tree is constructed firstly,
and then the bifurcation characteristics are determined
with the help of greedy algorithm to minimize the loss
function, and the predicted score of leaf nodes is cal-
culated to complete the construction of the second tree.
By cycling the above steps, K trees with K classified
feature nodes are finally constructed.

5) Adjust the parameter model by the training set. Con-
stantly adjust the parameters for multiple validation set
prediction experiments, and select a set of parameters
with the highest accuracy of model prediction results
as the final parameters of the model.

6) Verifying the accuracy of the prediction model by the
test data set.

D. FAULT DIAGNOSIS
By inputting the SCAD data of the running wind turbine into
the above prediction model, the predicted temperature values
of the wind turbine components under normal operation can
be obtained. The residual difference between the predicted
temperature value and the measured temperature value in
SCADA data represents the degree to which the current
temperature state of the component deviates from the normal
state. Therefore, by setting appropriate threshold, the occur-
rence and development of fault can be judged according to
the trend of residual error. Based on Exponentially weighted
moving-average (EWMA) control chart principle and 3sigma
theory, this paper designe two fault threshold settingmethods.

1) RESIDUAL TREND CHART BASED ON EWMA PRINCIPLE
EWMA is often used in statistical data processing, which
fully considers the information of all previous observations
in the form of setting weighting coefficient to reflect the
recent change trend of target quantity [26], [27]. In this paper,
the control chart based on EWMAprinciple is used tomonitor
the change trend of residual value, and the normal, early
warning and alarm intervals are divided by setting partition.

The expression of EWMA control point value is shown in
Eq.12:

vt = βRet + (1− β)vt−1 (12)

where Ret is the residual at time t . The coefficient β repre-
sents the weight coefficient of EWMA control chart to histor-
ical data, β ∈ (0, 1], set β = 0.9. v0 is the mean value of the
first four sampling point. In addition, since model prediction
is always unavoidable with errors, processing residual by
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EWMA not only reduces the fluctuation range of residual
values, but also effectively eliminates the number of false
alarm points, making the alarm algorithm more stable and
accurate.

2) THE SETTING OF FIXED THRESHOLD BASED ON
RESIDUAL TREND GRAPH
Firstly, the residual data set is obtained by calculating the
residual between the predicted value and the measured value.

Ret = Yt − Xt (13)

where Yt is the predicted value, Xt is the measured value, and
Ret is the residual value. Then, calculate the expected value
E and deviation σ of the residual data set. The fixed threshold
function is designed as shown in Eq.14.

T = E(Re)+ zσ (14)

According to the 3-sigma criterion, if the residuals obey
normal distribution, then 99.73% of the residual values are
concentrated in the range of (E−3σ,E+3σ ), and almost all
the values are in the range of (E − 6σ,E + 6σ ). Considering
the inevitable error of the prediction model, a certain margin
should be reserved when setting the threshold value. In this
paper, the threshold value of 4 is set as the threshold of early
fault warning, and the threshold value of 8 is set as the alert
line of abnormal component temperature.

The temperature prediction residuals are calculated after
the actual running wind turbine data is input into the model,
and the calculated temperature residuals are compared with
the set threshold. If the residual exceeds the early warning
threshold, it indicates that the wind turbine component is in
the initial stage of failure. If the residual continues to increase
to the warning threshold, it indicates that the wind turbine
component is about to fail and it is necessary to alert for the
component failure.

3) THE DYNAMIC THRESHOLD SETTING METHOD BASED
ON ADAPTIVE PRINCIPLE
The operation condition of wind turbine is complex. Under
the influence of some uncontrollable objective factors, the
normal value deviation of wind turbine SCADA parameters
may occur within the acceptable range, which is specifically
manifested as the extreme point on the residual value. If the
fault alarm system adopts fixed threshold setting, it may lead
to false alarm when the residual extreme value is higher than
the constant threshold. Based on the fixed threshold setting
method, this paper designed a dynamic threshold setting
method according to adaptive principle. The specific steps are
as follows:

Step 1: Set data window size. According to the principle of
K-S test, if the k-value of K-S test of two data sets is more
than 0.05, it can be considered that the two data sets have the
same distribution law [28], [29]. In this paper, according to
the K-S test principle, the length of the smallest data subset
which can reflect the characteristics of the original data set is

selected as the size of the sliding window. As shown in Fig.3,
firstly, select a certain range of data from the beginning of the
data as the sub data set, and take K-S test with the original
parent data set to test the similarity between the two data set.
Then expand the data subset range to the right in turn until the
k-value between the subset and the parent set is greater than
0.05, and record the length of the subset at this time, which is
the window size N .

FIGURE 3. The schematic diagram of sub dataset selection.

FIGURE 4. The schematic diagram of dynamic threshold setting.

Step 2: Calculate the threshold. As shown in Fig.4, accord-
ing to the sliding window size N determined in the previous
step, select the data within {Rei−N ,Rei−N+1, · · · ,Rei} range
to calculate the threshold value. Since the temperature of
wind turbine changes slowly in normal state, the change
amplitude of residual value is small. Therefore, when setting
the dynamic threshold, this paper fully considers the residual
change trend of the previous period in the window. This paper
uses themethod shown in Eq.15 to calculate the residual value
in the window.

i∑
t=i−N

Ret

N
+ 3σ (15)

where Ret is the residual value at time t , N is the size of the
sliding window, σ is the standard deviation of residual under
normal condition.

Step 3: Move the data window frame by frame and set a
new threshold according to step 2.

Step 4: Repeat step 3 to get the threshold values at all times,
and then connect them to form an adaptive threshold graph
fitting the trend of residual Ret .

III. GENERATOR FAULT WARNING
In order to verify the reliability of the fault warning algorithm,
this paper uses the SCADA data record of a wind farm in
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Inner Mongolia (China) as the experimental data. The rated
power of the wind turbine used in the wind farm is 2000 kw,
the cut-in wind speed is 3 m/s, the cut-out wind speed is
20 m/s, the impeller diameter is 110 m, and the data acquisi-
tion period of SCADA system is 30 s. In this paper, the normal
operation of wind turbines and wind turbines with generator
failures are selected as the control for the generator failure
warning experiment.

A. GENERATOR TEMPERATURE RELATED
PARAMETER SELECTION
This paper analyzes the data records of the SCADA system
to find the wind turbine that has experienced a generator
failure. The time of the wind turbine failure is 3:42:20 on
October 20, 2019. In order to verify the validity of the
temperature regression prediction algorithm, another normal
operation data model is selected in this paper, and the data
recording time interval is from August 1, 2019 to October 31,
2019. After deleting null values, removing outliers and nor-
malizing the original data, the generator temperature in the
model data is selected as X and the other monitoring items
are Y according to Eq.1. The PCC between each monitoring
item and the generator temperature is calculated as shown in
Table 2.

TABLE 2. Generator related parameters.

B. XGBOOST REGRESSION PREDICTION OF
GENERATOR TEMPERATURE
Since the temperature values of the generator change slowly
and the time span of the original data is large, data pre-
diction based on one sample point every 30 seconds will
result in an excessive amount of data, which will slow down
the prediction speed. Therefore, this paper predicts the aver-
age temperature of the generator every 15 minutes, that is,
the monitoring item data of the input prediction model is the
average value every 15 minutes. According to the construc-
tion process shown in Fig.2, the generator temperature regres-
sion prediction model was constructed. The minimum root
mean square error (RMSE) of the final model was 0.484, and
the minimum mean absolute error (MAE) was 0.335. Using
the operating data of normal wind turbine from October 25,
2019 to October 31, 2019 to predict the generator temperature
during this period, the results are shown in Fig.5.

The red curve in Fig.5 represents the predicted curve of
generator temperature, and the green curve represents the

FIGURE 5. The temperature prediction result of the generator in normal
operation.

FIGURE 6. Residual distribution of normal generator temperature
prediction model: (a). Before EWMA processing, (b). After EWMA
processing.

actual temperature curve of generator. When the wind turbine
generator is in normal operation state, the predicted temper-
ature value of the model can better fit the actual temperature
value of the generator. By calculating the residual between the
predicted value and the actual value of the generator tempera-
ture, the distribution of the predicted residual of the generator
temperature during normal operation is shown in Fig.6(a).
It can be seen from the figure that during normal operation
of the wind turbine, the predicted residual value of the model
will show a certain symmetry near the zero point. Although
there will be a few points with larger absolute residual value,
the overall distribution is relatively uniform. The mean value
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of the residual data set is -0.01 and the standard deviation is
0.503. By use the kstest() test function in Python 3.8, this
paper tests the k-value between residual data and standard
normal distribution is 0.125, which is greater than 0.05, so the
residual data set conforms to normal distribution.

Fig.6 (b) shows the residual distribution map and alarm
threshold after the residual is processed by EWMA principle.
In the figure, the blue curve represents the residual distri-
bution curve after calculation, the green line represents the
early warning threshold, and the red line represents the alarm
threshold.When the residual is below the green early warning
threshold, it indicates that the generator temperature is nor-
mal. When the residual is between the green early warning
threshold and the red alarm threshold, it indicates that the
generator temperature has a high trend, which should be paid
attention to. When the residual is above the red alarm thresh-
old, it indicates that the generator is about to break down,
and the corresponding fault treatment preparation should be
made.

C. GENERATOR FAULT WARNING
In this paper, the wind turbine with generator failure is
selected for early warning experiment. The failure time of
the wind turbine is 3:42:20 on October 20, 2019, and the time
interval of temperature prediction data set is fromOctober 14,
2019 to 7:00, October 20, 2019. Input the preprocessed data
set into the temperature regression prediction model, and the
temperature prediction results are shown in Fig.7.

FIGURE 7. Temperature prediction results of fault generator.

In Fig.7, the red curve represents the change curve of
the predicted generator temperature, and the green curve
represents the variation curve of the measured generator
temperature. It can be seen from the figure that when the
generator is in normal operation, the predicted value of the
model is in good agreement with the actual value. When
the generator is about to fail, the deviation between the
predicted value and the actual value will gradually increase.
At 3:42 on October 20, 2019, the SCADA system detected
the generator failure and took braking measures to stop the
generator. Therefore, the actual temperature of the generator
in the figure dropped sharply after reaching the maximum
value.

FIGURE 8. Residual distribution of fault generator temperature prediction
model:(a). Before EWMA processing, (b). After EWMA processing.

1) FAULT DIAGNOSIS BASED ON FIXED THRESHOLD
The residual between the predicted value and the actual value
of the model is shown in Fig.8(a). When the generator is
in normal operation, the residual value is more evenly dis-
tributed. When the generator is about to fail, the predicted
residual value of the model will gradually increase. Fig.8
(b) shows the residual value and fault threshold after EWMA
processing.

It can be seen from Fig.8(b) that there is a big difference
between the predicted residual value when the generator is
about to fail and the residual value under normal operation.
In order to show the effect of the model on fault prediction
more clearly, this paper enlarges the curve of the rising part
of the mean residual to get Fig.9.

In Fig.9, the blue curve represents the residual distribution
curve, the green line represents the early warning threshold,
and the red represents the alarm threshold.

It can be seen from Fig.9 that the residual value of the
first crossing the early warning threshold point is the 44th
sampling point, the first residual value crossing the alarm
threshold point is the 61th sampling point, and the real fault
point of the wind turbine is the 73th sampling point. Since
there is a sampling point every 15 minutes, the early feature
of generator fault can be detected 7.25 hours (29 sampling
points) in advance by using the temperature regression early
warning algorithm described in this paper, and it can give an
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FIGURE 9. Local enlarged map of residual value of temperature
prediction for fault generator.

alarm to the wind turbine fault 3 hours in advance (12 sam-
pling points).

FIGURE 10. Dynamic fault threshold setting of fault generator:
(a). Dynamic threshold graph, (b). Local enlarged drawing.

2) FAULT DIAGNOSIS BASED ON ADAPTIVE
DYNAMIC THRESHOLD
According to the method in section II, the adaptive window
size is determined as 25 sampling points, and the dynamic
threshold of generator fault is set as shown in Fig.10 (a).
It can be seen from the figure that the change trend of dynamic
threshold basically matches the change trend of residual, and

the residual value exceeds the fault threshold value when the
fault is about to occur. Similarly, in this paper, the curve of
the rising part of the residual trend value is locally enlarged
to obtain Fig.10 (b).

It can be seen from Fig.10 (b) that before the fault occurs,
the dynamic threshold slowly increases with the change trend
of the residual, and at the 56th sampling point, the resid-
ual value crosses the dynamic threshold for the first time.
Therefore, using dynamic threshold to determine the fault can
alarm the wind turbine 4.25 hours in advance (17 sampling
points), which is 1.25 hours earlier than the fixed threshold
(5 sampling points).

IV. GEARBOX FAULT WARNING
In order to further verify the universality of the fault warning
method, this paper also carries out the early warning of
gearbox fault. In this paper, a wind turbine with gearbox fault
is selected from the actual wind farm as the experimental
object, and a normal running wind turbine is selected as the
modeling object. The fault time of the fault wind turbine is
18:32:33 on June 7, 2019, so the time for modeling the normal
wind turbine is from May 1, 2019 to June 31, 2019. This
paper selects the gearbox oil temperature in SCADA data to
represent the gearbox temperature [16].

A. GEARBOX TEMPERATURE RELATED
PARAMETER SELECTION
Before using the model to predict the gearbox temperature
of wind turbine, it is necessary to determine the monitoring
quantity related to the gearbox temperature change. Through
the calculation of PCC, the final selection of gearbox temper-
ature related monitoring items is shown in Table 3.

TABLE 3. Generator related parameters.

B. REGRESSION PREDICTION MODEL OF GEARBOX
TEMPERATURE
Like the generator fault warning, this paper also forecasts
the average temperature of gearbox every 15 minutes, that
is, the monitoring data input into the prediction model is
the average value every 15 minutes. The generator tem-
perature regression prediction model was built according
to the construction process in Fig.2. The minimum RMSE
and minimum MAE of the final model are 0.410 and 0.263
respectively.
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The historical data generated during the normal operation
of the wind trubine is input into the model, and the gearbox
temperature prediction results under normal state are finally
obtained, as shown in Fig.11.

FIGURE 11. Temperature prediction results of normal operation gearbox.

FIGURE 12. Residual distribution of normal gearbox temperature
prediction model: (a). Before EWMA processing, (b). After EWMA
processing.

The red curve in Fig.11 represents the predicted value
of gearbox temperature, and the green curve represents the
actual value of gearbox temperature. From the figure, when
the gearbox is in normal operation, the predicted temperature

value of the model can better fit the actual value of gearbox
temperature. The variation of predicted residual value of
temperature during normal operation of gearbox is shown in
Fig.12(a). The residual value distribution during normal oper-
ation of wind turbine will show a certain symmetry near the
zero point. Although there are a few points with large residual
error, the distribution is relatively uniform on the whole. The
mean value of the residual data set is 0.052 and the standard
deviation is 0.338. By use the kstest() test function in Python
3.8, this paper tests the k-value between residual data and
standard normal distribution is 0.062, which is greater than
0.05, so the residual data set conforms to normal distribution.

The residual and threshold control areas processed by
EWMA control principle are shown in Fig.12(b). The blue
curve represents the residual mean change curve, and the red
line represents the fault threshold.

C. GEARBOX FAULT WARNING
The wind turbine data record with gearbox fault is extracted
from the SCADA system data record and used as the fault
test data set. The time interval of the data set is from June 1,
2019 to 19:00, June 7, 2019. After preprocessing the data
set, input the data into the established temperature regression
prediction model, and the final temperature prediction results
are shown in Fig.13.

FIGURE 13. Prediction results of gearbox temperature under fault
condition.

In Fig.13, the red curve represents the predicted gearbox
temperature and the green curve represents the actual gearbox
temperature change. When the gearbox is in normal opera-
tion, the predicted value and the actual value fit well. While
when the gearbox is about to fail, the deviation between the
predicted value and the actual value will gradually increase.

At 18:32:33 on June 7, 2019, SCADA system detected that
the gearbox oil temperature was too high, and took braking
measures to stop the wind turbine and the gearbox. Therefore,
in the Fig.13, the actual temperature of the gearbox will drop
sharply after reaching the maximum value.

1) FAULT DIAGNOSIS BASED ON FIXED THRESHOLD
The residual distribution between predicted and actual values
is shown in Fig.14(a), when the wind turbine is in normal
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FIGURE 14. Residual distribution of fault gearbox temperature prediction
model: (a). Before EWMA processing, (b). After EWMA processing.

operation, the residual value distribution is more uniform, and
when the gearbox is about to fail, the residual value predicted
by the model will show a gradual upward trend. According
to EWMA control principle, residual threshold control area
is divided as shown in Fig.14(b)

In Fig.14(b), the blue curve represents the residual distribu-
tion curve, the green straight line represents the early warning
threshold, and the red represents the alarm threshold. Com-
pared with the normal residual value distribution of gearbox,
it can be found that the residual value fluctuates greatly when
the gearbox is about to fail, and it will also show a certain
upward trend. In order to show the effect of the model on
fault prediction more clearly, the curve of the rising part of
the residual is locally enlarged to get Fig. 15.

As can be seen fromFig.15, the first residual value crossing
the early warning threshold point obtained by the prediction
model appears at the 54th sampling point, the first residual
value crossing the fault alarm threshold line appears at the
61th sampling point, and the gearbox fault point appears at
the 69th sampling point. Through the calculation, it can be
seen that the early fault characteristics of gearbox can be
found 3.75 hours (15 sampling points) in advance by using
the temperature regression early warning algorithm described
in this paper, and send out the gearbox fault alarm 1.75 hours
(8 sampling points) in advance.

FIGURE 15. Local enlarged map of residual value of temperature
prediction for fault gearbox.

2) FAULT DIAGNOSIS BASED ON ADAPTIVE
DYNAMIC THRESHOLD
According to the method in section II, the adaptive window
size is determined as 23 sampling points, and the dynamic
threshold of gearbox fault is set as shown in Fig.16 (a). It can
be seen from the figure that the change trend of dynamic
threshold basically matches the change trend of residual, and
the residual value exceeds the fault threshold value when the
fault is about to occur. Compared with Fig.14 (b), it can be
seen that using dynamic threshold can avoid the peak value
of residual and avoid false alarm.

Similarly, in this paper, the curve of the rising part of the
residual trend value is locally enlarged to obtain Fig.16 (b).
It can be seen from Fig.16 (b) that before the fault occurs,
the dynamic threshold slowly increases with the change trend
of the residual, and the residual value crosses the dynamic
threshold for the first time at the 58th sampling point. There-
fore, using dynamic threshold to determine the fault can alarm
the wind turbine 2.75 hours (11 sampling points) in advance,
which is 0.75 hours (3 sampling points) earlier than the fixed
threshold.

V. DISCUSSION
In order to effectively evaluate the performance of the temper-
ature prediction model, this paper use the RMSE andMAE of
the prediction model output to evaluation criteria to evaluate
the model. The equation of RMSE is shown in Eq.15.

RMSE =

√√√√ 1
m

m∑
i=1

(yi − ŷi)2 (16)

where yi is the true value and, ŷi is the predicted value, and m
is the number of data in the test set. The solution equation of
MAE is shown in Eq.16.

MAE =
1
m

m∑
i=1

∣∣(yi − ŷi)∣∣ (17)

where yi is the true value and, ŷi is the predicted value, and m
is the number of data in the test set.
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FIGURE 16. Dynamic fault threshold setting of fault gearbox:(a). Dynamic
threshold graph, (b). Local enlarged drawing.

In order to verify the prediction accuracy of the pro-
posed algorithm, this paper uses experimental data to build
a temperature prediction model based on SVR as a control
experiment. In this paper, the wind turbine historical data
in the generator early warning experiment is taken as the
experimental data set. The data set is divided into training
set, verification set and test set, which are used to train SVR
temperature prediction model, adjust model parameters and
verify the prediction effect. The final parameters of SVR tem-
perature prediction model are: ‘‘C = 5’’, ‘‘kernel = RBF’’,
‘‘gamma = 0.01’’. The comparison between the final test
results of the test set and the XGBoost temperature regression
prediction model is shown in Fig.17.

It can be seen from Fig.17 that the RMSE and MAE
obtained by using XGBoost to establish the regression pre-
diction model are smaller than those obtained by using SVR
modeling. The smaller the RMSE and MAE are, the more
accurate the regression prediction results are. Therefore,
the regression prediction model based on XGBoost described
in this paper has the advantage of high accuracy.

VI. CONCLUSION AND PROSPECT
Early fault warning can effectively reduce the operation and
maintenance costs of wind farms and improve the efficiency
of power generation. In order to solve the problem of frequent
faults in generator and gearbox of wind turbine, this paper

FIGURE 17. Evaluation results of regression prediction model.

proposes a fault early warning method for key parts of wind
turbine. In this method, XGBoost is used to establish the nor-
mal temperature regression prediction model of wind turbine
components, and the residual change trend between the pre-
dicted value and the actual value is used as the early warning
index. In the selection of characteristic quantity, in addition to
using PCC to determine the monitoring data, this paper uses
the idea of time series prediction to select the temperature
value of the previous period of the component as the char-
acteristic quantity, so that the selected characteristic quantity
can reflect the temperature characteristics of the component
more. This paper use XGBoost algorithm to construct the
temperature regression prediction model. Compared with the
regression prediction model constructed by SVM algorithm,
XGBoost has higher prediction accuracy and is more suitable
for the characteristics of large amount of SCADA data. In the
process of fault state assessment, this paper uses the control
chart based on EWMA principle to control the change trend
of residual, and divides the normal, early warning and alarm
intervals by setting control lines. However, Since the extreme
value of the residual value, using fixed fault threshold may
lead to false alarm. For this problem, this paper proposes a
dynamic threshold setting method based on adaptive algo-
rithm, which can avoid the false alarm caused by the extreme
value of residual error, and can also early warn the fault.
The fault warning method proposed in this paper has wide
applicability, and has been verified in the fault warning of
generator and gearbox. In theory, this method can be applied
to other industrial systems with similar multi-sensor data
structures.

In the next step, this paper will start from two aspects: fea-
ture selection and wind turbine overall fault warning. On the
one hand, since the large amount of SCADA data monitoring,
in order to improve the speed and accuracy of feature selec-
tion, we should consider a method to automatically select
the best feature. On the other hand, Though the method in
this paper can predict the faults of generator and gearbox of
wind turbine, the wind turbine is a typical nonlinear and multi
coupling system, and the relationship between different faults
is complex and coupling is strong. How to use SCADA data
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to accurately predict the overall fault of wind turbine will be
a great challenge.
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