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ABSTRACT The connected vehicle environment is significant for the future road network. For constructing
the connected vehicle environment, real-time data acquirement is always the prerequisite. Recently, using
Light Detection and Ranging (LiDAR)-based roadside infrastructures are becoming a prevalent method of
obtaining real-time traffic data. However, the collected raw data from LiDAR cannot usually be used directly.
The steps of data processing, like background filtering and object detection, are necessary. The processed
data can then be employed in different applications. This paper proposed a novel layer-based searching
method that is established with the help of the point distribution features to distinguish moving objects from
the point cloud. It aimed to address the unexpected influence of factors such as congested situations and
package loss. The new approach was also evaluated compared with the state-of-the-art methods by applying
field data. The results showed that the proposed method is more effective than other methods. This method
may be applicable to other types of rotating LiDAR for improving the background filtering performance.

INDEX TERMS Background filtering, object detection, stationary LiDAR, layer-based method.

I. INTRODUCTION
Light Detection and Ranging (LiDAR) is capable of mea-
suring distances to objects by emitting and detecting the
lasers. Compared to the videos/cameras, LiDAR is more
reliable under multiple light conditions [1]. Based on differ-
ent installation forms, the LiDAR can generally be divided
into two types: mobile LiDAR (airborne LiDAR and car-
mounted LiDAR) and stationary LiDAR [2], [3]. The sta-
tionary LiDAR has recently attracted much attention from
researchers and traffic engineers. One primary function of
stationary LiDAR is to generate high-resolution micro traf-
fic data (HRMTD) [3]. Specifically, in transportation engi-
neering, the HRMTD means the trajectories of road-users
with high frequency (acquisition frequency >10 Hz) [4],
[5]. Prevalent traffic applications such as connected-vehicles,
near-crash analysis, and dynamic traffic signal timing require
the HRMTD as input [6], [7]. Compared to the mobile
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LiDAR, the advantage of the stationary LiDAR is attributed
to a fixed location. Since most background points under sta-
tionary LiDAR can be found in consecutive frames, it allows
historical information to be used for background identifica-
tion. With this feature, the computational load can greatly be
decreased compared to the mobile LiDAR.

After data collection, data processing is the next step.
Currently, an important application towards the collected data
is to identify the objects. Though existing studies related
to the object detection have attempted to use the roadside
LiDAR data, those studies experienced several drawbacks
under the following special conditions: 1) congested situa-
tions, 2) package loss, and 3) points drift [8], [9]. Congested
situations indicate that the moving objects stop at some loca-
tions for a period [10]. The package loss means that some
points are missing in the space caused by network overload
or unstable connection [11]. Points drift means that the points
representing the same stationary object have different coordi-
nates at different frames [12]. Previous research often directly
deployed density-based algorithms under these situations to
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filter the background and detect objects; however, the existing
density-based method may misidentify moving objects as
background points (irrelevant points). For this limitation, it is
necessary to develop a more advanced method to exclude
background points and identify the objects from the roadside
LiDAR data.

LiDAR can emit multiple laser beams at a time; each
laser beam has a different horizontal angle. Different layers
refer to different laser beams (ID). The idea is that it may
be possible to improve the background filtering and object
detection from data in different layers. Therefore, the authors
proposed a novel layer-based method to remove the back-
ground and used rotating LiDAR for HRMTD collection [13].
The presented layer-based method can directly identify the
background points by analyzing the distance distribution of
points in the horizontal angles of each layer. Further, the rest
points can be applied by a density-based spatial clustering
method (DBSCAN) for object detection.

The remainder of this paper is organized as follows.
Section 2 provides a review of related studies. Section 3 com-
prehensively introduces the roadside LiDAR and elaborates
the points distribution feature generated by LiDAR scanning.
Section 4 documents the details of themethod for background
filtering and point clustering. Section 5 evaluates the perfor-
mance of the proposedmethod through case studies. Section 6
summarizes the findings of this paper and its future extension.

II. RELATED WORK
The current background filtering approaches for stationary
LiDAR can be roughly divided into three groups: rule-based
method, volumetric-based method, and point-based method.

The rule-based method is the most prevalent way to fil-
ter the background. By this method, the frame without
any road-users in the space is usually selected as a tar-
get frame. Then the points in the target frame are defined
as background points. For the other frames, points located
within a pre-defined distance to the points in the target
frame are considered as background points and are excluded
from the raw LiDAR data. There have been several studies
using the rule-based method to achieve background filter-
ing. Zhang et al. [14] manually selected one frame with-
out any moving object as a target frame. Points would
directly be excluded from the space if their distances to
other points in the target frame were less than the threshold.
Lee and Coifman [15] developed a similar background sub-
traction method by giving a pre-defined range to the distance
in each detected angle and each laser beam. By aggregating
multiple target frames, the acceptable range of the distance
regarding the background points in each angle could be
obtained. The testing results showed that more than 90%
of background points could successfully be excluded from
the space. However, the major limitation of the rule-based
methods is that it is difficult to obtain the target frame with
non-moving objects under heavy traffic conditions [15].

The volumetric-based method converts the LiDAR data
into the volumetric space with the rasterization procedure,

which is also called the raster-based method [16]. The
volumetric-based method usually divides the space into
small cubes after aggregating multiple frames. The point
density in each cube can then be calculated. Since the
density of background points is higher than that of the
moving object points after aggregation, the cube can be dis-
tinguished into background cube or non-background cube
by giving a pre-defined density threshold. Wu et al. [18]
firstly provided a fixed threshold of point density in the
cube for background filtering based on their experience.
A dynamic threshold was then developed by considering
the point distribution and the mechanical properties of the
LiDAR, namely, three-dimensional density-spatial filtering
(3D-DSF). The major drawback of 3D-DSF is that the vehi-
cles under congested situations are easily misidentified as
background points. Lv et al. [16] used the change of point
density in the cube at different frames to distinguish back-
ground points and non-background points. They considered
any cube with a change of point density higher than 2 points
in two adjacent frames as the non-background. Results show
that more than 98% of background points can be excluded
from their experiments. However, those methods did not
consider the packet loss issue in their algorithms. As a result,
the background points and non-background points might be
misclassified under packet loss situations.

The point-based method identifies background points
directly based on point distribution without any conversion.
The computational load is lower than other methods since the
points are stored in the raw LiDAR data and easily accessed.
Qi et al. [19] used a changeable dimension strategy to store
the feature of the points and applied the neural network
(NN) to train a classifier to identify background points from
the raw LiDAR data. However, the changeable-dimension
method needs to be further verified since there is still a lack of
systematic introduction to this method’s practical application.
Zhang et al. [20] developed a laser beam-based method for
background filtering using roadside LiDAR. It was found that
the existence of the moving objects can shorten the distance
between the detected points and the LiDAR compared to
the situation that no moving objects exist in the space. The
previous studies found that the location of the points may drift
from the actual location of the object due to the environmental
factors or the mechanical properties of the LiDAR sensors
[21]. The beam-based method developed by Zhang et al. [20]
still has the point drift issue or the packet loss issue, and
the performance of this method decreased dramatically under
the packet loss issue. From the above-mentioned studies,
we can find that the existing methods could not effectively
subtract the background points yet under complex situations
such as congested traffic, package loss, and points drift situ-
ations. A more effective method for background subtraction
is needed.

Theoretically, data points in the same group should have
similar properties or features, while data points in differ-
ent groups should have different properties or features [22].
Based on the above characteristics, the points belonging
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to one object can be grouped into a cluster. The current
widely used methods for points clustering include K-means,
mean-shift clustering, Gaussian Mixture Models (GMM),
and DBSCAN [23], [24]. K-means method usually selects
a number of classes and initializes their respective center
points. Each data point is classified by computing the distance
between that point and each group center. The point can be
classified into the point group of the nearest center point.
According to the initial classification result, the group center
is recalculated by themean of all the vectors in the group [25].
By repeating the above-mentioned steps, the group centers
can eventually become stable. The biggest disadvantage of
K-means is that the number of groups needs to be known in
advance. The accuracy of the clustering result is significantly
influenced by the initially selected points. Mean-shift cluster-
ing that attempts to find dense areas of data points is a sliding-
window-based algorithm. It is a centroid-based algorithm to
locate the center points of each group. It keeps updating the
center point to be the mean of the points within the sliding-
window. The mean-shift clustering algorithm starts with a
circular sliding window centered at a randomly selected
point with a radius r as the kernel [26]. Then the algorithm
updates the kernel iteratively to a higher density region using
a hill-climbing method until convergence. The sliding win-
dow proceeds continuously according to the mean until no
more points to be updated inside the kernel. In contrast to
K-means clustering, there is no need to select the number of
clusters as the mean-shift method can automatically discover
it. However, the shortcoming of the mean-shift clustering is
the low computation speed caused by the sliding window.
In GMMs, the data points are assumed to be Gaussian dis-
tributed. Two indexes are used to describe the shape of the
cluster: the mean and the standard deviation [27]. An opti-
mization algorithm called Expectation-Maximization (EM)
is applied to determine the parameters of the Gaussian for
each cluster. The Gaussian distribution parameters for each
cluster are randomly initialized. The probability of each data
point belongs to a cluster can be computed. The closer a point
attaches to the Gaussian’s center, the more likely it belongs
to that cluster. Based on these probabilities, the probabilities
of data points within the clusters can be maximized. These
parameters using a weighted sum of the data point positions,
can then be computed. GMMs are also flexible in terms of
cluster covariance. Due to the use of the standard deviation
parameter, the clusters can be formed in an ellipse shape,
rather than being restricted to circles. The major limitation
of the GMM algorithm is the heavy computational load; it
is ineffective if the dimensionality of the problem exceeds
a threshold. Another disadvantage of the GMM algorithm is
that the user needs to set the number of mixture models to
satisfy the training dataset. However, in many cases, users do
not know how many mixture models should be used. Users
may have to generate a number of different mixture models to
find themost suitablemodel set that works for their classifica-
tion problem. DBSCAN employs two important parameters:
epsilon (Eps) and minimum points (MinPts) for clustering

points [28]. Eps represents the radius of the neighborhood,
and MinPts is the minimum number of neighbors within Eps.
For a point, if the number of its neighbor is greater than or
equal to MinPts, this point is marked as a core point. If the
number of its neighbor is less than MinPts, but the point
belongs to the neighbor of other core points, this point is
marked as a border point. If the point does not belong to
the core point and border point, this point is called a noise
point [29]. Since the LiDAR can provide a higher density
for the moving objects after background filtering and the
number of moving objects is unknown, the DBSCAN can
be an ideal method for LiDAR point density. Several studies
have been conducted using different approaches of DBSCAN
for points clustering. Cui et al. [17] firstly applied the tradi-
tional DBSCAN for roadside LiDAR point clustering. It was
found that a fixed Eps and MinPts usually could not suc-
cessfully cluster the points that are far away from the sen-
sor. Chen et al. [28] developed a revised DBSCAN for deer
identification using the roadside LiDAR. The error rate was
less than 8% in their practice. Nevertheless, the time delay
for computation remained a problem in collecting real-time
HRTMD [29]. Zhao et al. [30] developed a revised DBSCAN
algorithm by deploying adaptive parameters considering the
point distribution in the space and the mechanical features of
the LiDAR sensor. It was found that the revised DBSCAN
can greatly improve the clustering accuracy compared to the
traditional DBSCAN. It should be noted that the DBSCAN
suffers the major limitation of the high computational load.
Efficiency improvement of clustering is still needed to reduce
the time delay further.

III. DATA
This paper employed RS-LiDAR-32 for data collection and
algorithm validation. TheRS-LiDAR-32 sensor uses 32 infra-
red (IR) lasers along with IR detectors to measure distances
to objects. The device is usually installed on a compact and
weather-resistant cabinet. The LiDAR rotates rapidly within
its fixed housing to scan the surrounding environment and
provide a set of real-time 3D point data. The whole sens-
ing system includes desktop/laptop computers, GPS Antenna
(optional), interface boxes, LiDAR sensors, and a DC power
supply. The time-of-flight (ToF) methodology is applied in
the RS-LiDAR-32. When each IR laser emits a laser pulse,
its time-of-shooting and direction are registered. The laser
pulse may hit an object, which reflects some of the energy
back to the LiDAR. A portion of that energy is received by
the paired IR detector, registered as the time-of-acquisition
and received power. The sensor’s rotation revolutions can be
300 Per Minute (RPM), 600RPM, or 1200 RPM. A two-byte
azimuth value (α) appears after the flag bytes at the beginning
of each data block. The azimuth is indicated by an unsigned
integer. It represents an angle in centesimal measurement.
For instance, a raw value of 27742 should be interpreted
as 277.42◦. Only one azimuth value is reported per data
block. The major features of RS-LiDAR-32 are summarized
in Table 1.
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TABLE 1. Major features of RS-LiDAR-32.

FIGURE 1. RS-LiDAR-32.

FIGURE 2. Two types of roadside LiDAR installation. (a) LiDAR portable
installation; (b) LiDAR fixed installation.

The LiDAR can temporarily be mounted on a tripod for
data collection or on a permanently fixed location such as
a traffic signal pole for long-term data collection. As for
roadside LiDAR implementation, the recommended height
is 7-9ft above the ground, considering the horizontal field
of view (FOV) and the occlusion issue. Figure 1 shows an
example of the RS-LiDAR-32 and its customized carrier.

Figure 2 shows two different data collection methods.
To better express the point distribution feature of the

roadside LiDAR, two adjacent frames (Frame 1 and Frame
2) without moving objects were selected, and their distance
differences of the scanned points were compared at each

FIGURE 3. Distance Offset Distribution along the horizontal angle for
each laser beam: (a) ID 1(Vertical Angle:-10.281), (b) ID 2(Vertical
Angle:-6.424), (c) ID 3(Vertical Angle:2.333), (d) ID 4(Vertical Angle:3.333),
(e) ID 5(Vertical Angle:4.667), (f) ID 6(Vertical Angle:7.000), (g) ID
7(Vertical Angle:10.333), (h) ID 8(Vertical Angle:15.000), (i) ID 9(Vertical
Angle:0.333), (j) ID 10(Vertical Angle:0.000), (k) ID 11(Vertical
Angle:-0.333), (l) ID 12(Vertical Angle:-0.667), (m) ID 13(Vertical
Angle:1.667), (n) ID 14(Vertical Angle:1.333), (o) ID 15(Vertical
Angle:1.000), (p) ID 16(Vertical Angle:0.667), (q) ID 17(Vertical
Angle:-25.000), (r) ID 18(Vertical Angle:-14.638), (s) ID 19(Vertical
Angle:-7.910), (t) ID 20(Vertical Angle:-5.407), (u) ID 21(Vertical
Angle:-3.667), (v) ID 22(Vertical Angle:-4.000), (w) ID 23(Vertical
Angle:-4.333), (x) ID 24(Vertical Angle:-4.667), (y) ID 25(Vertical
Angle:-2.333), (z) ID 26(Vertical Angle:-2.667), (aa) ID 27(Vertical
Angle:-3.000), (bb) ID 28(Vertical Angle:-3.333), (cc) ID 29(Vertical
Angle:-1.000), (dd) ID 30(Vertical Angle:-1.333), (ee) ID 31(Vertical
Angle:-1.667), (ff) ID 32(Vertical Angle:-2.000).

same horizontal angle. Figure 3 shows the distance offset
distribution in the 360-degree horizontal FOV with different
laser ID.

It is shown that for most background points, the offset for
one point between two frames was insignificant. But for some
laser beams such as ID 17, 20, and 24, there were a lot of
randomly located points with large distance offset. By further
checking the LiDAR video, it was found that those random
points were purely caused by the noise or the dynamic back-
ground (such as swinging branches of the trees). To identify
the influence of moving objects in the space on the points
distribution, a framewithout moving objects in the laser beam
and another framewithmoving objects in the same laser beam
were selected for comparison. The point distribution is shown

VOLUME 8, 2020 184429



Y. Song et al.: Background Filtering and Object Detection With a Stationary LiDAR

FIGURE 3. (Continued.) Distance Offset Distribution along the horizontal angle for each laser beam: (a) ID 1(Vertical Angle:-10.281),
(b) ID 2(Vertical Angle:-6.424), (c) ID 3(Vertical Angle:2.333), (d) ID 4(Vertical Angle:3.333), (e) ID 5(Vertical Angle:4.667), (f) ID 6(Vertical
Angle:7.000), (g) ID 7(Vertical Angle:10.333), (h) ID 8(Vertical Angle:15.000), (i) ID 9(Vertical Angle:0.333), (j) ID 10(Vertical Angle:0.000),
(k) ID 11(Vertical Angle:-0.333), (l) ID 12(Vertical Angle:-0.667), (m) ID 13(Vertical Angle:1.667), (n) ID 14(Vertical Angle:1.333),
(o) ID 15(Vertical Angle:1.000), (p) ID 16(Vertical Angle:0.667), (q) ID 17(Vertical Angle:-25.000), (r) ID 18(Vertical Angle:-14.638),
(s) ID 19(Vertical Angle:-7.910), (t) ID 20(Vertical Angle:-5.407), (u) ID 21(Vertical Angle:-3.667), (v) ID 22(Vertical Angle:-4.000),
(w) ID 23(Vertical Angle:-4.333), (x) ID 24(Vertical Angle:-4.667), (y) ID 25(Vertical Angle:-2.333), (z) ID 26(Vertical Angle:-2.667),
(aa) ID 27(Vertical Angle:-3.000), (bb) ID 28(Vertical Angle:-3.333), (cc) ID 29(Vertical Angle:-1.000), (dd) ID 30(Vertical Angle:-1.333),
(ee) ID 31(Vertical Angle:-1.667), (ff) ID 32(Vertical Angle:-2.000).
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FIGURE 3. (Continued.) Distance Offset Distribution along the horizontal
angle for each laser beam: (a) ID 1(Vertical Angle:-10.281), (b) ID
2(Vertical Angle:-6.424), (c) ID 3(Vertical Angle:2.333), (d) ID 4(Vertical
Angle:3.333), (e) ID 5(Vertical Angle:4.667), (f) ID 6(Vertical Angle:7.000),
(g) ID 7(Vertical Angle:10.333), (h) ID 8(Vertical Angle:15.000), (i) ID
9(Vertical Angle:0.333), (j) ID 10(Vertical Angle:0.000), (k) ID 11(Vertical
Angle:-0.333), (l) ID 12(Vertical Angle:-0.667), (m) ID 13(Vertical
Angle:1.667), (n) ID 14(Vertical Angle:1.333), (o) ID
15(Vertical Angle:1.000), (p) ID 16(Vertical Angle:0.667), (q) ID
17(Vertical Angle:-25.000), (r) ID 18(Vertical Angle:-14.638), (s) ID
19(Vertical Angle:-7.910), (t) ID 20(Vertical Angle:-5.407), (u) ID 21(Vertical
Angle:-3.667), (v) ID 22(Vertical Angle:-4.000), (w) ID 23(Vertical
Angle:-4.333), (x) ID 24(Vertical Angle:-4.667), (y) ID 25(Vertical
Angle:-2.333), (z) ID 26(Vertical Angle:-2.667), (aa) ID 27(Vertical
Angle:-3.000), (bb) ID 28(Vertical Angle:-3.333), (cc) ID 29(Vertical
Angle:-1.000), (dd) ID 30(Vertical Angle:-1.333), (ee) ID 31(Vertical
Angle:-1.667), (ff) ID 32(Vertical Angle:-2.000).

in Figure 4. From the figure, it can be seen that the detected
distances to moving objects were less than the distances to
the background (without moving objects) along the direction
of the laser beam.

A further investigation examined the distance offset pat-
terns between the moving objects and the background objects
in the space. As shown in Figure 5 (b) and (c), when moving
objects were scanned by the laser beam, the distance offset
was continuous among some adjacent angles. While for fixed
or dynamic background, the distance offset patterns appeared
as flatten lines or random fluctuation lines. Therefore, the
point distribution patterns were different between moving
objects and background objects in the space. Generally, the
point distribution feature of moving objects is ‘‘curve sink-
ing’’ (because the moving objects are close to the LiDAR)
and ‘‘continuous’’ compared with background objects. This
paper used this feature to distinguish moving objects and
background points.

IV. METHODOLOGY
This section introduces a novel method for background fil-
tering and points clustering. This method can exclude back-
ground points and identify the object simultaneously without
needing to distinguish background filtering and point cluster-
ing strictly.

Asmentioned before, the point offset distribution is amajor
feature used to distinguish background and non-background.
The normal distance offset caused by vibration is illus-
trated as ϒ . ϒ is determined by the distance resolution
of the LiDAR. The number of continuous points (NCP)
with offsets higher than ϒ is another factor to be consid-
ered. A low value of NCP may result in misidentifying the

FIGURE 4. Distance distribution along the horizontal angle with moving
objects in the space: (a) One moving object in the space, (b) Two moving
objects in the space, (c) Six moving objects in the space.

dynamic background points as moving object points under
point drifting conditions. A high value of NCP may result
in misidentifying some small size moving objects (such as
pedestrians) as background points. For RS-LiDAR-32, ϒ
is 3 cm (representing an offset with ±3cm), meaning that
if the offset of one point at two adjacent frames is less
than 6 cm, the point will be identified as a dynamic back-
ground point. As for NCP, 3 was selected as a threshold
based on Lv et al.’s analysis [16]. Therefore, a moving object
should meet the following criteria—Equation (1) indicating
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FIGURE 5. Distance offset distribution along the horizontal angle:
(a) Distance offset between two frames without moving objects,
(b) Distance offset between one frame with one moving object and one
frame without moving objects, (c) Distance offset between one frame
with six moving objects and one frame without moving objects.

offsets of a consecutive 3 points larger than 6cm.
{ϒθ >= 6 & ϒθ+0.02 >= 6 & ϒθ+0.04 >= 6} (1)

where θ is a horizontal angle at one layer, andϒ is the offset.
However, only checking NCP at one layer may miss some

FIGURE 6. Special case 1.

FIGURE 7. Special case 2.

critical information. For example, assuming 5 continuous
points exist in one layer from an angle2 to2+ 0.08 degree,
all points will be identified as moving objects (because the
NCP = 5 > 3). At its adjacent layer, only 2 continuous
points (NCP = 2 < 3) belong to the same moving object.
The reduced NCP may be as a result of occlusion, pack-
age loss, or other issues. At another layer, only one point
(NCP = 1 < 3) belongs to the same moving object, as shown
in Figure 6. If the method in (1) is deployed, those points at
layer b and c will be identified as background points.

Another special case is that the NCP value of each layer
(a, b, c) is 2, as shown in Figure 7. This NCP distribution
pattern can be regarded as a pedestrian with a larger height
than width. By the method in Equation (1), the moving object
points (pedestrian) are misidentified as background since
NCP = 2 < 3 at each layer.
It should be noticed that the layer a, b, and c represent

three adjacent laser beams, the dots in each layer shown in
Figure 6 and 7 represent consecutive points with an offset
greater than ϒ . As can be seen from Figures 6 and 7, the
number of points at the same angle in adjacent layers (NPAL)
should also be considered as a factor for background filtering.
Due to occlusion or point drift, the points representing the
same object in adjacent layers may not be captured at the
same angle. Therefore, the critical problem is how to deter-
mine the neighbors of one point. Searching the neighbors in
one layer is infeasible. To solve this problem, a layer-based
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FIGURE 8. NPAL searching procedure.

searchingmethodwas invented. The details of themethod can
be illustrated in Figure 8. The triangles in Figure 8 are dummy
points serving as the bridges. If two points can be connected
through the bridge, they can be considered as the points in
NPAL even they are not at the same angle. Therefore, for
one point in one layer, the point can find eight neighbors at
most.

The resolution of LiDAR decreases with the increasing
distance between the object and the sensor. The searching
strategy in Figure 8 can further be illustrated in (2).

NCP = niA > 5 (2)

where niA is the number of points in point-A’s neighbors at
layer i.

The DBSCAN is applied for point clustering as follows.
The specific application about the DBSCAN method refers
to Zhao et al. [30]. For one point-A, if it meets (2), then
A and its neighbors will be considered as a core point.
All core points will be included in one group. With this
strategy, all points in Figures 6 and 7 will be grouped
correctly. Since all the searching points should meet the
threshold that ϒ >= 6, the number of points used
from raw LiDAR data as input of DBSCAN was greatly
reduced, which can significantly increase the computation
efficiency.

V. EVALUATION
Data collected at three sites under different scenarios were
used as examples to illustrate the performance of the pro-
posed layer-based algorithm. Those sites include a freeway
segment, an intersection, and a rural arterial segment. The
major features of the three sites are shown in Table 2.

Figure 9 shows the results of a frame before and after data
processing on a freeway segment (Site 1). There were ten
vehicles in the selected frame. After applying the layer-based
method, all ten vehicles were kept in the space, and back-
ground points were successfully excluded. The point clouds
were plotted in the Cartesian coordinates.

Figure 10 shows the results of a frame before and after data
processing at a signalized intersection (site 2). There were six

FIGURE 9. Before-and-after laser-based processing on a freeway
segment: (a) Raw data (visualized in RSview), (b) Data after applying the
layer-based Method, (c) Raw point cloud, (d) Data point cloud after
applying the layer-based method.

vehicles at different directions in the selected frame, repre-
senting a congested situation. After applying the layer-based
method, all six vehicles were kept in the space, and all back-
ground points were successfully excluded.
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TABLE 2. Major features of selected sites.

FIGURE 10. Before-and-after laser-based processing at an intersection.
(a) Raw data (visualized in RSview), (b) Data after applying the
layer-based Method, (c) Raw point cloud, (d) Data point cloud after
applying the layer-based method.

Figure 11 shows the results of a frame before and after
data processing at a rural arterial segment (site 3). Seven
vehicles were detected in the selected frame. After applying
the layer-based method, all vehicles were kept in the space,
and background points were successfully excluded.

To further evaluate the performance of the developed
method, the layer-based algorithm was compared to the state-
of-the-art methods. The density-based method (3D-DSF pro-
posed by Wu et al.) [18] and the raster-based method (RA
developed by Lv et al.) [16] were used for comparison. The
results are shown in Table 3. It was found that the proposed
layer-based method (LB) performs better than the other two
methods at the three sites. The computational time of the
algorithm is important for traffic behavior and safety analysis
[31]. Therefore, the filtering consumed time was also com-
pared between this method and the 3D-DSF method. After
further statistical analysis, the filtering speed of this method
is only about 3% slower than the DSF method and can meet
the actual real-time requirement. It should be noted that the
3D-DSF needs more pre-processing time compared with this
LB method.

FIGURE 11. Before-and-after laser-based processing at an intersection:
(a) Raw Data (Visualized in RSview), (b) Data after Applying the
Layer-based Method, (c) Raw Point Cloud, (d) Data Point Cloud after
applying the layer-based method.

TABLE 3. Performance evaluation.

VI. CONCLUSION
This paper developed a new method to exclude background
points and identify the objects from the roadside LiDAR
data. The proposed method used the point distribution pat-
tern at different layers as a novel feature for moving object
identification. Based on the feature, a layer-based searching
method is then proposed to address the unexpected influence
of factors such as congested situations and package loss. The
evaluation showed that the proposed method could provide
higher accuracy compared to the state-of-the-art methods.
The presented method can keep more than 96% of moving
object points and effectively excluded all the background
points from the space. The computational time of the pro-
posed method can meet the actual application needs (only
about 3% slower than 3D-DSF). Furthermore, it can also
be extended applied to other types of rotating LiDAR after
properly calibrating the parameters.

184434 VOLUME 8, 2020
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More data are required to further investigate the perfor-
mance of the developed method. The computation time of
the proposed method needs to be recorded and quantized.
The next step of the research is to analyze the influence
of different weather conditions on the effectiveness of the
proposed method.
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