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ABSTRACT In the field of robotics, it is crucial to obtain a comprehensive semantic understanding of a scene
for many applications. Based on the behavioral topological map and scene graph, we propose to employ a
semanticmap namedTopological SceneMap (TSM) for representation in indoor environment understanding.
The behavioral topological map we constructed expresses the spatial connection relations and semantically
describes the navigation behavior between adjacent topological nodes. The scene graph promotes the TSM
to record the objects that appear in the scene and the relations between objects. The addition of spatial and
semantic relations makes the expression of the scene more specific, which improves the robot’s abilities
of scene understanding and human-robotic interaction. In this article, we design a method for topological
map construction and apply a novel approach to generate a scene graph from RGB-D data. The semantic
representation of the environment generated in the experiments verifies that the TSMconstruction framework
models the scene efficiently and the TSM is conducive to the realization of human-robotic interaction.

INDEX TERMS Scene graph generation, topological map construction, semantic map.

I. INTRODUCTION
In the field of robotics, modeling environment is fundamental
before starting some tasks. The environment information is
usually stored in the form of maps, such as metric map,
topological map, and semantic map. Maps required by robots
with different tasks are various.

For robots, an effective environment model should include
the following elements:
• Applicability: The robot is able to perform various tasks
with the model, not just a specific task.

• Accuracy: The model should be able to accurately
describe the environment and provide the robot with
correct information.

• Scalability: The model needs to adapt to the size of
the environment, and expand the size of the expressed
environment step by step.

• Usability: The model should be easy to use and be able
to realize human-robotic interaction.

For humans, the dynamic changes of the indoor furniture
placement, light intensity, and other factors do not seem to
change the general understanding of the environment and
will not affect the navigation. Previous biological research
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showed that the spatial information stored by biological nav-
igation systems are coarse-grained [1]. These coarse-grained
representations are the topological descriptions of the envi-
ronment. The topological map has been widely used in the
navigation of robots [2]–[5], and the recent rapid develop-
ment of deep learning algorithms provides a new perspective
for the application of topological map [6]–[8].

Robots need to understand the environment with the human
mindset to improve intelligence, so they are capable of exe-
cuting semantical commands consequently. The semantic
map is proposed to describe the environment semantically,
which assists robots to understand the environment. The
semantic map for the robot contains the space and the entities
semantic information. These entities have the attributes of
some classes, more knowledge about them is obtained by
reasoning with knowledge base [9]. More recent attention
has focused on the semantic map to represent the environ-
ment intelligently. In [10], the author reviews studies of the
semantic map, the research on semantic maps are divided
into indoor and outdoor, single-scene and large-scene. The
3D semantic map construction framework proposed in [11]
is a masterpiece of semantic map research, which expresses
the environment with five levels: Metric-Semantic Mesh,
Objects and Agents, Places and Structures, Rooms, Building.
Besides, the framework applies the tracking and detection
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FIGURE 1. A scene graph example of indoor environment.

module for dynamic targets, which eliminate the effects of
dynamic changes [12], [13]. However, this framework has
strict requirements on hardware and the construction process
of the map is complicated.

We divide the tasks performed by intelligent robots in
an environment into the following stages. (1)Environmen-
tal perception. The robot collects information in the envi-
ronment with sensors. For example, the RGB-D sensor
collects images of the environment. (2)Environmental
semantic cognition. Semantic information is attached to
objects and spaces detected in the environmental percep-
tion stage to provide a basis for human-robotic interaction.
(3)Semantic task understanding. Semantic tasks are under-
stood through the semantic representation of the environment
and decomposed into executable task sequences, such as nav-
igation and obstacle avoidance, etc. (4)Task execution. Tasks
in the executable task sequence are realized with the basic
control system. This article focuses on environmental seman-
tic cognition. In this article, we propose a lightweight sparse
environment representation, Topological Scene Map (TSM),
to effectively represent the environment. The methodological
approach taken for TSM is a mixed methodology combined
with the navigation behavioral topological map construc-
tion [6], [14] and the scene graph generation [15]. The navi-
gation behavioral topological map records the connectivity of
space and describes the navigation behavior between adjacent
nodes, which allows the robot to generate navigation routes
with semantic information. The scene graphs [15] is applied
to preserve objects and relations appearing in the environ-
ment, which is a compact representation that expresses a
complicated environment with less memory and integrates
data from different domains, such as text and image. One
scene graph of an indoor environment is shown in Figure 1.
The specific objective of this article is to construct a robotic
semantic TSM for the indoor environment with our frame-
work. The TSM aims to model the environment semantically,
which contributes to the interpretable reasoning that is the
key to semantical tasks, like Q&A(Question and Answer) and

navigation routes recommendation. When a robot needs to
perform other tasks in the environment, the TSM is loaded as
a global static map to construct a new environment represen-
tation that will be updated with observations.

In the construction process of TSM, the robot needs to
complete the full coverage exploration of the environment
firstly. During the exploration, the RGB-D sensor is applied
to record the full coverage exploration video, and the laser
sensor is used to build the metric map of the environment.
Then, the behavioral topological map is constructed based on
the metric map, which is employed to divide the exploration
video into slice groups used to generate the scene graph for
each room. Our contributions are the following:
• We design a process of constructing a topological map
that represents the connectivity of the environment,
in which the features of a node include ID, coordinates,
and semantic labels, the edges include distance and nav-
igation behavior information.

• We propose a method to split the environment explo-
ration video according to the topological map. The full
coverage exploration video needs to be split into slices
according to the topological map, and door nodes are
used to get timestamps for splitting.

• Wegenerate the scene graph for every room of the indoor
environment from the split exploration video. The scene
graph record a complex environment with less memory,
which facilitates semantic query and reasoning.

• The TSM construction framework combines a topo-
logical map for global information with a scene graph
for local information to provides an efficient seman-
tic representation of the environment. With TSM,
the robot generates human-friendly navigation com-
mand sequences for human-robotic interaction.

The rest of this article is organized as follows. In Section II,
some related works about the topological map, the scene
graph, and the semantic map are presented. In Section III,
We introduce the methodology of the TSM construction
framework, including the process of navigation behavior
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topological map construction, the Scene Graph Genera-
tion (SGG) model, the method of generating the scene graph
from the video, and the method of fusing the scene graph
with the topological map. In Section IV, We verify the con-
struction process of TSM with the simulation environment.
In Section V, we conclude this article and point out further
directions.

II. RELATED WORK
A. TOPOLOGICAL MAP
The topological map is also defined as the roadmap, which is
a sparse representation that describes the topological charac-
teristics of the environment. The construction of topological
maps is combinedwithmetric maps [16], [17] or not [2]. Gen-
eralized Voronoi diagram [18] and spectral clustering [19]
are the two main methods [20] to construct the topological
map. In [21], spectral clustering and extended Voronoi dia-
grams are used to construct the topological map from the
metric map. Spectral clustering is applied to segment the
metric map and obtain the center of the cluster. In [22],
a lightweight method for combining the metric and topolog-
ical maps is proposed. With the combined map, the robot is
able to autonomously navigate in a large scale environment
and avoid the obstacle. Although the fusion of these two
maps achieves obstacle avoidance navigation, the cost of
storing themap is extremely. A concise process of topological
map construction and effective topological representation are
proposed in [5] to resolve the problem.While creating a topo-
logical map, it is necessary to determine which topological
node each region of the environment belongs to. In [23],
a grid middle layer is proposed to rasterize the metric map
and distinguish different regions. The topological points that
fall into the same region are attached with the same region
label. In [24], the segmentation problem of 3D scenes is
transformed into an integer programming problem to solve.
Against the problem of localization and noise in the metric
map, a visual topological map is constructed with the use
of structured prior knowledge [8], in which each node is
represented by a 360-degree panoramic image and the edges
represent the transformings of posture.

According to the way humans model the environment,
some new methods of topological map construction and
application are proposed. In [25], a semi-parametric topol-
ogy memory framework is constructed inspired by the
landmark-based navigation, which consists of two parts,
a parameterless topologicalmap formemory and a parameter-
ized deep network used to retrieve nodes from the topological
map with observations.With the landmark, humans verify the
understanding of the environment. In [26], a topological map
based on landmarks is constructed, in which the landmark
allows the robot to execute a task with some interference
reliably. For humans, prior knowledge about some types of
the environment plays an important role, while a new environ-
ment needs to be expressed. In [27], a new storage structure,
named Bayesian Relational Memory (BRM), is proposed to
store the prior knowledge. With BRM, robots construct the

unknown environment representation with prior knowledge
quickly. Maps in the human mind are usually attached with
semantic descriptions. Inspired by this idea, the topologi-
cal map attached with semantic information will be more
practical. In [14], a navigation behavior topological map is
constructed, in which the nodes and edges are attached with
semantic labels. Inspired by the navigation behavior topolog-
ical map, we propose a method to construct our topological
map.

B. SCENE GRAPH
The scene graph is a sparse representation of semantic infor-
mation [15], where nodes represent entities in the scene
and edges represent spatial or logical relations. The objects
appearing in the image are displayed as semantic elements
in the scene graph and the relations in the scene graph will
contribute to scene understanding and interpretable reason-
ing. Much of the current literature on the scene graph pays
particular attention to generation and application [28].

The data for SGG is not limited to images, but also text and
video [29]–[32]. Generally, the scene graph is not generated
with a single image but related images, which improve the
effectiveness of the scene graph. Besides, the scene graph
is regarded as a commonsense knowledge graph generated
according to the scene [33]. Therefore, SGG is regarded
as a bridge between the scene graph and the commonsense
graph. There are currently two main kinds of methods for
SGG. The first kind of method is divided into two-stage,
objects detection and then recognizes the relation between
them [34]. The other applies region proposal to jointly rea-
son the classes of objects and relations [35]. In [34], The
SGGmodelMOTIFNET is proposed, which divides the scene
analysis into three stages: delineating the object region, cal-
ibrating the region type, and predicting the relation between
the regions. Each stage combines the global features of con-
textual information through bidirectional Long Short-Term
Memory (LSTM), and the output of each stage is defined as
the input of the next stage. In [35], The SGG model Factor-
izable Network is proposed, which introduces the subgraph
to reduce the cost of SGG. In the TSM, the SGG model
Factorizable Network is applied to generate a scene graph
from one image.

C. SEMANTIC MAP
Much of the previous research on environment represen-
tation is carried for navigation tasks. The robot’s navi-
gation tasks are generally divided into global navigation
and local navigation. Some studies construct a hierarchical
map for global navigation and local navigation. In [36],
a hybrid metric-topological-semantic map structure, called
MTS-map, is established, which allows robots to implement
fine metric-based navigation and coarse query-based local-
ization. Although grid-based representation supports most of
the navigation tasks, a large amount of calculation is needed
to obtain the optimal path on the grid map of a large scene.
To reduce the cost of calculation, a two-layer map is proposed
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in [37]. In this article, the first layer is a region roadmap for
representing the connectivity between different regions in the
environment, and the second layer is the local roadmap. Each
node in the region roadmap is related to a local roadmap.With
this map, there will be less cost for finding the navigation
route.

Understanding the environment with the human mindset,
robots are able to implement some human-robotic interaction
tasks. For planning and exploration in open and uncertain
worlds, a semantic map is constructed with the commonsense
knowledge [38]. The semantic representation describes the
environment information perceived by the robot in detail and
deal with uncertainties. In [39], uncertainty is also consid-
ered in the process of semantic map construction. Multiple
semantic maps are constructed with probability. Conditional
Random Fields (CRFs) are used to model the back-
ground relations and uncertainties during object recognition.
Expressing the environment with 3D information preserved
supports the scene graph to record the environment detail,
but it requires powerful computation capabilities. In [13],
a framework for constructing a 3D scene semantic map is pro-
posed. The map constructed by this framework is composed
of four layers, which is more in line with human thinking and
perception. In [12], the 3D environment is expressed with a
scene graph. Among the scene graph, each node represents
the object and attributes, and each edge represents the relation
between the objects. Based on [12], [13], MIT SPARK lab-
oratory combines with the previous semantic mapping work,
visual-inertial odometry, deep learning, and other methods to
construct a scene graph of a dynamic 3D environment [11].
They propose a more comprehensive 3D semantic SGG
framework, which adds the detection and tracking modules
for dynamic targets, thus some of the impacts of dynamic
changes is eliminated. Since the scene graph constructed
from a single image is not specific enough, the scene graph
generated from multiple images may miss some objects or
repeatedly detect some objects. We refer to the method men-
tioned in [11]–[13] to build the scene graph from RGB-D
videos.

III. METHOD
In this section, we describe the method of constructing the
TSM. The first stage is the environment exploration. The
robot carrying laser and RGB-D sensors is placed in an
unknown indoor environment to complete the full coverage
exploration. During the exploration, the laser sensor is ser-
vice for collecting laser data to generate the metric map,
the RGB-D sensor is applied to record the environment
exploration video. The second stage is the topological map
construction. After completing the exploration of the envi-
ronment, a navigation behavioral topological map based on
the metric map is constructed. The third stage is the scene
graph generation.When generating the scene graph, the video
of environment exploration needs to be split into different
slices and then classify these slices according to the room they
describe. Finally, the TSM of the environment is obtained by

FIGURE 2. The TSM construction framework, the laser data are used to
construct the metric map and the topological map, and RGB-D data are
used to construct the scene graph. The door and room nodes of the
topological map are applied to split the environment exploration video
into slices. The video slices are grouped by the room where it was shot,
and then the grouped slices are clipped into the image group. The images
in the group are filtered by modules of video processing. Take IG_1 as an
example, all the images in IG_1 are used to generate local scene graphs.
All the local scene graphs from the same image group are applied to
merge and update a global scene graph. Finally, the metric map,
topological map, and scene graph are fused to construct TSM.

attaching the generated scene graph to the room node and
combining it with the topological map. Our TSM makes the
metric map as the bottom layer, scene graph as the middle
layer, and topological map as the top layer. The process of
TSM construction is shown in Figure 2.

A. TOPOLOGICAL MAP CONSTRUCTION
Generally, the topological nodes indicate positions and edges
present connectivity and distance. Although this kind of topo-
logical mapmeets the needs of most tasks, it is not enough for
human-robotic interaction tasks. When asking the robot for
directions, the robot needs to answer in the way that humans
understand, rather than providing a simple node sequence.
Here, we attach semantic descriptions to the nodes and edges
based on the common topological maps.

1) TOPOLOGICAL MAP DESIGN
When constructing the topological map, we refer to the
method adopted by [6]. A node in the topological map rep-
resents a location, and an edge represents the navigation
behavior and distance. The navigation behavior helps to guide
the robot from one location to another, such as walking
through the corridor, leaving the room, and other navigation
behaviors [14].

We define behaviors for the navigation behavior topolog-
ical map, include enter the room (ER), leave the room (LR),
and cross the room (CR). Although there are only three
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FIGURE 3. Navigation routes with or without door node and a example of
door node generation.

behaviors in the behavior set, the set contributes to achieving
semantic navigation in our indoor environments and also
allows us to simplify the design of the topological map. For
the ‘‘cross the room (CR)’’ behavior, we define the behavior
as transforming from a door to another door of the same
room. For example, the navigation behavior is specifically
expressed as ‘‘from door_1, cross the room_1, to door_2’’.
For the ‘‘leave the room (LR)’’ behavior, we define the behav-
ior as transforming from a room to an exit(door) of the room,
such as ‘‘from room_1, leave the room_1, to door_1’’. For
the ‘‘enter the room (ER)’’ behavior, we define the behavior
as entering from an exit(door) into a room, such as ‘‘from
door_1, enter the room_1, to room_1’’.
There are two kinds of node in the topological map,

the room node and the door node. Each roomnode is related to
a specific space, such as a kitchen and a corridor. Each door
node is related to an exit of one room. The door nodes are
employed to improve navigation routes and help understand
navigation behaviors. Without the door node, the room nodes
along the path are visited when navigating from source to
target, and there will be more costs. As shown in the left of
Figure 3, an order of navigating from room_1 to room_3 is
issued. If there are no door nodes, the navigation route will
include the room_2 node, and the navigation route is shown
as the green line. If there is a door node, the navigation route
will include the door nodes of room_2 and will not include
the room_2 node. The navigation route is shown as the red
line. Comparing the two navigation routes, we know that the
employment of door nodes is conducive to generate shorter
navigation routes. The cost of each edge is determined by
the distance between adjacent nodes calculated by A star
algorithm [40].

The process of door_2 node generation will work as an
example to illustrate the process of door node generation. The
generation process is as follows:

(1) Find the region of door_2 in the metric map, as shown
in the right of Figure 3.

(2) Select the two points A and B on the two sides of the
door.

(3) Make the midpoint of points A and B as door_2 node
and record its position.

(4) Obtain a point group by taking points in order by every
distance b in the direction of A (or B) (the distance

between the last point in a direction and the endpoint
A (or B) is less than b), and record the position and
label of these points, such as the second point taken in
the direction of B is labeled as door_2B_2.

(5) Store all points between A and B in a dictionary with
door_2 as the key. In the topological map, only the
door_2 node is displayed, and the dictionary related to
door_2 will be used to split the video of environment
exploration.

2) TOPOLOGICAL MAP CONSTRUCTION PROCESS
The process of the construction is given below:

(1) Construct the metric map of the environment with the
Gmapping algorithm [41]. The metric map is saved in
the form of the occupancy grid.

(2) According to previous requirements, some locations in
the metric map are selected as nodes in the topological
map, and the coordinate of the location is stored as the
node features. There are two types of nodes, namely
door nodes and room nodes.

(3) Attach semantic labels to each node, such as kitchen-1,
corridor-1, etc.

(4) Define the navigation behavior between nodes in the
topological map and attach the navigation behavior to
all edges.

(5) Calculate the distance between nodes with the A star
algorithm and preserve the distance as the edge fea-
tures.

(6) Storage the topological map.

B. SCENE GRAPH GENERATION
The scene graph is defined as a directed acyclic graph:
G = (O,E), where O = {o1, . . . , on} defined as objects
set, E ⊆ O × R × O defined as edges set of relations. For
each object oi = (ci,Ai), it includes label ci ∈ C of class
and attributes Ai ⊆ A of object. We apply the Factorizable
Network [35] to generate the scene graph from each image
captured in the environment exploration video.

Factorizable Network represents the scene graph as a con-
nection graph based on subgraphs during the inference pro-
cess to improve the effectiveness of SGG. The subgraphs are
generated by clustering to represent a set of relations with
similar features, which simplifies the calculation of SGG.
The Spatial-weighted Message Passing (SMP) structure and
Spatial-sensitive Relation Inference (SRI) module of Fac-
torizable Network reserved spatial structure for relational
reasoning.

The process of SGG with Factorizable Network is summa-
rized as follows:

(1) Region Proposal Network (RPN) is used to generate
object region proposals.

(2) A fully connected graph is established for all object
region proposals, in which any two objects have two
edges in different directions that represent relations
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between them. The features of these edges are extracted
by the union box of the two connected objects.

(3) All relations are clustered from the bottom up, and rela-
tions with the similar features are clustered together.
After a relation class is obtained, all the relations in the
same class are represented by the same subgraph node.
Thus, a subgraph-based representation of the fully con-
nected graph is obtained, and it includes subgraph and
object nodes.

(4) Feature vectors and 2D feature maps are generated by
employing Region Of Interest (ROI) pooling to object
feature and subgraph features respectively.

(5) Refined object and subgraph features are generated
with the use of spatial-weight message passing.

(6) Object classes and their relations are recognized by
the object features and fusion of objects and subgraph
features respectively.

For features, object features focus on the detail of an
object, while subgraph features focus on the relation between
objects. The representation combined with the features of
these two types of nodes is beneficial to recognize object and
relation classes.

In step (5) of SGG, SMP based on the inner product
attention mechanism is applied to combine the object and
subgraph features to obtain the representation of refined
features. 2D feature map is employed to express subgraph
features, so the spatial information is retained. Assume that
the object feature vector and subgraph feature map input to
SMP is oi and Sk respectively. Since the dimensions of object
and subgraph features are different, two different methods
are needed to exchange information between the object and
subgraph nodes.

From subgraph to object nodes The purpose of this pro-
cess is to convert the 2D subgraph feature map to vector space
of the object feature and fuse these two types of features.
Firstly, Sk is directly converted into sk through 2D average
pooling. Then, all sk are aggregated byweights. Theweighted
sum s̃i of sk is computed as follows:

s̃i =
∑
Sk∈Si

pi (Sk) · sk (1)

pi (Sk) =
exp

(
oi · FC(att_s) (ReLU (sk))

)∑
Sk∈Ci exp

(
oi · FC(att_s) (ReLU (sk))

) (2)

where Si represents a set composed of subgraph nodes con-
nected to object i. pi (Sk) indicates the weight for sk. FC(att_s)

convert the feature vector sk to the domain of oi. Finally,
refined object features ôi are generated by combining the
weighted sum s̃i with the object feature oi.

ôi = oi + FC(s→o) (ReLU (s̃i)) (3)

where FC(s→o) represents a fully connected network for con-
verting s̃i to the domain of oi.
From object to subgraph nodes The process aims to get

the weighted sum of object features and map these features to
the domain of the subgraph feature map to combined with the

2-D feature map. When converting the object feature vector
to the domain of the subgraph feature map, the position infor-
mation of the object needs to be considered. The weighted
sum Õk (x, y) at location (x, y) after object feature projection
is calculated as follows:

Õk (x, y)=
∑
oi∈Ok

Pk (oi) (x, y) · oi (4)

Pk (oi) (x, y)=
exp

(
FC(att−o) (ReLU (oi))·Sk (x, y)

)∑
Sk∈Ci exp

(
FC(att_o) (ReLU (oi))·Sk (x, y)

)
(5)

where Ok represents the set of object nodes connected to
subgraph k . Pk (oi) (x, y) represents the weight of the oi at
location (x, y) of subgraph k . FC(att_o) convert oi to the
domain of Sk (x, y). Then, refined subgraph feature Ŝk is
abtained by combining Õk and Sk .

Ŝk = Sk + Conv(o→s)
(
ReLU

(
Õk

))
(6)

where Conv(o→s) is a convolution layer that transforms the
object features into the subgraph domain.

In step (6) of SGG, refined object and subgraph features
are used to recognize the classes of objects and relations. The
object classes are directly predicted by the object features.
The classes of relations are predicted by the fusion of subject
and object features and the corresponding subgraph feature.

p〈i,k,j〉 = f
(
oi,Sk , oj

)
(7)

Each object connectedwith subgraph node is relate to a region
in subgraph feature map, so the object feature is applied as
convolution kernel to extract visual cue in subgraph feature
map. The convolution result S(i)k is calculated as:

S(i)k = FC (ReLU (oi))⊗ ReLU (Sk) (8)

Then, the relation is predicted with the use of a
fully-connected layer on the fusion convolution result S(i)k ,
S(j)k , and subgraph feature map Sk .

p(i,k,j〉 = FC(p)
(
ReLU

([
S(i)k ;Sk ;S

(j)
k

]))
(9)

C. VIDEO PROCESSING FOR SGG
The images for SGG come from the video taken during the
environment exploration. To obtain all the scene information
in the space for a certain topological node, the scene graph
generated from the images taken from the same room needs to
bemerged. In this process, it is necessary to select appropriate
images to generate the scene graph and eliminate duplicate
elements when merging multiple scene graphs. The frames
extracted from the video need to be processed by the region
proposal network(RPN). The RPN extracts the regions of
objects from the image. The SGG module takes the output of
the RPN module as input and calculates the probabilities that
the object in the proposed region belongs to different classes
and the probabilities that the relation between objects belongs
to different classes.
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There are three modules for processing the video for SGG,
Adaptive Blurry Image Rejection (ABIR), Keyframe Group
Extraction (KGE), and Spurious Detection Rejection (SDR).
We employ the local scene graph and the global scene graph
to distinguish scene graphs generated from a single image and
images describing the same room.

1) ADAPTIVE BLURRY IMAGE REJECTION
For better performance, the object and relation recognition
modules need to input clear images. But some blurry images
may be collected due to the movement of the camera in the
process of images collection. In blurry images, the shape,
size, and color of objects may change, which will harm
objects and relations recognition. To eliminate the influence
of blurry images, the variance of Laplacian is used to measure
the intensity variations between pixels in an image:

V =
1
WH

W∑
x=1

H∑
y=1

L(x, y)2 −

 1
WH

W∑
x=1

H∑
y=1

L(x, y)


2

(10)

L(x, y) =
(
∂2I/∂x2

)
+

(
∂2I/∂y2

)
(11)

where W ,H represent the width and height of the image
respectively. L(x, y) is the Laplacian operator. However, some
low texture images may be filtered as blurry images, as the
intensities of low texture images are also not significantly
changed.

To overcome the problem of texture, the ABIR algorithm
is adopted. Over the Laplacian variances, ABIR evaluates the
exponential moving average (EMA):

St =

{
Vt t = 1
α · St−1 + (1− α) · Vt t > 1

(12)

where t represents time step, Vt is the variance of Laplacian
at t , and α is a constant smoothing factor in the interval [0,
1), which represents the influence size of previous observa-
tions on the current St . The initial EMA does not follow the
observed values as the few previous observations, which will
produce some deviation in the final result. To correct this
deviation, we process the final St :

S ′t =
St

1− αt
(13)

S ′t is the bias-corrected average value, which is further pro-
cessed to obtain the adaptive threshold:

tblurry = g · ln
(
1+ S ′t

)
+ b (14)

where gain and offset correspond g and b, respectively.

2) KEYFRAME GROUP EXTRACTION
The process of the KGE module is divided into three steps:
(1) Accepting a series of processed images. (2) Filtering out
unnecessary frames by dividing the input image into three
parts. (3) Forming a keyframe group. Note that the input

images are divided into the following three parts: leftmar-
gin=*,labelsep=5.5mm
• Keyframe: The first anchor frame and the coverage of
the keyframe group is determined with keyframe as
reference.

• Anchor Frame: Apart from the latest anchor frame, all
other anchor frames are inactive. The next anchor frame
is determined by the active anchor frame.

• Garbage Frame: Except for the keyframes and anchor
frames, all the other frames are garbage frames, which
are regarded as redundant frames and discarded.

Specifically, the process of the KGE module is as follows:
This module defines the first keyframe by the first nonblurry
frame. Other frames need to be classified and each incoming
frame needs to be compared with the current keyframe and
the active anchor frame. When the overlap between the frame
and the active anchor frame is lower than tanchor %, the frame
is reserved as the next anchor frame. When extracting the
first anchor frame, the input frame needs to compare with the
keyframe. When a new anchor frame is detected, the current
active anchor framewill turn into inactive, and the new anchor
framewill become active. If the overlaps value of an incoming
frame and the keyframe is lower than tkeyframe %, the frame
will become the new keyframe, and the previous keyframe
and anchor frames will form the keyframe group.

To compute the overlap between two frames, one frame is
mapped to the coordinate of the other:

overlap =
1

W · H

∑
x

∑
y

−→
1 IW ,H

(
p′(i, j)

)
(15)

IW ,H =
{
(x, y) | 0 ≤ x < W , 0 ≤ y < H , (x, y) ∈ Z2

}
(16)

where
−→
1 A(·) is an indicator function for set A. Projection

function p′(i, j) project source frame to target frame. It is
defined as:

p′ = K · Ti,j · D(p) · K−1 · p (17)

where K is intrinsic to the camera, Ti,j are the relative poses
between i frame and j frame, p is original point, D(p) means
point p depth.
With the application of keyframes and anchor frames,

the KGE module effectively removes the redundant infor-
mation in continuous image sequences. Besides, even if the
camera still for a long time, the module effectively handles
redundant frames.

3) SPURIOUS DETECTION REJECTION
During generating scene graphs from images clipping from
video, the recognition module cannot perform perfectly as
the frames captured by the camera are affected by noise. The
SDR module aims to eliminate errors and repeated detec-
tions with prior knowledge. The SDR module is applied to
multiple modules: region proposal, object recognition, and
relation extraction modules. First, the SDR module deletes
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the redundant target area in the region proposal module with
the use of non-maximum suppression (NMS) [42]. For the
object recognitionmodule, the SDRmodule deletes irrelevant
objects. Besides, the SDR module deletes predefined irrele-
vant objects such as roads, sky, buildings, andmoving objects.

For the relation extraction module, the SDRmodule counts
the possible relations of all object pairs in all frames from
one frame group and keeps the most frequent relations in the
scene graph. If multiple relations appear the same number of
times for an object pair, they will all be added to the graph.
Then, the module SDR employ a relation dictionary, which
is extracted from the statistical information of the visual
genome dataset, as prior knowledge. The relation dictionary
includes the statistical data between object pairs, and the pixel
distance dpixel stored in the form of Gaussian distribution.

As to recognizing the relation between object pairs,
the process is shown as follows: (1) the SDR module detects
the related object pairs. (2) Searching the relation dictionary
for the detected object pairs. (3) calculating the probability
of the detected relation. To calculate the probability, the pixel
distance between objects and prior statistical information is
applied to filter out relations with the probability lower than
the threshold. The probability of relation Pr

(
r | dpixel

)
is

calculated as follows:

Pr(r | dpixel )= Prdict
(
r | dpixel

)
·φµ,σ 2

(
dpixel

)
/φµ,σ 2 (µ) (18)

φµ,σ 2 (k)= (1/
√
2πσ 2) exp

(
−[1/2]([k−µ]/σ )2

)
(19)

where Prdict
(
r | dpixel

)
mean the statistical probability given

pixel distance. φµ,σ 2 (k) is Gaussian function. The normalized
probability density function is employed to approximate the
probability of distance between points.

4) LOCAL SCENE GRAPH
There will be a temporary ID in the local scene graph and
a permanent ID in the global scene graph for the same
object. With the recognition module, the semantic label of
the objects and probability scores of the label is obtained
easily. The top-k labels and the scores are kept for the same
node detection. Besides, to eliminate the measurement error
caused by representing the object position with the center
point, the object position is represented in the form of the
Gaussian distribution. After dividing the object region into
5× 5 sub-regions, the center rectangle is cut from the object
bounding box given by the region proposal module. Then,
the 3D position of each point in the center rectangle relative
to the first keyframe is calculated by

p′′ = Ti,o · D(p) · K−1 · p (20)

where i and o mean the indices of the current frame and
first keyframe. We then evaluate the mean and variance of
the Gaussian distributionN

(
µ, σ 2

)
of the 3D position. Each

dimension x, y, and z are assumed to be independent and
identically distributed, and the points number is reserved for
evaluation.

The color histogram of the object is got by

hH ,S,V = N · Pr(H = h, S = s,V = v) (21)

where (H , S,V ) represent the three axes of the color space,
and N represents the number of pixels. Each axis of the color
space is divide into c-bins, that is, the size of the histogram
is c3. In the end, a thumbnail of the object for the region in
the bounding box is obtained.

The attributes extracted in this step will be updated
and modified by subsequent modules, which collect object
information from multiple frames and then make the final
decision.

5) GLOBAL SCENE GRAPH
The updating and merging of the scene graph will integrate
the local scene graph generated from a single image into the
global scene graph. Richer scene information will be col-
lected with the changes of camera position and perspective,
and the recognition module extracts different features from
the same object. To integrate different features and eliminate
the repeated extraction, we propose a module for same node
detection.

When adding nodes to the global scene graph, the same
node detection needs to be performed. In the same node
detection, the following features are employed, object label,
3D position, and color histogram. The similarities of these
features between the newly added node and the previous node
are calculated, respectively. The similarity scores of each
feature are calculated as follows:

For label similarity, the label similarity is defined as slabel,
which is calculated as

slabel

=


|Co ∩ Cc| · score |Co ∩ Cc| > 0
{1− dwv (fwv (lo) , fwv (lc))}

· score otherwise

(22)

where o and c respectively represent the original node in
the global scene graph and the candidate node in the current
frame. Co and Cc contain top-k object prediction category
labels. lo and lc represent the label with the highest score.
The number of common elements in Co and Cc is multiplied
by the score. If there are no common elements, the scores are
related to the distance between the word vectors of lo and lc.
The score is calculated as follows:

score = max
i∈{o,c}

{
fsi (l) : l ∈ Ci

}
(23)

where the input is a label in candidate set Ci, and the score
function fsi returns the score of the label.
For position similarity, we define position similarity as

sposition, which is calculated as

sposition =
∏

j∈{x,y,z}

I j
(
µjc

)
(24)

VOLUME 8, 2020 185877



Z. Liao et al.: TSM: TSM for Representation in Indoor Environment Understanding

where µc represents the mean of an object position in the
candidate set. The similarity of the position information in
the x, y, and z directions is calculated by

I j =


1

∣∣∣µjc − µjo∣∣∣ < σ
j
o

1−φ
(
Z
µ
j
c

)
+φ

(
−Z

µ
j
c

)
1−φ

(
Z
σ
j
o

)
+φ

(
−Z

σ
j
o

) otherwise
(25)

where Z is the z-score of a normal distribution, φ(·) output the
area of standard normal distribution. If the difference between
the position of the candidate object and the position of the
object in the global scene graph is less than σo, the position
similarity is considered to be 1. Otherwise, the position sim-
ilarity is inversely proportional to the distance.

For color similarity, the color similarity is defined as scolor
accoding to another color similarity:

dh(hi, hj)=

∑
X
∑

Y
∑

Z min
(
hi(x, y, z), hj(x, y, z)

)
min

(∣∣hi∣∣ , ∣∣hj∣∣) (26)

which is calculated with the intersection of histograms. hi and
hj are the two histograms for comparison. X ,Y , and Z is the
axis of 3-D space. | · | return the magnitude of a histogram.
When measuring the distance between histograms, the inter-
section of the histograms ensures the efficient calculation and
effective comparison of the color histograms. The final color
similarity is:

scolor = 1− dh
(
hoH ,S,V , h

c
H ,S,V

)
(27)

Finally, the above similarities are combined to get the total
similarity:

stotal =
∑
i∈F

wi · si (28)

where F =
[
label, position, color

]
. When the similarity

between the candidate node and a node in the global scene
graph is greater than the threshold, these nodes are considered
to be the same.

The process of merging and updating for global scene
graph generation is as follows. The global scene graph is
initialized by the first keyframe.With the first frame inputted,
the local scene graph is generated and then merge with the
global scene graph. During the merging process, the nodes
generated in the local scene graph are compared with the
nodes in the global scene graph, and the same nodes will
be deleted. Only the nodes that do not appear in the global
scene graph are added to the global scene graph. During
the updating process, the label with the highest score in the
top-k label set Co ∪ Cc used for the same node detection is
selected as the latest label for one node. The 3D position
of the object will also be updated according to the latest
observation information. The color histogram is combined
with the incoming color histograms. The number of points
that remain in the node becomes the sum of the original and
new number of points. If the label with the highest score
comes from the incoming scene graph, the thumbnail will be
replaced by the incoming thumbnail.

D. FUSION OF TOPOLOGICAL MAP AND SCENE GRAPH
To obtain the scene graph of each room, the video obtained
by the robot during the full coverage exploration needs to be
split. During the environment exploration, the robot records
the video of the environment and record the position of the
robot and the timestamp in the video every n seconds. These
position information and video timestamps are reserved for
splitting the exploration video.

The topological map is constructed based on the met-
ric map, in which the door nodes describe the connectivity
between two rooms. The exploration video will be split with
the positions and timestamp recorded during environmen-
tal exploration and the door nodes of the topological map.
While splitting the video, the door dictionary containing
point group created during door node generation is applied
to judge whether the robot passes the door. After splitting the
video, we get the image group for each room easily and then
construct the scene graph of the room with the image group.
Every room node has its scene graph, thus the fusion of the
topological map and the scene graph is obtained.

The process of splitting the video is as follows:

(1) Choose a door node and take its door dictionary with
position information of the point group.

(2) Select all positions whose distance to any point in the
point group is less than the thresholdDthreshold from the
positions recorded during environmental exploration.

(3) Obtain the timestamps in the video for the selected
positions and record these timestamps for splitting
video.

(4) Repeat steps (1) (2) (3) until all the timestamps are
obtained by all door nodes.

(5) Split the environment exploration video according to
the timestamps recorded in (4).

(6) According to the connectivity between the door node
and the room node in the topological map, the split
video is divided into slices of the rooms.

IV. EXPERIMENTS
In this section, we constructed a topological map in a simula-
tion environment, verified the effectiveness of generating the
scene graph from the video, and given a TSM instance derived
from the simulated indoor environment and scannet data set.
The compositions of TSM are vividly illustrated in Figure 4.

A. EXPERIMENTAL SETUP
The turtlebot3 [43] with the Robot Operating System (ROS)
is applied [44] in the simulation environment (Gazebo and
Rviz) to construct a topological map of TSM. Figure 5
presents the indoor environment model in Gazebo and Rviz.
The Gmapping [41] package is employed to build the metric
map of the environment from data collected by a laser sensor.

The Factorizable Network is trained on the Visual
Genome [45] dataset to obtain an effective SGG model.
The Visual Genome dataset connects images with seman-
tic concepts, which include 108,077 images with semantic
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FIGURE 4. Constructed map: (a) The metric map, above the figure, is built
with the collected 2D laser scan in the form of an occupancy grid map.
(b) The topological map, below the figure, is constructed with manual
assistance, nodes and edges are attached with semantic information.
Each room node has a scene graph.

annotations, like objects, relations, attributes, etc. When
training the model, what we need mainly includes the
attributes of objects in images, the types of objects, and the
relations between the objects.

To verify the effectiveness of our TSM construction frame-
work in a simulation environment, some videos from the
indoor scene video dataset ScanNet [46] are selected as
the videos of environment exploration. This dataset consists
of 1513 sequences, which are collected by RGB-D cameras.
Among them, the resolution of the frames is 1296 × 968
(color) and 640 × 480 (depth), and the frequency of image
collection is 30Hz.

B. TOPOLOGICAL MAP CONSTRUCTION
The construction of the topological map is carried out in a
simulation environment. Above all, an indoor environment
model is loaded, as shown in the top of Figure 5. The robot is
controlled by the keyboard to explore the environment and
complete the full coverage exploration of the environment
quickly. The metric map generated during the exploration is
viewed through Rviz, as shown in the bottom of Figure 5. The
metric map is presented at the top of Figure 4. Then, the topo-
logical map is constructed based on the metric map.We select
the topological nodes on the map and define semantic labels
for them. These labels are divided into room nodes and door
nodes. As shown in the bottom of Figure 4, 15 topological
nodes are selected for this environment, including 7 door
nodes and 8 room nodes.

FIGURE 5. Simulation model: (a) Gazebo(top) is a 3D dynamic simulator
that is able to accurately and effectively simulate in complex indoor and
outdoor environments. The indoor simulation environment is loaded in
gazebo. (b) Rviz(bottom) is a 3D visualization tool officially provided by
ROS. Almost all robot-related data we use is displayed in Rviz.

TABLE 1. Label and Scannet sequence for each room.

The label of each room we defined is listed in Table 1.
Finally, the edges are defined according to the spatial connec-
tivity. To get the cost of each edge, the distance between con-
nected topological node is obtained by the A star algorithm
according to the calculation rules of the actual navigation
route of the robot. Combined with the navigation behavior
generation rules, the navigation behavior for each edge is
generated. The navigation behavioral topological map is visu-
alized as Figure 6

When the robot navigates with the use of the behav-
ioral topological map, it is able to generate a sequence
of commands for the robot to execute and generate a
recommended route for humans. For example, the robot
is placed in room_3 and get a command, like go to
room_8. The robot obtain a topological node sequence for
robot navigating, like ‘‘room_3, door_3, door_5, door_7,
room_8’’. By inquiring about the semantic information of the
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FIGURE 6. The navigation behavioral topological map.

topological map, the robot generate a recommended route for
humans, like: (leave living_room_1, cross corridor_1, cross
living_room_2, enter bedroom_2).

C. SCENE GRAPH GENERATION
The scene graph is generated with video slices classified by
rooms. The SGG model Factorizable Network needs to be
trained, and then modify the parameters of other modules for
generating scene graphs from the video.

The SGG model Factorizable Network is trained on
the Visual Genome dataset. The compute with Intel Core
i7-9750H CPU@2.60 GHz×12 and GPU RTX 2060 is
employed for the experiment. Based on the pre-trained Fac-
torizable Network [35], the final SGG model used in the
experiment achieves 29.574% of Recall@50 and 38.476% of
Recall@100 on the Visual Genome dataset.

With the trained Factorizable Network, the scene graph
is generated for each image from the exploration video. In
the process of capturing images from the video, the ABIR
module is applied to eliminate the effects of blurred images,
and the key parameters α, g, and b are designed as 0.9, 30,
and 25. After removing a host of blurred images, the KGE
module is employed to extract the keyframe group from
the remaining images. To reduce the budget of computing
overlaps between frames, the source image is mapped to the
target image and 1000 points are sampled for calculating.
For eliminating the influence of uncommon objects in the
indoor environment during object recognition, the SDRmod-
ule ignores 68 objects out of 400 objects in the recognition
process. The probability threshold of SDR is set to 0.5 to
remove the relation with great uncertainty. When building
color histograms, each direction is divided into 8 bins, and
the size of the histogram is 512. During performing the same
node detection,wlabel ,wcolor ,wposition is set to 0.375, 0.25, and
0.375, respectively, and set the same node detection threshold
to 0.5. In Figure 7, there is an instance of generating a

scene graph from the keyframes in the captured image group.
With the continuous input of frames, the global scene graph
becomes more complete. With the representation of the scene
graph, objects in the environment and relations between the
objects are clearly displayed.

According to the previously topological map, eight
sequences are selected from the ScanNet dataset as videos
obtained in eight different rooms, as shown in Table 1. We
conducted some comparative experiments to verify the effect
of the object detection module, the KGE module, and the
same node detection module with the use of scene0010_00.
Table 2 presents the results obtained from comparative exper-
iments. The first experiment serves as a reference for com-
parison. The same node detection threshold, anchor frame
threshold, and object detection threshold are adjusted, and
the anchor frame number, node num, and total time are com-
pared. From Table 2, we know that the larger the threshold
of the same node detection, the fewer nodes are judged as
the same node, and more nodes are finally obtained. At the
same time, the more nodes to be processed, the more time
it takes. The number of anchor frames is adjusted by the
anchor frame threshold. If the overlap between a frame and
the active anchor frame is less than the anchor frame thresh-
old, this frame is judged as a new active anchor frame.
It can be seen that the larger the anchor frame threshold,
the larger the anchor frames number, nodes number, and total
times. The object detection threshold adjust the number of
objects detected in the image, that is, the larger the thresh-
old, the fewer objects are detected and the less total time it
takes.

The results of SSG from the video indicate that the scene
graph describes the environment in the form of JSON with
less memory. As the accuracy of the object detector and
the SGG module increases, the robot will also establish a
more accurate environment model, which will improve the
robot’s intelligence. The ABIR, SDR, and KGE modules
are effective to reduce the redundancy of the scene graph,
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FIGURE 7. Example of generating scene graph from keyframe group.

TABLE 2. The influence of some modules on the global scene graph generation.

which is conducive to selecting clearer images from the image
group to generate the scene graph and improves the accuracy
of object detection. Since there are many blurred images in
the image group, there is no quantitative evaluation of the
generated scene graph. Through analysis, the performance of
the SGG module is able to be improved from the following
aspects. Firstly, training the object detector with appropriate
images and objects. In our experiment, the object detector

is trained on the Visual Genome dataset. The images of
this dataset include both indoor scenes and outdoor scenes,
and the 400 objects used in training may not always appear
in indoor scenes. Thus, we need to set a reasonable object
recognition threshold, and selectively ignore some objects
to eliminate the influence of uncertain objects. Secondly,
capturing clearer images. Images for the room is captured
from the ScanNet video dataset. Although most of the blurred

VOLUME 8, 2020 185881



Z. Liao et al.: TSM: TSM for Representation in Indoor Environment Understanding

FIGURE 8. The fusion of topological map and scene graph.

images are eliminated through the ABIR and KGE module,
images intercepted from the video are inevitably not clear
enough, which also affects the accuracy of the detector.

D. FUSION OF TOPOLOGICAL MAP AND SCENE GRAPH
In the simulation experiment, we select some sequences from
the ScanNet dataset as the video of each room. If the video
for each room is needed to be split from the exploration
video with the topological map, the threshold for judging
the video split timestamp is required to be computed. For
instance, the speed of turtlebot3 is v = 0.2 m/s. The time
interval for recording coordinate information during envi-
ronment exploration is n =2 s. The distance between two
adjacent points in the point group in the door node dictionary
is b = 0.4 m. The threshold is computed as follow:

Dthreshold =

√
b2 +

(nv
2

)2
≈ 0.45m (29)

With the video slices of each room, the modules for gen-
erating a scene graph from a video are employed to get the
scene graph of each room. The topological map and scene
graphs are finally integrated into one JSON file in the form
of a dictionary. The key of the dictionary is the node ID from
the topological map and the values include the topological
information and the scene graph information. The fusion of
the topological map and scene graph in this experiment is
shown in Figure 8, in which each room node in the topological
map is related to a scene graph.

V. CONCLUSION AND FUTURE WORK
In this article, we propose a scene semantic map construction
framework to build TSM. The TSM is a combined representa-
tion of the topological map and the scene graph for improving
the robot’s capability of understanding the environment intel-
ligently. In general, the topological map based on navigation
behavior enables the robot to efficiently and quickly generate
a global navigation route with a semantic description, while
the scene graph preserving objects and relations between
objects makes the representation of the scene more specific.

The purpose of the TSM is to record environmental informa-
tion and assist the robot to realize interpretable reasoning for
completing a multitude of human-robotic interaction tasks,
such as question and answer.

The simulation experiments verify the effectiveness of
the process for topological map construction and the vari-
ous modules for generating scene maps from videos. These
experiments suggest that TSM is capable of modeling the
environment with the navigation behavioral topological map
and scene graphs for providing semantic navigation routes
and describing the details of scenes. However, the framework
for constructing TSM is still immature. The TSM cannot be
built in real-time, so related applications need to be based on
the completed TSM, such as semantic question and answer,
semantic search, etc. During the process of constructing
TSM, the dynamic objects are not considered, which will
disturb the generation of the global scene graph and even limit
the use of the TSM construction framework. Since humans
and animals are the main dynamic targets in the environment,
we avoid detecting these objects by the SDRmodule to reduce
the impact of dynamic targets in global SSG.

Future work is needed to expand the application fields
of the TSM construction framework, which includes the
detecting and tracking of dynamic target [11], real-time TSM
construction, SGG with knowledge graph [33], and accuracy
improvement for SSG [47], etc. Additionally, future work
will be carried out, such as semantic navigation, semantic
question and answer, and other human-robotic interaction
tasks.
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