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ABSTRACT Motivated by the intrinsic dynamics of physical motion as well as establishment of target
motion model, this article addresses the problem of human motion recognition with ultra wide band (UWB)
through-the-wall radar (TWR) in a novel view of range profile serialization. Specifically, we first convert the
original radar echoes into range profiles. Then, an auto-encoder network (AEN) with three dense layers is
adopted to reduce the dimension and extract the features of each range profile. After that, a gated recurrent
unit (GRU) network with two hidden layers is employed to deal with the features of each time-range slice
and output the recognition results at each slice in real time. Finally, experimental data with respect to four
different behind-wall human motions is collected by self-developed UWB TWR to validate the effectiveness
of the proposed model. The results show that the proposed model can validly recognize the human motion
serialization and achieve 93% recognition accuracy within the initial 20% duration of the activities (the
average durations are 4s, 5.5s, 3s and 4.5s), which is of great significance for real-time human motion
recognition.

INDEX TERMS Human motion recognition, ultra wide band through-the-wall radar, auto-encoder network,
gated recurrent unit.

I. INTRODUCTION
Through wall sensing techniques have developed for many
years and become more attractive in a lot of fields, such as
counter terrorism, law enforcement, and security check, etc
[1]–[7]. Although these techniques have preferable capability
to precisely locate, robustly track, and clearly imaging some
hidden human targets, detailed information of the real-time
activities of the human targets can still not be dug out clearly.

Recently, the topic of humanmotion recognition exploiting
radar becomes a hot spot, and mass of machine learning
approaches have been applied to solve the problem [8]–[10].
Support vector machine (SVM), as one of the most classi-
cal machine learning methods, have been applied to distin-
guish different motion types based on radar data. In [11],
Y. Kim et al. used SVM to classify 7 kinds of motions,
such as running, walking and walking without swinging

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

arms. In [12], J. Bryan et al. used principal component
analysis (PCA) for feature extraction and SVM for feature
classification to realize the recognition of 7 different human
motions, such as walking, running, turning and punching.
By carefully designing the common features of those motions
in a handcrafting manner, different motion data is mapped
to several distinct point clusters in a higher-dimensional lin-
ear space, and these clusters are available to be split by
multiple segmentation hyper planes. Therefore, those motion
types could be recognized with a high accuracy [13]. How-
ever, the above method significantly relies on the quality of
handcrafting feature designs. Unreasonable features would
generate inappropriate high-dimensional linear spatial map-
ping, which leads to the unavailability of achieving the
best splitting hyper planes via the optimization methods,
and thereby significantly reduces the performance of human
motion recognition [14].

To avoid such drawbacks, deep learning methods were
adopted to extract the appropriate motion characters
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automatically [15]–[21]. Convolutional neural network
(CNN) is one of the most utilized deep learning structures
to improve the classification accuracy for multiple human
motion types [22]. Owing to its capability of learning, CNN
is able to automatically extract deep motion features from a
given action dataset which has a large quantity of data sam-
ples with type labels, and thereby achieves high recognition
accuracy [23]. Nevertheless, CNN has a static structure and
requires all the input data with exactly the same size along
each dimension. It has the following 3 disadvantages: (a) It
is not well compatible with the dynamic feature of physical
motions, because the lasting time of human motions could be
any length; (b) It makes it impossible to give the real-time
recognition results in the process of action occurrence while
applying CNN in a real-time scenario of detecting motion
types. The reason is as a result of the completeness of the
input data. (c) It involves repeated computation. Therefore,
CNN is not suitable for radar based human real-time motion
recognition.

Different from other deep learning architectures like
multilayer perceptron (MLP) and CNN, recurrent neural net-
work (RNN) is a significant partition among the deep learn-
ing techniques, which is good at dealing with sequential
data [24]. It can utilize the sequentiality to learn and extract
sequential features from a sequential input data stream.
In [25], H. Li et al. presented a framework based onmultilayer
bi-LSTM network (bidirectional Long Short-Term Memory)
for multimodal sensor fusion to sense and classify daily
activities’ patterns and high-risk events such as falls. In [26],
J. Zhu et al. proposed a deep learning model composed
of 1-D convolutional neural networks (1D-CNNs) and long
short-term memory (LSTM). The results show that the pro-
posed model can extract spatio-temporal characteristics of
the radar data and achieve the best recognition accuracy with
relatively low complexity compared to the existing 2D-CNN
methods. In our previouswork [27], we used the stackedRNN
with LSTM units to extract sequential features for automatic
motion classification and verified that a stacked RNN with
two 36-cell LSTM layers successfully classifies six different
types of human motions. Due to the mechanism of recur-
rent feedback, RNN is capable to remember the relationship
between the historical inputs and the current input. Because
of the time-dependent and sequential nature of human body
and limb motion, RNN is a preferred choice for learning
time-varying motion features that improves human body and
limb motion classification accuracy.

For traditional line-of-sight scenario, micro-Doppler fea-
tures are employed for radar based humanmotion recognition
[11], [28]–[30]. In the presence of solid brick wall, low
frequency (usually lower than 3 GHz) is usually adopted for
ultra wide band (UWB) through-the-wall radar (TWR). As a
result, the Doppler frequencies arose from the target motions
that lay in a quite narrow band within low frequency range.
This requires a very high frequency resolution to achieve
enough resolution to distinguish the detailed Doppler fre-
quencies (also called as micro-Doppler frequencies) induced

FIGURE 1. The scenario of hidden human motion detection with UWB
TWR.

by the motion of limbs. It leads to the invalidation of using
time-frequency analysis method to represent the motions of
behind-wall human target. Fortunately, the round-trip dis-
tance between the target and UWB TWR varies with the
motion activating. As long as the UWB TWR is of enough
distance resolution, detailed information of target’s motion
is able to be captured. In our previous work [18], an auto-
encoder network (AEN) and a self organizedmapping (SOM)
network were used to extract the features of human motion
from range profiles. We have proved that using AEN network
and SOM network to extract the feature of range profile can
implement human behavior information representation.

As a continuation, in this article, we address the problem
of human motion recognition using UWB TWR in a seri-
alization manner. Specifically, we first convert the original
radar echoes into range profiles. Then, an AEN with three
dense layers is adopted to reduce the dimension and extract
the features of each range profile. After that, a gated recurrent
unit (GRU) network with two hidden layers is employed to
deal with the features of each time slice and output the recog-
nition results at each slice in real time. Finally, experimental
results with respect to four behind-wall human motions val-
idate the effectiveness of the proposed model. The proposed
method has the following two highlights:

1) The human motion recognition results can be provided
at each temporal frame, which meets the application
requirement of UWB TWR in real time;

2) Our approach is able to deal with the recognition prob-
lem for temporal-length-varying human motions.

The rest of the paper is organized as follows. In Section II,
the signal model of UWB TWR is established. Section III
represents the mechanism of human motion serialization
recognition based on GRU network. Section IV elaborates the
procedures of dataset collecting, implementation processing,
and experimental evaluating. Section V ultimately concludes
this article.

II. SIGNAL MODEL
Consider a scenario that a UWB TWR is located against to
a wall to detect a single human who is performing some
motions on the other side, as shown in FIGURE 1.

186880 VOLUME 8, 2020



X. Yang et al.: Human Motion Serialization Recognition With TWR

The transmitted signal of the UWB TWR in this article is
stepped frequency signal [31]. The stepped-frequency signal
can be expressed as

s(t) =
K−1∑
k=0

rect
(
t − T/2− kT

T

)
ej2π(f0+k1f )t , (1)

where T is the lasting time of each carrier frequency point,
K is the total number of sampling points, KT is the total time
needed to transmit a complete frequency step signal of K
sampling points in time-sharing (It is generally called ‘‘the
duration of slow time period’’ or ‘‘one slow time period’’ for
short). f0 represents the starting carrier frequency,1f denotes
frequency step, and the function rect(·) is defined as

rect(t) =

1, |t| 6
1
2
,

0, otherwise.
(2)

The echos received by the receiver can be expressed as

sr(t) =
P∑
p=1

A(p)s(t − τ (p))+ sw(t)+ snoise(t), (3)

where the summation item is the echo reflected from the
human target, P denotes the total number of the scattering
points on the target, A(p) represents the amplitude of the echo
corresponding to point p, τ (p) is the round-trip temporal delay
of point p, which is expressed as

τ (p) =
R(p)air +

√
εwR

(p)
wall

c
, (4)

c is the velocity of electromagnetic wave spreading in the air,
εw denotes the permittivity of the wall, signal sw(t) signifies
the strong clutter reflected by the wall, and snoise(t) expresses
the other clutters as well as the environmental noises.

After orthogonal demodulation processing, we sample the
result in the temporal rate of T and achieve a discrete vector,
expressed as

sr = star + sw + snoise, (5)

where

star =
P∑
p=1

a(p)e−j2π f0τ
(p)
s0, (6)

s0 =
[
1, e−j2π1f τ

(p)
, · · · , e−j2π (K−1)1f τ

(p)
]†
, (7)

sw and snoise are the vectors corresponding to signal sw(t) and
snoise(t) respectively, † denotes the operation of transposition.

Afterwards, by performing inverse fast Fourier trans-
form (IFFT) withQ points, we get the range profile of a single
K -sampling-points period (also called slow time), expressed
as

srp =
[
srp(q)

]T
+ IFFT {sw} + IFFT {snoise}, (8)

where q = 0, 1, · · · ,Q − 1 is the index of range bins, and
srp(q) is the temporal form of the stepped frequency signal
after pulse compression, expressed as

∣∣srp(q)∣∣ =
∣∣∣∣∣∣∣∣
P∑
p=1

a(p)ejφ(q,τ
(p))

sinπ
K
Q
(q− Q1f τ (p))

sinπ
1
Q
(q− Q1f τ (p))

∣∣∣∣∣∣∣∣ . (9)

With Eq. (9), the following remarks can be inferred:

1) The spatial states of the human motions have been
implicated in srp(q). Each slow time period KT records
the short-term posture information of the hidden human
target at that time.

2) With the continuous accumulation of slow time peri-
ods, dynamic information of target movement can be
obtained. As the UWB TWR continuously emits the
stepped frequency signal represented by (1) in a slow
time period KT and receives the behavioral echo sig-
nal of the hidden human target in the scene, a two-
dimensional data block that contains the human body
motion information is finally formed. In the process
of human motion, the range profile received by the
radar is arranged by a one-dimensional range profile
corresponding to a plurality of slow time periods in the
direction of time lapse.

Therefore, the range profile has the capability to repre-
sent hidden human motions and each time slice represents a
one-dimensional range profile.

Additionally, since the strong clutters reflected by the wall
significantly interferes with the energy reflected from the
hidden target, moving target indicator (MTI) technique is
utilized to inhibit the static background clutters [32].

III. HUMAN MOTION SERIALIZATION RECOGNITION
A. MOTIVATION
Human brain is of highly complicated, smart, and collabo-
rated to recognize a large number of motion types in short
time. In practice, the recognition procedure can be roughly
described in the following.

Suppose a scenario that an observer O watches a target
S who performs a type of motion M . Then the following
judgment stages would be occurred:

1) The initial stage: When S prepares to perform M , O
does not know what motion S is going to perform at
such instance. But O still has the conscious that S is
going to perform some motion, which is different from
the state of no motion performing.

2) The transient stage:When S starts to perform part ofM ,
O gradually recognizes which type of motions that S
is doing, and quickly rules out the possibility of other
motion types except forM .

3) The steady stage: When S continues to perform M
until cease, O provides M , the result of the motion
recognition, with a high confidence by combining the
historical motion information that O has observed.
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FIGURE 2. The structure of vanilla RNN.

4) The final stage: When S stops performing M , O gives
the assertion within a short time that M has been
stopped and S is doing nothing.

In the above description, we can find that the entire recog-
nition procedure conducted by O’s brain is a temporal seri-
alization process in essence. The process can be regarded as
a transfer that multiple latent motion features or states vary
with time flows. During transferring, the brain is of strong
capability to conduct the visual motion features abstraction
and the motion type analysis. The recognition result outputs
at each temporal instance.

Therefore, motivated by the aforementioned behavior of
brain, we expect that UWB radar could carry out similar
capability to extract motion features, judge motion types and
provide recognition results at each slow time instance.

B. RECURRENT NEURAL NETWORK
RNN has three common structure forms: vanilla RNN, long
short-termmemory (LSTM), and GRU [33], [34]. All of them
are deep in both spatial layers and temporal flows.

Vanilla RNN is the simplest structure of RNN, which is
conducted from the architecture of MLP with three layers,
as shown in Figure 2. The only difference between MLP and
vanilla RNN is the loop link in the hidden layer. Therefore,
the work flow of vanilla RNN can be expressed as

s(t) = g
(
Ux(t) +Ws(t−1) + b(t)s

)
, (10)

where x(t) is the input of the network, s(t) represents the output
of the hidden layer at time t , U denotes the link weights
between the input layer and the hidden layer,W signifies the
feedback loop weights in the hidden layer, b(t)s is the bias item
in the hidden layer, and g is the activation function. According
to the flow shown in Figure 2, the final output y is able to be
expressed as

y(t) = g
(
Vs(t) + b(t)y

)
= g

(
V
(
Ux(t) +Ws(t−1) + b(t)s

)
+ b(t)y

)
, (11)

where g is also an activate function.
Theoretically, vanilla RNN could deal with sequences at

any length and remember all the historical information that

FIGURE 3. The structure of LSTM and GRU: (a) LSTM structure; (b) GRU
structure.

has been passed through. However, it has been proved to be
impossible for vanilla RNN, since it faces the severe problem
of gradient explosion or vanishing during training, which
leads to the short-term memory of vanilla RNN.

To address the above problem, gated mechanism was pro-
posed and applied in LSTM as well as GRU. Figure 3 depicts
the structures of LSTM and GRU. Both of these two net-
works inducemultiple extra ‘‘gates’’ to control the quantity of
information flowing within the hidden layer. LSTM contains
three gates: the forget gate, the input gate, and the output gate,
whereas GRU includes only two gates: the reset gate and the
update gate. From the aspect of spatial complexity, LSTM
embrace more parameters than GRU. Therefore, GRU has
less computation costs than LSTM. As for the aspect of per-
formance, LSTM and GRU almost have the same effects on
multiple recognition tasks. In consequence, we just describe
the work flow of GRU as below.

o(t)[l]r = σ
(
W rhh

(t−1)[l]
+W rxx

(t)[l]
+ b[l]r

)
,

h̃(t)[l] = g
[
W h̃h

(
o(t)[l]r � h(t−1)[l]

)
+W h̃x

x(t)[l] + b[l]
h̃

]
,

o(t)[l]z = σ
(
W zhh

(t−1)[l]
+W zxx

(t)[l]
+ b[l]z

)
,

h(t)[l] = o(t)[l]z � h(t−1)[l] + (1− o(t)[l]z )� h̃(t)[l], (12)

where l represents the l-th hidden layer, x(t)[l] is the input
of the l-th hidden layer, σ and g are activate functions, W
and b represents weights and bias respectively, h̃(t)[l] denotes
the input candidates of the GRU, the letter r and z indicate
the reset gate as well as the update gate, and � signifies the
Hadamard product.
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C. THE PROPOSED REAL-TIME HUMAN MOTION
SERIALIZATION RECOGNITION MODEL
According to the comparisons of different types of RNN
mentioned above and inspired by the human brain behavior
recognition process, we propose a real-time human motion
recognition model based on GRU.

Before using the GRU network for real-time recognition,
we need to use a network to extract the hidden information
in the range profile. In this article, AEN is utilized to extract
the common motion features. The reason why we choose the
AEN is that the structure is brief and can implement unsu-
pervised self-learning of dimensionality reduction features of
data without additional manual feature selection [35]. The
architecture of AEN is shown in Figure 4.

FIGURE 4. The structure of AEN.

Two sub-networks are included in AEN: one of them is
the encoder, and the other is the decoder. The encoder aims
to compress and map the input data into a smaller feature
space and the decoder tries to recover the input data from
the mapped feature space. Hence, AEN can be treated as
an equivalent representer transforming the data space into a
compact feature space, holding the dominated information
implied in the motion data. When the output of AEN is quite
similar to the input data within an error tolerance during the
training phase, the feature layer shared by the encoder and
the decoder can represent the features of the input data well.
Hence, we only maintain the encoder to transform the range
profile into the deep features during usage.

Accordingly, a novel serialized recognition model for hid-
den human target is proposed, and the structure of the model
is shown in Figure 5. By connecting the encoder part of
the AEN and the GRU network, the procedure of hidden
human motion recognition in serialization manner can be
achieved. Since the outputs of GRU network are also some
deep features, we add an extra layer with softmax function to
translate the features into the possibility of the motion type
that the input data belongs to. The softmax function can be
expressed as

f (xi) =
exi∑
i e
xi
. (13)

After the above operations, the proposed model can output
recognition results in real time.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET CONSTRUCTION
1) SAMPLES ACQUISITION
To evaluate the recognition performance of the pro-
posed model, we collect a human motion dataset with a
self-developed UWB TWR. The block diagram of the radar
system is shown in Figure 6. The acquisition scenario is
shown in Figure 7. Therein, the radar is placed against to
one side of a brick wall with a thickness of 0.70 m. The
hight of the radar is 0.90 m away from the ground. The radar
is equipped with a single transmitting antenna as well as
a single receiving antenna, and the distance between them
is 7.5 cm. Stepped frequency starting from 1.6 GHz and
ending with 2.2 GHz is employed as the emitting signal.
The frequency step is set to 2 MHz, resulting that the total
frequency points is 301. Additionally, the lasting time of each
carrier frequency is configured as 1×10−4 s to achieve a slow
time period of 0.03s. The range resolution is 0.25 m and the
polarization mode is horizontal transmission and horizontal
reception (HH).

During the experimental data acquisition, 4 volunteers
were asked to perform the following 4 motion types with
the same distance of 1.5 m apart from the other side of
the wall along the direction of light-of-sight for the radar:
i) boxing; ii) walking on a fixed point without arms swinging;
iii) picking; and iv) arm raising and lowering. The reasons
why we choose these four motions are that they belong to
daily motions and the changes of radial distances are obvious.
The 4 volunteers are all males. Their ages ranged from 23 to
28 years and weights ranged from 65 to 90 kg, with height
from 1.65 to 1.80 m. For each volunteer, every motion type
was asked to be performed 54 times repeatedly. Therefore,
the dataset contains 864 samples in range profile format.
In this article, the training set contains 544 samples, the val-
idation set contains 160 samples, and the testing set contains
160 samples. Each sample contains 404 slow time periods
(time slices). Therefore, the number of time slices used for
training is 544 × 404, and the number of time slices used
for validating and testing is 160 × 404. In addition, since
the range ambiguity of radar is 75 m, which is much less
than the distance of the volunteers who performs motions,
we truncated all the samples and only kept 512 range bins, i.e.
4.7 m, in round trip. So, the size of each time slice is 1×512.
For convenience, we use the words ‘‘motion I’’, ‘‘motion II’’,
‘‘motion III’’, and ‘‘motion IV’’ to refer to the corresponding
four motion types mentioned above.

The examples of motion samples are shown in Figure 8,
and we are able to find that abundant interferences as well
as the noise energy filled in the range bins other than the
zones appeared strong energy resulting from the volunteers
motions. According to the statistic learning theory [36], such
noises would weaken the recognition ability of the motion
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FIGURE 5. The structure of the proposed model.

FIGURE 6. The block diagram of the radar system.

FIGURE 7. The experimental scenario for dataset acquisition with a
self-developed TWR.

classifier without clutter suppression during the first-time
training since the statistical characteristics of noises are the
dominants. Therefore, clutter suppression is of importance in
the next step of dataset construction.

2) CLUTTER SUPPRESSION
In order to reduce the influence of clutter on the recogni-
tion results, we use the maximum entropy threshold method
proposed by [37] to determine the threshold E . The reason
why the maximum entropy threshold method is used is that
the signal-to-noise ratio (SNR) of each sample reaches a
high level. Different from the binarization of pixels using
the maximum entropy threshold method in image processing,

FIGURE 8. The motion samples: (a)motion I; (b)motion II; (c)motion III;
(d)motion IV.

after obtaining the thresholdE, we use formula (14) to process
the sample data. Eq. (14) can be expressed as

vth =
E − vmin
vmax − vmin

, (14)

where vmax and vmin represent the maximum and minimum
values (converted to decibels) in the training set, respectively.

Then we compare the value of every behavior distance
profile in the whole database with vth. If the value is bigger
than vth, it will be retained. If the value is smaller than vth,
it will be replaced by the threshold value vth. After that,
the sample data after threshold processing is standardized
again, the maximum value is set to be 1, the minimum value
is set to be 0. Finally, the human motion recognition database
of UWB TWR after clutter suppression is obtained.

Figure 9 shows an example of sample data after clutter sup-
pression. Comparedwith Figure 8, the sample data in Figure 9
can show the characteristics of hidden human motion more
clearly, which lays a foundation for the training and testing of
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FIGURE 9. The motion samples after clutter suppression: (a)motion I;
(b)motion II; (c)motion III; (d)motion IV.

sequential recognition model of hidden human motion based
on deep learning.

B. IMPLEMENTATION
Raw radar echo is transformed into range profile at first.
This operation consists of IFFT, MTI and clutter suppression.
After obtaining the preprocessed range profile, the AENoper-
ation is processed to extract local features. Then, a two-layer
GRU network encodes the temporal patterns. The output of
GRUflows into a fully-connected layer with a softmax activa-
tion function to classify the identification of the range-profile
at each time step.

Suppose the dataset composed by the range profile sig-
nature vectors extracted from the trained AEN contains
M examples. The training procedure is summarized as
Algorithm 1.

In Algorithm 1, L(i) is called as the loss function. TWR
human behavior recognition is actually a classification task.
We thus choose cross entropy as the loss function in this
article.

In this article, all models are implemented on a server
equipped with 64G memory and an NVIDIA GeForce
GTX1080 Ti graphics card. Each model is trained in Python
using Keras based on the backend of Tensorflow. We use
Adaptive moment estimation as the optimizer for back propa-
gation with a batch size of 20. Batch normalization technique
is also employed in the implementation. The learning rate is
set to 0.001.

C. EVALUATION
1) CONVERGENCE CHARACTERISTICS OF THE MODEL
In order to test the convergence characteristics of the model,
we carried out experiments on the training set and the veri-
fication set. The convergence curve of the network is shown
in Figure 10. It can be seen from Figure 10 that the proposed
model has good convergence characteristics in training set

Algorithm 1 Training a GRU Network
Input:

The maximum iterating steps I ; The learning rate decay
η; Training dataset XM ; Threshold φ;

Output:
The GRU net’s weightsW and bias b;

1: InitializeW (i), b (i) randomly, where i = 0;
2: Initialize the learning rate α (i) = 1, i = 0;
3: for i = 1, 2, · · · , I do
4: Randomly take out an example X (i) from XM ;
5: Randomly slice X (i);
6: Calculate the loss function L(i);
7: Update the weightsW (i) = W (i−1)− α (i)W (i);
8: Update the bias b (i) = b (i−1)− α (i) b (i);
9: Update the learning rate α (i) = α (0) e−η(i−1);

10: if L (i) ≤ φ ∪ i ≥ I then
11: Stop.
12: else
13: i = i+ 1.
14: Goto step (3).
15: end if
16: end for
17: OutputW , b.

and verification set. In the first 50 iterations of the model,
the loss function decreased rapidly. When the number of
iterations reached 300, the network basically converged, and
the loss was less than 1 × 10−5. It can be concluded that
the proposed model is suitable for human motion recognition
with UWB TWR.

2) REAL TIME RECOGNITION ANALYSIS OF THE MODEL
In order to test the performance of the proposed architecture
for processing human motion sequences, we evaluate the
model on the verification set. Figure 11 shows the human
motion recognition results and the raw range profiles for the
four motion types. The upper side of (a), (b), (c), (d) are
the range profiles of motion samples. The lower side of (a),
(b), (c), (d) are the real time recognition results. Where ‘‘1’’
means ‘‘motion I’’, ‘‘2’’ means ‘‘motion II’’, ‘‘3’’ means
‘‘motion III’’, ‘‘4’’ means ‘‘motion IV’’, and ‘‘5’’ means no
action has taken place. T0 represents the waiting time of an
action, T1 represents the duration of an action, T2 and T3
represent the start and end delay of network that correctly
identify the action types.

Take Figure 11(a) as an example for detailed analysis.
During T0, there is no information available, so the model
determines action 5 stably, which means no action occurs.
During T2, although the model knows that some action is
happening, there is too little information available, so there
will be a start delay in recognition. As the action continues,
the action information accumulates continuously. After T2,
the model has been able to judge the current action accord-
ing to historical information and current time information.
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FIGURE 10. Convergence curve of the proposed model.

FIGURE 11. Real time recognition results of the motion samples: (a)motion I; (b)motion II; (c)motion III; (d)motion IV.

After T1, the action ends, but the model still judges that the
action is taking place by using the historical information,
so there will be an end delay in recognition. During T1,
although there are blank areas caused by the action interval,
the model can still judge the action type according to the
association information. Note that other graphs in Figure 11
have the same characteristics above.

In the process ofmotions, they are notmaintaining continu-
ous movements, during which there will be some short pause
and it’s the reason for the blank area. In order to correctly
identify the blank area in the process of these motions, we use
the GRU network with memory ability. Although the current
time is blank, the model can judge the output of the current
time according to the historical information.

From the analysis aforementioned, we know that the recog-
nition process of the proposed model is similar to the human

brain judgment action type described in part A of Section III.
In the initial stage of action, it is impossible to determine
which action it belongs to. Only when the action information
is accumulated to a certain amount, can the action type be
accurately determined. The start and end delay (T2 and T3)
are unavoidable. The goal is to minimize the delay.

In order to observe the change rule of the recognition
ability of the model more intuitively, we regard the effective
human motion time T1 as 1, and take 1% as the step length
to test the relationship between the accuracy of model recog-
nition, time delay and the proportion of action occurrence.
We take the initial 15%, 18% and 20% of duration of the
activities as examples to explain the relationship between
them in detail. The test results are shown in TABLE 1.Within
the initial 15% of the activities, the recognition rate is more
than 80%. With the accumulation of movement information,
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TABLE 1. The relationship between accuracy, time delay and action proportion.

FIGURE 12. The relationship between the correct rate of behavior
recognition and the proportion of behavior occurrence.

FIGURE 13. Confusion matrix.

the model can achieve 91.06% recognition accuracy within
the initial 18% of duration of the activities. Within the initial
20%, the recognition rate of the proposed model reaches
93.00%. After calculation, the maximum delay time for the
experimental four behaviors is 1.33s. Such delays can be
tolerated in real scenarios.

In addition, to express the relationship between behavior
proportion and model recognition accuracy, we take the aver-
age of recognition accuracy of all actions in the same pro-
portion, and get the following result curve. The experimental
results are shown in Figure 12.

As can be seen from Figure 12, in the initial stage,
the recognition accuracy of the model is relatively low. With
the continuous accumulation of action information, the recog-
nition rate of the model increases rapidly. After the behavior
occurs 20%, the recognition rate of the model changes slowly.
In this article, only when the recognition accuracy is higher
than 93%, will we determine the type of action that is taking
place.

Figure 13 depicts the confusion matrix for the proposed
model. From the confusion matrix, we can observe that the

micro-F1 score of the model is 0.9543. This shows the effec-
tiveness of our model.

The following discussions can be drawn from the above
analysis.

1) As we described in Part A of Section III, the human
brain has a delay in judging the beginning and end of
an action. Similarly, the model proposed in this article
also has a certain delay in the beginning and end. It is
consistent with the real scene. From the experimental
results, we find that the start and end delay time of
an action is related to the complexity and duration of
the action. We also find that the proposed model has
a good follow-up to the behavior process. Therefore,
the ability of the proposed model to recognize human
behavior serialization is verified.

2) As we can see, the start time, duration and end time
of the four actions are different, which validates the
ability of the proposed model to handle non-equal-
length human motions.

3) Due to the gated memory mechanism in the GRU unit,
the proposed model can memorize historical informa-
tion an output behadvior recognition results based on
the input of the current moment immediately. There-
fore, the proposed model has a good real-time per-
formance and can meet the needs of real-time human
motion recognition of UWB TWR.

V. CONCLUSION
In this article, we have addressed the problem of human
motion recognition with UWB TWR in a novel view of
serialization. Firstly, the original radar echoes are converted
into range profiles. Then, an AEN with three dense layers is
utilized to reduce the dimension and extract the features of
each range profile. After that, a GRU network with two hid-
den layers is employed to deal with the features of each time
slice and output the recognition results at each slice in real
time. Finally, experimental data with respect to four different
behind-wall human motions is collected by self-developed
UWB TWR to validate the effectiveness of the proposed
model. The experimental results have shown that the pro-
posed model can validly recognize the human motion seri-
alizations and achieve 93% recognition accuracy within the
initial 20% duration of the activities (the average durations
are 4s, 5.5s, 3s, 4.5s). The proposed model is quite different
from other neural network models that have to wait until
the end of the action to give the action type. Our proposed

VOLUME 8, 2020 186887



X. Yang et al.: Human Motion Serialization Recognition With TWR

model is real-time, which is of great significance for real-time
human motion recognition.
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