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ABSTRACT Integrating wind power with existing generation systems is one of the most important ways to
decarbonise the power sector industry. However, integration must be considered in tandem with its effects
towards the adequacy of power supply mainly due to the intermittency of wind. Costs of generators and
reliability and carbon emission levels of new wind-integrated generation systems have to be considered.
The diversity of demand levels by various load sectors presents an additional pressure on the adequacy of
generation system, which should be considered during wind integration. Demand response is effective in
relieving the load demands and reducing the number of peaks, but rescheduling energy usage incurs cost
to utilities, which should be considered when it is used to aid the integrations of wind power. In this paper,
a holistic methodology for optimising the integration of wind power in generation systems is proposed by
considering all these factors. Multiple objectives of this optimisation are solved altogether when determining
the solution considering their conflicting relationships. Analyses are based on practical data obtained from
several real cases. Formulations of the optimisation objectives are generic enough to be useful in other
generation systems.

INDEX TERMS Wind, reliability, optimisation, generation system, renewable, demand response, load
sectors.

SYMBOL WITHOUT UNIT
k Auto-regressive constant
w Moving-average constant
e Random white noise
µ Mean value vector of random white noise
6 Covariance matrix
Vci Cut-in wind speed in m/s
Vr Rated wind speed in m/s
Vco Cut-out wind speed in m/s
L (t) DR modified load curve
L (t) Original load curve
� Set of hours when L (t) > Pk
9 Set of hours when L (t) < Pk
N Number of hours in 9
t Hour
Lb Load bus number
Gb Generation bus number
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α Ratio of generator capacity between 0 and 1 that has
been replaced by wind farms

β Ratio of peak load between 0 and 1, above which the
demand is shifted to off-peak hours

SYMBOL WITH UNIT
PWb Wind farm power outputs at bus b in MW
Pr Rated power capacity of wind farm in MW
Pk Allowable peak load in MW
PlossLb load curtailment of load bus Lb in MWh/y
VoLL Value of load loss in $/MWh
C Generator capacity in MW
EPG Expected power generated in MWh/y
Fix Fixed costs of generators in ($/MW)/y
Var Variable costs of generators in $/MWh
FOM Fixed O&M cost in ($/MW)/y
Cap Capacity installation cost in ($/MW)/y
VOM Variable O&M cost in in $/MWh
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Fl Raw material cost used to generate power in
$/MWh

ElecT Electricity cost of connecting generators to a
grid in $/MWh

FlT Transporting cost of raw material in $/MWh
EDR Expected demand rescheduled in MWh/y
IC Load interruption cost in $/MWh
CE Carbon emission level in tonne/MWh

ABBREVIATION
EECC Expected energy curtailment cost
EGSC Expected generation system cost
ELRC Expected load rescheduling cost
ECEC Expected carbon emission level
oil Oil-based combustion turbine and steam

generator
cl coal-based steam generator
ncl Nuclear steam generators
hy Hydro plants
wnd Wind farms
res Residential load
ind Industrial load
com Commercial load
lrg Large user load
agr Agriculture load
gov Governmental load
off Office load

I. INTRODUCTION
A global consensus holds that a sustainable energy system
can be achieved by integrating wind power into power grids
due to its main features of no carbon emission and unlimited
supply. However, wind farms should achieve grid parity –
producing large-scale electricity at prices equal to or cheaper
than current practices –for their integrations to be econom-
ically viable, and they have been able to do so. However,
wind power intermittency is a risk to the reliability of power
systems if their integrations become widespread, and limiting
wind power to conservative levels is an easy way to mitigate
the risk but this limitation unwantedly increases the reliance
on fossil fuel [1]. Consequently, various technologies that
facilitate the integration of wind without adversely affecting
the reliability of power systems are explored.

The battery energy storage system (BESS) has been con-
sidered one of the most effective methods owing to its energy
storage facility which is crucial for saving excess wind energy
for later usage, adjustable size by combining small cell banks
together [2], [3] and fast charging response to fill gaps of
power and demand mismatch, a feature which conventional
large scale generators do not have [4]–[6]. Apart from BESS,
pumped-hydro- and flywheel-basedmechanisms are effective
storage systems but lack deployment flexibility for requiring
huge space and have lower energy density compared with a
BESS of equal size. As a result, past studies on using energy
storage for improving wind integration focused on battery
operation modelling [7], [8] and its optimum sizing [9]–[11]

and location [12]. In addition to BESS, the dynamic ther-
mal rating (DTR) system is often used on lines connecting
wind farms and power networks to enhance the lines’ power
delivery capacity such that more wind power can be injected
into the network, resulting in less wind curtailment [13]. Past
studies proved that strategic placement [14], risk-constrained
design [15] and line ageing consideration [16], [17] of the
DTR system can improve the penetration of wind energy
and the reliability of power systems [18]. The reliability
modelling of the communication network connecting all DTR
sensors that are distributed across large areas [19] has enabled
the risk-informed management of lines connected to wind
farms [20], which critically prolongs the lines’ life, subse-
quently ensuring the continual absorption of wind power
and leading to overall lesser wind curtailment. Despite the
advantages of the BESS and the DTR system, the former is
limited by its energy density, charging rate, power ratings,
roundtrip efficiency and network topology, whereas the lat-
ter cannot store energy. Therefore, studies have investigated
the combined benefits of the BESS, the DTR system [21]
and the DTR system with flexible AC transmission system
devices [22] to facilitate the integration of wind energy by
compensating one another’s drawbacks.

Apart from the BESS and the DTR system, the demand
response (DR) programme [23] can mitigate the risk of wind
intermittency by levelling the load curve through uniform
distributions of load demand across a larger period of time
whilst maintaining the same amount of total energy con-
sumption. As a result, the pressure exerted on generators is
reduced substantially as peak loads are minimised. The major
impetus for DR is the awareness and recognition of the smart
meter as one of the major future grid components. Based on
smart meters installed at consumers’ side and the collected
real-time data of electricity usage behaviour, the DR pro-
gramme allows utilities and consumers to adjust electricity
demand for lesser concentration of loads at any time, thereby
reducing instances of power supply inadequacy [24]. This
result is normally achieved by offering attractive energy pric-
ing schemes through smart meters to incentivise consumers
to shift electricity consumption from peak to off-peak times.
Therefore, relevant system-wide deployment costs of smart
meters are usually justified by customers gaining flexibility
in controlling their load demands. In contrast to the BESS and
the DTR system, the smart meter is relatively much cheaper
and simpler in terms of technological sophistication. Without
having to alter network parameters or generation profiles
as the DTR system and the BESS do, the DR programme
is effective given sufficient participations and cooperation
from consumers. Thus, the UK electricity sector has become
increasingly open to the DR, which has been previously used
in combination with the BESS [25] and the DTR [26] to
improve the reliability of wind-integrated generation system
without incurring excessive costs, subsequently unlocking
greater potential for more integrations of wind power.

None of the previous works addressed the optimisation
of wind integration. Previous studies showed that the BESS,
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DTR and DR can improve the integration of wind, but the
optimum amount of integration was never explored, and no
model can determine the optimum wind integration level.
More importantly, complex relationships amongst different
types of generators that consist of numerous factors such as
fixed (capital and maintenance) and variable (fuel, electricity,
fuel transportation, ongoing capital and maintenance) costs,
effect of system reliability costs and environmental effects
due to various carbon emission levels were never considered
in all previous studies when dealing with the integration of
wind energy. These three factors form the first three draw-
backs that this paper intends to address. The act of balancing
generator and reliability costs is the universal goal of ade-
quacy and economic assessments of power systems [27], and
carbon emission level provides informed decision towards
power grid decarbonisations [28]. They are therefore impor-
tant to be considered in this paper.

Literature reviews also show that the DR programme
is more cost effective and easier to implement than the
BESS and the DTR in improving wind integration. However,
the intricate balance between various levels of DR imple-
mentations and cost against various percentages of wind
penetration has never been explored. Under the DR program,
consumers are normally incentivized to change their load
usage pattern, which has to be paid for by utilities [29]. Such
a cost has to be considered for a realistic DR program and
it represents the load interruption cost in this paper. Load
models used in all previous cited DR studies lumped all types
of load together without any discrimination between different
load sectors such as agriculture, industrial, residential, large
users, offices, governmental buildings and commercial, and
this approach ignores different incentives normally accorded
to different load sectors, leading to less practical DR models
which give equal rescheduling emphasis on all load sectors.
Therefore, this drawback – the fourth drawback – is addressed
in this paper for realistic DR implementations.

The identified research gaps above are summarized:

• Previous studies lack the framework that considers real-
istic and complex factors such as fixed and variable cost
of generators, system reliability costs, carbon emission
levels, and different load profiles of various load sectors,
when determining the optimum level of wind power and
demand response.

• Specific percentages of wind and DR penetrations on
all generators and load sectors are never analysed. As a
result, optimum levels of wind penetration and DR are
not available to utilities.

• Load sectors are never discriminated and lumped alto-
gether, resulting in the failure to identify critical load
sectors on which the DR can focus on to reduce load
rescheduling cost.

The contributions of this paper are:

• A framework that is able to determine the optimum
integration of wind power and implementation of DR
together, by minimizing generator costs, reliability cost,

carbon emission levels, and DR cost (discrimination
amongst load sectors considered), is proposed. The pro-
posed optimization explores the complex relationship
amongst these factors. The outcomes are beneficial for
vertically integrated utilities who own wind turbines,
and are interested to integrate wind power into genera-
tion systems for the purpose of decarbonisation without
adversely affecting power system reliability and incur-
ring operation costs.

• The proposed framework is able to identify specific
wind penetration and DR percentage on each type of
generators and load sectors, respectively. A range of
optimum results, in the form of Pareto solutions, are
obtained to give flexibility to utilities to select the most
appropriate solution.

• The discriminations of load sectors carried out in this
paper help identify critical load sectors on which the DR
program should focus to reduce load rescheduling cost.

II. METHODOLOGY
This section describes the proposed optimization framework
for integrating wind and DR. Fig. 1 illustrates the overview.

FIGURE 1. Overview of the proposed framework for optimising wind and
DR integration.

The proposed framework begins by initialising the opti-
mum proportions of wind penetration and demand response.
Wind data of potential wind farm sites are analysed and
modelled using the auto-regressive moving-average (ARMA)
model, and potential wind power levels are identified (see
wind energy model in Section II.A), which also considers
the correlation of wind data, to determine the amount of
wind power available for penetration. Then, data of various
load sectors are integrated into the load model (see Load
Model in Section II. B) to determine the effects of differ-
ent load interruptions whilst considering the opportunity for
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implementing the DR programme (see Demand Response
Model in Section II.C). Effects of the optimised solution are
evaluated in a typical sequential Monte Carlo (SMC) simu-
lation until convergence considering chronological statuses
of generators, wind farms and load levels. Indices measured
in the SMC simulation are generation fixed and variable
costs, system reliability cost, load rescheduling cost due to
the DR programme and carbon emission level; their details
are available in the Optimisation Model in Section II.D. The
next set of solutions evolves from current solutions based
on common rules of genetic algorithm (GA), and the entire
process restarts. Optimisation stops when function tolerance
drops below a certain threshold.

A. WIND ENERGY MODEL
One set of historical wind speed data is sampled for each gen-
eration bus of the investigated power system, all of which are
obtained from the British Atmospheric Data Center (BADC)
in an hourly manner from 2006 to 2016 [30]. Historical wind
speed data are fitted into the ARMAmodel to enable the sim-
ulation of wind speed and subsequently wind power, which is
one of the required inputs of the SMC simulation performed
in the proposed optimisation model [31]. The ARMA model
is necessary because it can randomly simulate an unlimited
number of wind speed values that satisfy the input require-
ments of SMC simulation. In other words, the number of
wind scenarios simulated by the ARMA model matches the
simulation number required by the SMC to converge (see
section II.E for SMC convergence criteria).

The ARMA model equation consists of two parts,
an n-order auto-regressive and an m-order moving average
(n,m):

yt = k1yt−1 + . . .+ kiyt−i + . . .+ knyt−n + et
−w1et−1 − . . .− wjet−j − . . .− wmet−m, (1)

where ki (i = 1, 2, . . . , n) and wj (j = 1, 2, . . . ,m) are the
auto-regressive and moving-average constants, respectively;
et is the random white noise, which is also normally and
independently distributed with zero mean and σ 2 variance,
notated as et ∈ NID

(
0, σ 2

)
. The ARMA equation shows

that the value of yt in a future time t is a mean value con-
ditional upon its past observed values, yt−i (i = 1, 2, . . . , n),
and random white noise, et−j (j = 1, 2, . . . ,m). In this paper,
yt represents wind speeds.
Correlations of historical wind speed data are considered

during simulations of ARMA models; thus, simulated wind
speed values retain the same correlation feature. Pearson’s
product–moment correlation is performed on all historical
wind speed data to enable this consideration, as follows:

ρx,y = cov(x, y)
/
σxσy, (2)

where cov is the covariance between any two historical wind
speed vectors notated as x and y, and σ is the standard
deviation between the two vectors. Random white noise in
(1) of each ARMA model is sampled by considering the

correlations calculated in (2) instead of independently of
each other and combining normal distribution properties of
random white noise of all ARMA models into the equivalent
multivariate format as follows:

f (x) =
1

(2π)
p
2 |6|

1
2

exp
{
−
1
2
(x − µ)T6−1 (x − µ)

}
,

(3)

where p is the number of ARMAmodels;µ is the mean value
vector of the randomwhite noise of all ARMAmodels, which
is also a zero vector due to zero mean distribution; 6 is the
covariancematrix of all ARMAmodels. Therefore, simulated
wind speed is also correlated in the same manner because the
covariance matrix guides the simulations of white noise and
contains the correlation of historical wind speed data.

Wind farm power outputs at bus b, PWb , are determined by
considering that the fluctuations of wind speed are negligible
within it, as follows [32]:

PWb =


0 0 ≤ Vw < Vci(
A+ BVw + CV 2

w

)
Pr Vci ≤ Vw < Vr

Pr Vr ≤ Vw < Vco
0 Vw ≥ Vco,

(4)

where Pr is the rated capacity of the wind farm; Vci, Vr
and Vco are cut-in, rated and cut-out wind speed of the wind
turbine, respectively; constants A, B and C are calculated as
follows [21]:

A=
1

(Vci−Vr )2

[
Vci (Vci+Vr )−4 (VciVr )

(
Vci+Vr
2Vr

)3
]
,

B=
1

(Vci−Vr )2

[
4 (Vci+Vr )

(
Vci+Vr
2Vr

)3

−(3V ci+Vr )

]
,

C =
1

(Vci − Vr )2

[
2− 4

(
Vci + Vr
2Vr

)3
]
. (5)

B. LOAD MODEL
Common system load demand data used in most power sys-
tem reliability analyses ignore the distinctions between load
sectors and are all lumped as a single entity [1]. As a result,
a load model that recognises individual load sector enables
the implementations of the DR programme to be sector spe-
cific instead of blanket applications on all sectors. Conse-
quently, this model causes less demand shift and minimally
disrupts existing load schedules, leading to less interruption
cost due to load rescheduling.

Hence, this paper uses a more comprehensive version of
the common load model by recognising that the entire system
load demand is composed of various load sectors with a
unique pattern for each sector by referring to the aggregate
of load demand survey done in [33]. Load sectors identified
and considered in the load model of this paper are residential,
industrial, commercial, large user, agriculture, governmental
and office. Their average composition and demand pattern as
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a percentage of the system load in every 24 hours are shown
in Fig. 2.

FIGURE 2. Demand patterns of various load sectors considered in this
paper.

The figure shows that the demand of each sector gener-
ally picks up and is sustained at the highest level during
common business hours between around 6 a.m. and 8 p.m.
The residential sector is relatively consistent and maintains
approximately the same level throughout the day compared
with other sectors. Other combinations of load sector pattern
may also be used depending on the gathered electricity con-
sumption data, and they will only affect the numerical values
of the simulation.

C. DEMAND RESPONSE MODEL
The considered DR programme of this paper shifts the load
demand above a certain percentage of the peak load and
distributes them equally to off-peak hours when the load level
is lower than the percentage threshold, as follows:

L (t) =

Pk t ∈ �(
L (t)+

∑
t∈� (L (t)− Pk)

N

)
≤ Pk t ∈ 9,

(6)

where L (t) and L (t) are the modified and original load
demand curves, respectively; Pk is the allowable percentage
of peak load; � is the set of hours when the original load
level is abovePk , also known as on-peak hours;9 is the set of
hours when the load level is belowPk , also known as off-peak
hours; N is the number of hours in 9. The second line of (6)
shows that the load restoration is also performed by limiting
the restored load level to Pk to avoid the formation of new
peaks. In instances when new peaks are formed, the remain-
ing load above the peak limit is added to the subsequent
hours until all the remaining load has been restored. After all
off-peak hours have been considered, remaining loads that
cannot be restored are deemed part of load curtailment.

Equation (6) is applied independently on each load sector
specified in the load model of Section II.B, which means that
the load shifting action is adjustable on each load sector and
may differ from one another. It is also worth noting that Pk
is dependent on outcomes of the optimization executed in the
simulation.

D. OPTIMISATION MODEL
The optimization aims to optimize the penetration of wind
power and the implementation of the DR programme, bymin-
imizing expected energy curtailment cost (EECC), expected
generation system cost (EGSC), expected load reschedul-
ing cost (ELRC) due to the DR programme and expected
carbon emission cost (ECEC). However, these indices have
conflicting objectives, and most of them are inversely related
with one another. For example, EECC can be kept low by
avoiding wind penetration to eliminate intermittency in wind
power generations, but this approach has the opposite effect
of raising EGSC andECECbecause energy produced bywind
farms is cheaper and without carbon emissions. Therefore,
all these objectives cannot be minimised as a single function
and should be solved as a multi-objective optimisation prob-
lem instead, as follows:

min


f1(t)
f2(t)
f3(t)
f4(t)

 = min


EECCLb(t)
EGSCGb(t)
ELRCLb(t)
ECECGb(t)

, (7)

where it shows that optimisation is performed by consider-
ing the chronological development of generation and load
demand levels over a specified period, i.e. hourly over a
year, and t denotes each hour. Subscript Lb indicates that the
indices are relevant only for load buses, whereas Gb indi-
cates generation buses. Details of the four objective functions
follow.
Objective 1: To minimise the EECC of power systems:

min f1 (t) = min [EECCLb(t)]

= min

[
L∑

Lb=1

PlossLb VoLL

]
, (8)

where PlossLb is the load curtailment of load bus Lb in MWh/y
after considering the penetration of wind farms and imple-
mentation of the DR programme on each load sector; VoLL
is the value of load loss in $/MWh and is not separated
based on load sectors because PlossLb is the average load loss
measurement of all load sectors; and L is the number of load
buses.
Objective 2: To minimise EGSC of generation systems:

min f2 (t)

= min [EGSCGb (t)]

= min
G∑

Gb=1


CGb
oil

(
1− αGBoil

)
Fixoil + EPGGboilVaroil

CGb
cl

(
1− αGBcl

)
Fixcl + EPGGbcl Varcl

CGb
ncl

(
1− αGBncl

)
Fixncl + EPGGbnclVarncl

CGb
hy

(
1− αGBhy

)
Fixhy + EPGGbhy Varhy

CGb
wndFixwd + EPG

Gb
wndVarwnd

,
(9)

such that

CGb
wnd=C

Gb
oil α

GB
oil +C

Gb
cl α

GB
cl +C

Gb
nclα

GB
ncl+C

Gb
hy α

GB
hy , (10)
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where C is the generator capacity in MW, and EPG denotes
the expected power generated in MWh/y; Fix and Var are
the fixed and variable costs of generators in ($/MW)/y and
$/MWh, respectively; α is the ratio of generator capacity
between 0 and 1 that has been replaced bywind farms; all gen-
erators are candidates for wind replacement. Subscripts oil,
cl, ncl, hy and wnd denote that all variables refer to oil-based
combustion turbine and steam generators, coal-based steam
generators, nuclear steam generators, hydro plants and wind
farms, respectively, at generator bus Gb in a power system
withG number of generator buses. Apart fromwind farms, all
the other generators are specified because they represent the
legacy generation system commonly found in existing power
systems, such that (9) is generic and applicable in most power
systems.

Fixed and variable costs are further defined as follows:

Fixoil = FOMoil + Capoil, (11)

Fixcl = FOM cl + Capcl, (12)

Fixncl = FOMncl + Capncl, (13)

Fixhy = FOMhy + Caphy, (14)

Fixwnd = FOMwnd + Capwnd , (15)

Varoil = VOMoil + Floil + ElecT oil + FlT oil, (16)

Varcl = VOM cl + Flcl + ElecT cl + FlT cl, (17)

Varncl = VOMncl + Flncl + ElecT ncl, (18)

Varhy = VOMhy + ElecT hy, (19)

Varwnd = VOMwnd + ElecTwnd , (20)

where (11) to (15) describe the consideration of fixed costs,
and (16) to (20) describe that for variable costs; FOM and
Cap are the one-time cost of fixed operation and mainte-
nance (O&M) and capacity installation in ($/MW)/y, respec-
tively; VOM is the ongoing variable O&M cost throughout
the operational period of generators in $/MWh; Fl is the
cost of raw materials used to generate power in $/MWh;
ElecT is the electricity cost of connecting generators to a
grid in $/MWh; FlT is the cost of transporting raw material
to generators from material mining sites in $/MWh. (18)
shows that although nuclear generators have fuel cost, their
fuel transportation cost is negligible because nuclear mate-
rial is dense and relatively much lighter than other types
of materials. Only hydro plants and wind farms have no
raw material-related costs because they harvest power from
natural sources.
Objective 3: To minimise ELRC of customers:

min f3 (t) = min [ELRCLb(t)]

= min
L∑

Lb=1



EDRLbres
(
βLbres

)
× ICres

EDRLbind (β
Lb
ind )× ICind

EDRLbcom(β
Lb
com)× ICcom

EDRLblrg(β
Lb
lrg)× IClrg

EDRLbagr (β
Lb
agr )× ICagr

EDRLbgov(β
Lb
gov)× ICgov

EDRLboff (β
Lb
off )× ICoff


, (21)

where EDR is the expected demand rescheduled of a load
sector in MWh/y; β is the proportion of peak load ranging
between 0 and 1, above which the demand is shifted to
off-peak hours based on the DR model in section II.B; IC is
the compensation cost for interrupting normal usage patterns
due to the DR programme in $/MWh. Subscripts res, ind ,
com, lrg, agr , gov and off denote that all variables refer
to residential, industrial, commercial, large user, agriculture,
governmental and office sectors, respectively, at load bus Lb
in a power system with L number of load buses.
Objective 4: To minimise ECEC of generation systems:

min f4 (t)=min [ECECGb (t)]

=min
G∑

Gb=1

((
EPGGboil

(
CEctoil+CE

st
oil

)
EPGGbcl CEcl

)
× EC

)
,

(22)

where CE denotes the carbon emission level for every MWh
of energy produced by fossil fuel generators in tonne/MWh,
EC is the emission cost for every tonne of CO2 emission,
and (22) shows that only oil- and coal-based generators emit
carbon. Oil-based generators are usually operated with com-
bustion or steam turbine and have different rates of carbon
emissions, which are identified in (22) by notations ct and st ,
respectively. The remaining generators considered in this
paper – nuclear, hydro and wind – do not emit carbon.
Optimisations of all the objectives above are performed

under the following constraints:

G∑
g=1

PGg =
L∑

Lb=1

PDLb, (23)

PGming ≤ PGg ≤ PGmaxg (24)

0 ≤ PlossLb ≤ PDLb (25)

where in (23), PGg is the power generated by each genera-
tor g and PDLb is the power demand of each load bus Lb.
In (24), PGmaxg and PGming are the maximum and minimum
power generated by each generator g, respectively. In (25),
the maximum load curtailment, PlossLb , of each load bus Lb is
limited to PDLb.
The proposed optimisation model is executed based on the

well-knownmulti-objective genetic algorithm (MOGA) [34],
which is required due to the four conflicting objectives.More-
over, MOGA is suitable because it can handle sophisticated
optimisation problems that consider various parameters such
as in this paper without imposing any bias on the relation-
ships of the objectives, thus allowing all potential conflicting,
supporting or unrelated relationships to be screened. Initiali-
sation of the optimization solutions, α and β, is random based
on their constraints, and subsequent optimisations of the solu-
tions are based on common GA procedures such as mutation,
combination and crossover [35]. Outcomes of MOGA are a
range of non-dominated optimal solutions, also known as the
Pareto front, which is achieved when no objectives can be
improved without degrading the values of other objectives.
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Solutions in the Pareto front are also ranked according to their
non-dominancy level.

A solution of the Pareto front is selected based on the
fuzzy method due to its ability to model human preferences
as mathematical equations [36]. It works by ranking all the
Pareto solutions according to the criteria of the decision
maker about the objectives in the form of a membership
function, as follows:

µfi (x) =


0 fi (x) = f maxi
f maxi − fi (x)

f maxi − f mini

f mini < fi (x) < f maxi

1 fi (x) = f mini ,

(26)

where µfi (x) is the membership of the ith objective function
value, fi(x), produced by the solution x, which indicates the
degree of preference towards x that is obtained from the
Pareto front that contains a set of other equally possible
solutions,�x ; f mini and f maxi are the minimum and maximum
points of the ith objective function, respectively; (23) shows
that 1 and 0 membership function values denote complete
incompatibility and compatibility, respectively, due to the
minimisation problems addressed in the proposed optimisa-
tion framework.

Solution x which produces the smallest sum of difference
between membership of the objective function, µfi (x), and
preference, µi, is selected, as follows:

min
x∈�x

k∑
i=1

∣∣µi − µfi (x)∣∣n , (27)

where k = 4 is the number of objective functions considered
in the proposed optimisation model; n is any integer number,
and a large number is usually selected to reduce the sensi-
tivity of the final solution towards the setting of preference
value, µi.

E. SIMULATION PROCEDURE
The simulation of the proposed optimisation framework is
described in this section, and the steps are as follows:
Step 1: Determine the ARMA wind speed models of

all generation buses where wind farms could be located to
replace conventional generators. Hourly wind speeds based
on these ARMA models are generated beforehand and will
be used later to determine wind power according to the
wind energy model in Section II.A if existing generators are
replaced with wind farms.
Step 2: Execute the proposed optimisation model, and

estimate solutions αGb and βLb for all generators and load
sectors.
Step 3: Perform SMC simulation to evaluate the effects

of the solution on the four objective functions – EECC,
EGSC, ELRC and ECEC – considering the random statuses
of generators, wind farms and chronological propagation of
load sectors for a year. Reliability data of generators are
generally available in the investigated power systems. Load
models from the power systems are also modified according

to the load model and the DRmodel presented in Section II.B
and II.C, respectively. SMC is performed yearly until conver-
gence, i.e. when the variation coefficient of expected energy
not supplied is less than 5% or when 100,000 simulations
have lapsed.

Locations, capacities, designs, access logistics and main-
tenance schedules of wind turbines must be determined to
determine their reliability data; as a result, the reliability of
wind turbine is case specific, and no generic wind turbine
reliability data that can be used for study purposes are readily
available [37]. Thus, a survey [38] on the reliability of the
commonly used wind turbines is examined in this paper. The
survey covers data obtained in Denmark, Germany and Swe-
den, which are countries with reliable, long-term operational
records of wind turbines installed at various environments.
Hence, the average statistical reliability data derived in the
survey is adopted in this paper. The wind turbine based on
the directly driven permanent magnet synchronous generator
technology is found most reliable, and its failure and repair
rates are 1.501/year and 123.6/year, respectively; thus, they
are used as the reliability data of wind farms modelled in this
paper.
Step 4: Generate the next set of αGb and βLb solutions

based on the rules of GA, and repeat Step 3.
Step 5:Repeat Step 4 until the function tolerance ofMOGA

process drops below a certain level.

III. RESULTS AND DISCUSSIONS
The IEEE 24-bus reliability test network (RTN) [39], espe-
cially the generation and load data, is used in this paper to
demonstrate the proposed optimisation framework. The orig-
inal generation system of RTN has 10 generation buses, and
all are candidate locations for hosting wind farms. Historical
wind speed data from 10 different locations in the BADC are
sampled and modelled according to the wind energy model,
which is then used to calculate wind power output, one for
each of the potential wind farms. Details of RTN’s original
generation system data in Table 1 show the bus, fuel, tech-
nology and maximum capacity of each generator. Capacity
values are the sum of individual smaller generator capacity
of the same type, i.e. same fuel and technology. Based on
the classifications in Table 1, 13 candidate generators can
be replaced with wind farms, and the degree depends on
the outcomes of optimisation. Fixed and variable costs of
generators stated in Table 1 [40] and wind farms [27] are
shown in Table 2 and 3, respectively; their carbon emission
rates [28] and cost [41] are shown in Table 4.

Next, the ramping rates of generators in Table 1 are
explained. General Electric (GE) company has recently
developed better gas turbine and steam turbine generators
that have ramping rate of 50 MW/min [42], and we consider
this capability for these two types of generators considered
in this paper. The considered ramping rate of nuclear plant is
63MW/min [43]. When extrapolating these two values to an
hour, as the SMC is investigated on an hourly basis, it is found
that the ramping rates of these generators are well above their
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TABLE 1. Generation system data of RTN.

TABLE 2. Fixed cost of generators.

TABLE 3. Variable cost of generators.

TABLE 4. Carbon emission rates and cost of generators.

considered capacity in this paper. Therefore, when looking
from the perspective of hourly time window, the ramping
rates of these generators are essentially instantaneous. Ramp-
ing rates of hydro plants are generally hard to determine
due to effects by reservoir size, water inflow and outflow
rates. However, it is generally agreed that hydro plants are
fast to react and therefore they can be considered to have
instantaneous ramping rate [44]. In this paper, we considered
that the size of reservoir is sufficient and water flow rates

are fast enough to warrant the instantaneous ramping rate of
hydro plants.

Load demand data of the original RTN are modified
by incorporating the distribution of seven load sector data
in Fig. 2, and their interruption costs due to rescheduling
by the DR programme are shown in Table 5 [29]. VoLL
considered in this paper is $7,500/MWh, which is obtained
from the UK Royal Academy of Engineering [45] and is
an average value determined from winter and summer data.
Based on data presented, the proposed optimisation frame-
work is executed, and the results are presented in this section.

TABLE 5. Interruption cost of load data due to rescheduling.

A. OPTIMIZATION OUTCOMES
From the 13 candidate generators for wind penetration and
7 candidate load sectors for implementing the DR pro-
gramme, the proposed optimisation framework considers
20 parameters when searching for the optimum ratios of wind
penetration, α, and load shifting, β. The Pareto results are
shown in Fig. 3–6.

FIGURE 3. EGSC versus EECC.

Fig. 3 shows that EGSC and EECC are inversely related.
When EGSC increases, the penetration of wind farms
decreases, and more CGUs are used to supply power demand.
Most of the EGSC index values are contributed by CGUs
because they are more expensive to operate than wind farms.
Total power supply fluctuates less due to the lower depen-
dency on intermittent wind power with the reduction of wind
farm operations. Under this condition with greater system
adequacy and more stable power supply coming from CGUs,
more load demand can be matched, and EECC decreases.
By extension, ECEC increases as more CGUs operate due
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FIGURE 4. ECEC versus EGSC.

FIGURE 5. ECEC versus EECC.

FIGURE 6. ELRC versus EECC.

to more carbon emissions from burning fossil fuels when
generating electricity, which forms an almost directly propor-
tional relationship with EGSC, as shown in Fig. 4. As a result,
the plot of ECEC against EECC in Fig. 5 is also inversely
related in a trend similar to that of Fig. 3. Another reason
for the similarity is that to reduce EECC, the optimisation
searches for solutions with a higher share of CGUs to provide
greater power adequacy, which is more reliable than wind
power, and EGSC increases, which is followed by higher
ECEC due to more utilisation of fossil fuel. The relationship
between ELRC and EECC is studied and plotted in Fig. 6.
In general, ELRC and EECC are inversely related, but the
trend is not as strong as that of the other figures. The incre-
ment in ELRC signifies that a greater percentage of peak

demand is shifted, leading to lower peak in the new demand
pattern, and vice versa. Therefore, as ELRC increases, flatter
load demand patterns are produced. Consequently, EECC
decreases as demands are matched more easily by power
supply.

Based on the equal priority of all optimisation objectives,
i.e. µ1 = µ2 = µ3 = µ4 = 0.5 and applying the
fuzzy decision-making method in (23) and (24), a set of
Pareto solutions that consist of wind penetration ratios in all
candidate generators, i.e. α, and load shifting ratios in all load
sectors, i.e. β, is obtained, as shown in Fig. 7. This set of
prioritisation yields 71.56% of wind penetration in the RTN
generation system, which is equal to 2,436.56 MW of wind
power. Profiles of initial RTN generation system and wind
power are illustrated in Fig. 8.

FIGURE 7. Wind penetration and load shifting ratios with equal priority of
all optimisation objectives.

FIGURE 8. Profiles of initial RTN generation system and wind power
displacement in each CGU based on equal prioritisation of EECC, EGSC,
ECEC and ELRC.

Fig. 8 shows that amongst the five types of CGUs, coal-
fired steam turbine generators are displaced by wind power
the most by 36.97%. The reason is that this generator group,
which constitutes 37.42% of the RTN generation system,
is the largest amongst all types of CGUs; it has the second
largest carbon emission potential after oil-based generators,
which is 752 tonne/hour or approximately 45% of maximum
RTN carbon emission level in each hour. Nuclear generators,
which constitute 23.49% of the RTN generation capacity,
comprise the third largest CGU group but have the second
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highest percentage of wind power displacements of as much
as 27.09%. The reason is that nuclear generators have the
highest fixed cost, which is more than the second highest
fixed cost given by a hydro plant by a substantial 42%.
Therefore, replacing nuclear generators with wind farms can
considerably lower EGSC. Oil-fired steam turbine generators
have the third highest percentage of capacity displaced by
wind, which is 25.61%. Although the percentage capacity
of this generator group is the second highest and 4.44%
higher than that of nuclear generators in RTN, optimisation
ultimately determines that slightly reducing wind penetration
in this generator group in favour of nuclear generators can
achieve the balance between EGSC and ECEC due to equal
prioritisation in all optimisation objectives when selecting
a Pareto solution. However, the combined wind penetration
percentage in both types of oil-fired generators irrespective
of the generator technology, which is 27.69%, remains higher
than nuclear’s alone, albeit only slightly by 0.6%. Oil-fired
combustion turbine generators have the least capacity dis-
placed by wind power followed by hydro plant, i.e. 2.08%
and 8.25%, respectively, because both CGU groups constitute
only small portions of the RTN generation capacity, which are
2.35% and 8.81%, respectively.

FIGURE 9. Load shifting ratios of all load sectors arranged in the order of
decreasing correlation.

Energy demand level and interruption cost of all load
sectors are analysed and plotted in Fig. 9 to explain the
outcomes of load shifting ratios shown on the right-hand
side of Fig. 7 because these two factors influence the ratio
values. The values of both factors are expressed on the per
unit basis by using their respective largest class as base
values. The highest energy demand level comes from the
residential sector, which has 5,201 GWh of energy demand
throughout the year. The most expansive interruption cost
is $13,930/MWh given equally by industrial and large user
sectors. Load sectors with higher interruption cost and energy
demand level will undergo more load shifting. However,
the plot in Fig. 9 shows that the specific contributions of these
factors towards the load shifting ratios cannot be identified.
For example, the commercial sector, which is higher than the
agriculture sector in energy demand level and load interrup-
tion cost, is assigned a higher load shifting ratio, than the
agriculture sector i.e. less demand is shifted as the allowable
peak load is higher. Moreover, the residential sector with a
drastically higher energy demand level than the governmental
sector is also assigned a higher load shifting ratio.

Due to this, the correlations between ELRC and load
shifting ratio in all Pareto solutions of all load sectors are
determined to identify the share of contribution of each sector
towards the ELRC index, as shown in Fig. 9. The figure also
ranks sectors in decreasing order according to the correla-
tion values, which suggest that ELRC index value is mostly
determined by the amount of load shifted in the large user
sector, followed by the industrial sector. Load shifting ratio
should be the lowest, i.e. most load is shifted, starting from
the large user sector and gradually increases in other sectors in
the order of arrangement along the x-axis of Fig. 9. However,
load shifting ratios in Fig. 7 show that this deduction is only
applicable in large user and industrial sectors and not on all
the other sectors. This deduction can be explained by plotting
load shifting ratios across all Pareto solutions based on the
increasing order of ELRC index, as shown in Fig. 10 for
large user and industrial sectors, and Fig. 11 for all the other
sectors.

FIGURE 10. Load shifting ratio of large user and industrial sectors as
ELRC increases.

FIGURE 11. Load shifting ratio of (a) commercial, (b) agriculture,
(c) offices, (d) governmental and (e) residential sectors as ELRC increases
and (f) overall ELRC of all Pareto solutions ranked in ascending order.

Fig. 10 shows a strong trend of reduction in the load
shifting ratio of the large user sector, and the trend weakens in
the industrial sector as the correlation decreases 20.9% from
0.91 to 0.72; the points of the 40th Pareto solution are the
same as Fig. 7. In general, both lines in Fig. 10 decrease as
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ELRC increases, but several outliers spike from their trend
lines where the load shifting ratio is not consistently decreas-
ing, which is more apparent in the industrial than the large
user sector. Outliers exist due to various degrees of hourly
fluctuations of load demand in all sectors, which complicate
the effects of energy demand levels and interruption costs
on load shifting ratios. Fig. 11(a)–(e) show that correlations
in all the other sectors are very weak to form trends that
track the load shifting ratios. Their ratios are so scattered that
their ranking in Fig. 9 does not corroborate the deduction
that load shifting ratio increases as correlation decreases.
However, collective ratios of all sectors contribute to ELRCs
that display a consistently increasing trend when ranked in
ascending order, as shown in Fig. 11(f).

Therefore, combined effects of hourly load fluctuations,
demand levels and interruption costs contribute to load shift-
ing ratios in a non-linear, fairly unpredictable manner. The
large user sector generally owns the lowest load shifting
ratio in as much as 44% of Pareto solutions. By contrast,
the industrial sector owns the second lowest ratio in only 26%
of the time. The remaining positions are randomly owned by
other sectors.

Effects of wind penetration percentage on EECC, EGSC
and ECEC are analysed and plotted on the y-logarithmic
scale, as shown in Fig. 12. The results in this figure are
obtained by ranking the Pareto solution based on the percent-
age of wind penetration in ascending order. The figure also
shows the linear equations of trend lines of all indices, which
indicate that ECEC is most sensitive towards variation of
wind power penetration because it has the highest slope value.

FIGURE 12. Effects of wind penetration percentage on EECC, EGSC and
ECEC.

IV. CONCLUSION
In this paper, an optimisation framework for wind power
integrations considering EECC, EGSC, ELRC due to the
DR programme and ECEC is proposed. EECC index con-
siders overall reliability effects of wind power displacements
and interactions between the new generation system and the
new load demand pattern due to the implementation of the
DR programme, which affects ELRC. Wind farms reduce
ECEC drastically, and this benefit is balanced with EGSC
to ensure a sustainable generation system from the economic
perspective. Parameters such as value of load loss, generation

fixed and variable costs, demand variations due to various
load sectors and their corresponding interruption costs due to
demand rescheduling and carbon emission levels of various
fossil fuel generators are considered to make the formulations
of all four optimisation objectives robust and practical. Solu-
tions obtained from this proposed framework provide options
that a decision maker can select based on various priority
levels of optimisation objectives, whose ranking is customis-
able. On the basis of balanced, equal priority ranking of all
objectives, the percentage of wind penetration is 71.56%. The
large user load sector also contributes the majority of ELRC
in 44% of all Pareto solutions.

For future studies, different ramping rates of generators
should be explored and new studies investigating effects of
various ramping rates towards the integration of wind is
suggested. Next, it is worth pointing out that various rates
of energy recovery, the feasibility of them being recovered
during off-peak hours, and the further classifications of load
sectors into different types of loads, i.e., controllable and
non-controllable load, air conditioning load, lighting load and
etc., and their consumption behaviours are not considered
in the proposed DR model. These factors should be con-
sidered also in future studies and be included on top of the
proposed optimisation model of this paper. Finally, effects
of reservoir and water inflow capacities are considered to be
always sufficient to warrant the instantaneous ramping rate of
hydro plants modelled in this paper. These factors are worth
exploring as future studies in order to examine their effects
on the percentage of wind integration and DR deployment.
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