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ABSTRACT The utility of Artificial Intelligence (AI) in healthcare strongly depends upon the quality of the
data used to build models, and the confidence in the predictions they generate. Access to sufficient amounts
of high-quality data to build accurate and reliable models remains problematic owing to substantive legal
and ethical constraints in making clinically relevant research data available offsite. New technologies such
as distributed learning offer a pathway forward, but unfortunately tend to suffer from a lack of transparency,
which undermines trust in what data are used for the analysis. To address such issues, we hypothesized that,
a novel distributed learning that combines sequential distributed learning with a blockchain-based platform,
namely Chained Distributed Machine learning C-DistriM, would be feasible and would give a similar result
as a standard centralized approach. C-DistriM enables health centers to dynamically participate in training
distributed learning models. We demonstrate C-DistriM using the NSCLC-Radiomics open data to predict
two-year lung-cancer survival. A comparison of the performance of this distributed solution, evaluated in
six different scenarios, and the centralized approach, showed no statistically significant difference (AUCs
between central and distributed models), all DeLong tests yielded p-val > 0.05. This methodology removes
the need to blindly trust the computation in one specific server on a distributed learning network. This
fusion of blockchain and distributed learning serves as a proof-of-concept to increase transparency, trust,
and ultimately accelerate the adoption of AI in multicentric studies. We conclude that our blockchain-based
model for sequential training on distributed datasets is a feasible approach, provides equivalent performance
to the centralized approach.

INDEX TERMS Blockchain, data privacy, decentralized learning, distributed learning.

I. INTRODUCTION
The application of artificial intelligence (AI) algorithms in
medical imaging has evolved from machine learning that is
able to learn from quantitative (Radiomics) features to deep
learning algorithms, mostly convolutional neural networks
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(CNN), that are in turn able to learn complex non-linear
features from medical imaging and inform about diagnosis,
prognosis, and personalize treatment options [1]–[5]. The
CNN algorithms showed a great performance when applied
to medical imaging [6], [7]. Ultimately the ability to success-
fully generalize an AI algorithm is influenced by the quality
(volume, veracity, variety, and velocity−4Vs) of the training
data [8]. As the data quality improves [9], a similar trend
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is seen in both performance and generalizability. Typically,
a solitary medical center does not have sufficient quality data
for the specific task at hand to implement high-performance
AI for use in other sites. The conventional approach to
access high quality data in healthcare is through multicen-
tric studies, however, recent legal and ethical considerations
(e.g., General Data Protection Regulation (GDPR) andHealth
Insurance Portability and Accountability Act (HIPAA)) have
now made multicentric studies with centralized databases
problematic [10]. One potential way to address this challenge
is to share the training workload of machine learning mod-
els rather than centralize the data, originating from multiple
institutions. This approach, proposed in 2013, is known as
distributed learning (federated learning) [11], [12].

Distributed learning - a fusion of machine learning and
distributed computing - allows machine learning models to
be trained on multiple siloed datasets without the need for
patient data to leave the firewalls of each database [13].
Distributed learning preserves privacy by design, by sharing
model weights for subsequent training cycles instead of pri-
vacy sensitive data. Distributed learning has been success-
fully applied to train machine learning models using data
originating frommultiplemedical centers [11], [14]–[16] on a
global scale, producing models with equivalent performance
to centralized data training approach [17].

A distributed learning network involves multiple partners.
Within the network, each partner is connected to a central
coordinator (i.e., the master server) that initializes and aggre-
gates the learning. This design however is vulnerable to mali-
cious or (un)intentional misuse of the network, as researchers
have demonstrated it is possible to retrieve sensitive patient
information from the shared weights of the model [18]. Fur-
thermore, it is impossible for each partner to monitor the
quality of the data provided by others within the network.
In essence, this approach requires collaborators to blindly
trust the master server. Given the risks associated with this
design, elevating the transparency and traceability of the data
and learning may improve usability and confidence of this
approach.

Blockchain is a technology utilizing cryptographic hashing
techniques to maintain a distributed data structure that stores
information in an append-only manner. The integration of
a blockchain model with a distributed learning technique,
enables researchers to create a secure and immutable storage
of computation history. The advantage of using blockchain
together with distributed learning is that the master-server
approach of conventional distributed learning is replaced by
a decentralized architecture. Such an architecture defines the
relationship between the partners in the network, without
requiring that one trusted server mediates the work.

The use of blockchain for distributed learning has been
proposed in recent works [19], [20], however these studies
only provide a proof-of-concept, without a fully decentralized
solution supported by a blockchain platform. Furthermore,
the scalability and privacy of this approach have yet to be
evaluated [18].

In this work, we address these concerns with a
novel blockchain-based approach to trace data prove-
nance and safeguard the distributed learning process.
Using the NSCLC-Radiomics dataset first introduced by
Aerts et al. [21] we aim to confirm our hypothesis that, not
only, our new decentralized model performs equivalent to a
centralized model, but also provides the additional guarantee
of traceability for the actions performed by all centers. Addi-
tionally, we validate our solution to demonstrate the ability
of the blockchain distributed learning to leverage modern
machine and deep learning techniques (e.g., convolutional
neural networks).

Our objective, using the NSCLC-Radiomics dataset, is not
to improve the signature developed by Aerts et al. [21] but
rather to prove the feasibility of a blockchain based dis-
tributed learning approach and to illustrate that the distribu-
tion of data over multiple data centers provides similar results
to the standard centralized approach.

This article makes the following contributions: 1) defines
a blockchain-based protocol for training AI models using a
distributed architecture; 2) shows how to construct classifi-
cation models with sequential training on local datasets; and
3) demonstrates that the resulting blockchain model performs
with comparable performance to that of a model where the
training is conducted in centralized settings.

II. BACKGROUND AND SIGNIFICANCE
A. LEARNING FROM MEDICAL IMAGING
The process of extracting meaningful insights from medical
images can be performed by applying Artificial Intelli-
gence (AI) algorithms (i.e., machine learning or deep learn-
ing) [22]. Deep learning is a set of data decomposition and
correlation algorithms inspired by similar processes within
the human brain. These algorithms have been applied in
multiple fields including healthcare and medicine. Convo-
lutional Neural Networks (CNN), a class of deep learn-
ing, are commonly used to classify data from various data
sources and medical images are no exception. AI algorithms
are capable of extracting important information from med-
ical images, which in turn, can be used in decision sup-
port systems to improve diagnostic, prognostic, or predictive
accuracy [12], [23].

B. DISTRIBUTED LEARNING
Distributed learning is a technique that supports multi-center
machine learning, pioneered in 2013 [12]. These algorithms
are designed to perform training while data remains in the
local databases of each center [11], [14], [15], [24]. The
collaborators of a distributed learning process are connected
to a master server that initializes and updates the learning.
After initialization, each collaboration center trains a portion
of the model on local data then provides the model weights
to the master server. The master server in turn aggregates
the weights, updates the model, and shares the updated
model weights with the collaborators within the network.
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FIGURE 1. Conventional distributed learning (federated learning) process, (A) Master server initialize the learning by sending
initial models to the partners (B) partners train the received model with local data, (C) partners send updated models to the
master server, (D) master server aggregates the received models and verify convergence criteria.

Each collaborator then retrains the local models based on the
updated weights and sends them back to the master server
to close the loop, which operates until a convergence thresh-
old is reached, as illustrated in FIGURE 1. This approach,
in principle, enables large-scale data/learning access, which
improve performance and increase accuracy. In addition, dis-
tributed learning resolves legal and ethical privacy concerns
associated with medical data by ensuring that sensitive data
never leaves the firewalls of the medical centers.

C. BLOCKCHAIN
Blockchain is a peer-to-peer (P2P) computational framework
introduced in 2008 [25]. Transactions in a blockchain can
be thought of as computational interactions between partic-
ipants (such as the medical centers). Within a blockchain
network, every participant can view and add interactions,
but never modify the existing ones. This is due to the fact
that interactions are stored in blocks, which are validated
in the blockchain network. Each validated block contains
a cryptographic hash of the previous block, thus making it
impossible to forge interaction history in the system.

After its successful application within the cryptocurrency
domain [25], blockchain technology subsequently received
significant attention from the scientific community. This ini-
tial success instigated the use of blockchain in healthcare.
Blockchains can now be used to ensure secure data shar-
ing [26], compliance with license terms [27], [28], drug
counterfeiting prevention [29], amongst other applications in
healthcare [30] and other domains [31].

Blockchain works via two regulating elements: a P2P net-
work and a consensus protocol. The P2P network initiates
and appends blocks representing the computations of the
network. The consensus mechanism consists of a set of rules
determining the contribution of each partner when validating
the computations. A smart contract is a protocol that runs
aside with the blockchain and enforces the rights and respon-
sibilities of the network partners [32], [33]. Once deployed,
participants in the blockchain network can interact via smart
contracts.

III. MATERIALS AND METHODS
A. DATA
We used the open NSCLC-Radiomics dataset [34], [35] to
demonstrate this proof-of-concept study. The dataset consists
of CT scans of 422 Non-Small Cell Lung Cancer (NSCLC)
patients, paired with Gross Tumor Volume (GTV) segmen-
tations (performed by an experienced radiologist), and the
clinical outcome (survival). A summary of cohort and tumor
specificities of the NSCLC-Radiomics dataset is presented
in Table 1.

The generalizability of the proposed infrastructure was
validated using the IRIS open dataset [36].

B. CHAINED DISTRIBUTED MACHINE LEARNING
(C-DISTRIM)
1) ARCHITECTURE
The objective of C-DistriM is to train distributed models
with equivalent performance as centralized models, preserve
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TABLE 1. Patient and tumor characteristics.

data privacy, and increase trust amongst participating part-
ners. C-DistriM leverages trust between the partners via
the blockchain that stores unfalsifiable records of the train-
ing process. FIGURE 2 presents the overall architecture of
C-DistriM. The smart contract of C-DistriM ensures:
• Creation of an organization structure representing the
network of partners: the network of partners is stored
within a smart contract. Each partner will take part in
the learning process without moving the data to a trusted
server.

• Confirmation of model deployment: saving each itera-
tion of the model to cloud is considered as a new transac-
tion in the blockchain. This requires that a consensus and
an agreement on the current state of the blockchain to be
reached by majority of the partners prior to appending
the new transaction to the blockchain. Herein, every time
a partner locally trains a model a majority must approve
for the model to be saved in the cloud.

• Association of every partner with data quality and
quantity: before confirming the model deployment,
the transaction block with model accuracy statistics is
established. This information determines if the contribu-
tions of the previous collaborator improved or negatively
affected the model performance.

• Confirmation of model fetching: similarly, to ‘‘con-
firmation of model deployment’’, each time a partner
requests a model from the cloud for subsequent training
the majority of partners in the network must approve
before the model to be downloaded.

• Traceability of model leakage and data provenance.
As all training records are saved to an append only chain
in a timely manner, every model is linked to all partners
that used it during the training process (load, upload,
update). Similarly, every model can be linked to the data
used to train/update it while maintaining data privacy
concerns.

FIGURE 2. Overview of C-DistriM: (step 1) partners register to the
network through the smart contract; (step 2) training starts by iterating
through the partner list: (1) start training the first local model; (2) when
training ends; (3) request a token to save the model to cloud; (4) vote to
decide if model will be saved to cloud; (5) smart contract generates a
token; (6) the partner gets the token; (7) and saves the model to cloud;
(8) then the training is terminated for this partner. In the next iteration:
(1) the partner will request a token to load the previous model from
cloud; (2) smart contract generates a token; (3) the partner gets the
token; (4) load previous model from cloud; (5) gets model; (6) start
training; (7) when training ends; (8) request a token to save the model to
cloud; (9) vote to decide if model will be saved to cloud; (10) smart
contract generates a token; (11) the partner gets the token; (12) and
saves the model to cloud; (13) then the training is terminated for this
partner. The same process repeats for all partners. Step (3) if all partners
finished training then the training process is terminated.
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FIGURE 3. Distributed learning flow diagram, each iteration corresponds to one partner update of the model with local
data.

2) IMPLEMENTATION
This work leveraged Ethereum blockchain [37], an open
source smart contract platform, integrated with our dis-
tributed learning pipeline. We have implemented the smart
contract using Solidity (compiler version 0.5.5), on RemiX
IDE [38]. Solidity is an object-oriented programming lan-
guage commonly used to implement smart contracts within
the blockchain community.

FIGURE 3 illustrates the proposed distributed learning
architecture. During each training iteration, a partner receives
a token from the smart contract to start training the local
model on local data. Once the model is trained the part-
ner sends a request to archive the model to the cloud.
Once approved by the majority, the smart contract returns
a token allowing the partner to push the model to the
cloud. Automated voting was performed based on the area
under the receiver operating characteristic curve (AUC) of
the model. If the model AUC deteriorates, a negative vote
is cast, while improvements/no change in the AUC result
in positive votes. In this prototype we used Google Cloud
Storage (GCS) platform to store the shared models, where
client-cloud communication was facilitated using the Python

google-cloud-storage library (version 1.21.0). The models
were encrypted and decrypted when being saved to or
downloaded from the cloud. The encryption and decryption
processes were performed using the Advanced Encryption
Standard (AES-256) [37], as it is recommended for long term
storage [39].

Ethereum is a public blockchain, implying that the
C-DistriM computation history can be reviewed by the partic-
ipating partners as well as the broader public. The prototype
used the Ganache network [40], which allowed us to recreate
the Ethereum blockchain platform for testing purposes. This
means that our prototype is currently tested with a local test-
net, however, the model is ready to be deployed in the public
Ethereum.

While blockchain technology provides an auditable, trace-
able, and unfalsifiable structure to record distributed learning
flow, it does not secure the learning process. To prevent
any intentional or unintentional misuse of the downloaded
model weights, by any of the partners, the model weight
vectors were locked using the python portalocker library
(version 1.5.2). During training, the training was initialized
in the first iteration. The output model of the first iteration
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was used as a starting point for the next iteration, so is
the new model. This process was repeated until all partners
sequentially finish training. The last model in the queue was
designated as the final output of the distributed learning
process.

C. TRAINING
1) DATA PREPARATION
Data augmentation was performed to balance the two classes
(survive and not survive at a threshold of 2 years after start
of treatment). The augmentation was performed in a different
manner for each class: (1) the minority class in the training
dataset was balanced by supplementing with zoom scaled
variants of the images. After augmentation, the number of
cases increased from 422 cases to 704 cases,(2) the images
corresponding to the class that is represented high, non-
survived (labeled 0) in the case ofNSCLC-Radiomics dataset,
was randomly augmented during the run-time (i.e., during
training).

The data (n = 704) was randomly split into training
(n = 563) and testing (n = 141) sets (80% training and
20% testing) to train and evaluate the centralized training.
Six testing scenarios were devised to validate the distributed
infrastructure:

• ‘‘Scenario 1’’: simulation of a network of two partners
by splitting the training data (same training data used to
train the centralized model) into two subsets (n = 281,
and n = 282 respectively).

• ‘‘Scenario 2’’: simulation of a network of three partners
by splitting the training data into three subsets (n= 188,
n = 189, and n = 186 respectively).

• ‘‘Scenario 3’’: simulation of a network of four partners
by splitting the training data into four subsets (n= 141,
n = 140, n = 141, and n = 141 respectively).

• ‘‘Scenario 4’’: simulation of a coalition of two partners
by splitting the training data into two non-equally dis-
tributed subsets (n = 112, and n = 451 respectively).

• ‘‘Scenario 5’’: simulation of a coalition of three
partners by splitting the training data into three
non-equally distributed subsets (n = 113, n = 67, and
n = 383 respectively).

• ‘‘Scenario 6’’: simulation of a coalition of four part-
ners by splitting the training data into four non-equally
distributed subsets (n = 57, n = 355, n = 113, and
n = 38 respectively).

In all scenarios the models were evaluated using the same
test data (n = 141).
Data allocations were performed using scikit-learn library

(version 0.22), therefore each partner in the training cycle
held a balanced dataset. Once the data is prepared, they
are split between the centers and run locally with the over-
all distributed learning process mediated by the C-DistriM
blockchain model.
Data splits performed for the IRIS dataset are detailed in

appendix A.

2) CENTRALIZED MODEL
Apreviously validated 3DCNN binary classifier for two-year
survival classification was implemented [41], [42]. The CNN
model is based on ResNet-18 [41]. The model consists of
an input layer of shape (120, 160, 16), followed by 3 × 3
convolutional layers (while each convolutional layer is fol-
lowed by a ReLu activation and batch normalization) with
residual connections, the total number of convolutional layers
is 18, in addition to an output layer entailing a sigmoid acti-
vation function. GTV segmentations were used to determine
axial slices containing the tumor and crop them for training.
As every GTV is of a different size, all cropped volumes were
resized to (120 × 160 × 16) pixels for model training and
validation process.

3) DECENTRALIZED MODELS
For each C-DistriM scenario, the batch size and validation-
steps were adapted according to the number of data points
in every center. The performance of both distributed and
centralizedmodels was quantified as the AUC of the Receiver
Operating Characteristic curve (ROC) and calibration curves.
AUC values ranged from zero to one and the closest to one
the AUC is, the better the model is. A calibration curve
(or reliability curve) was defined as a plot of the relative
frequency of empirical probability versus the predicted prob-
ability frequency. Calibration curves of ideal/optimized clas-
sifiers should fall close to the diagonal, as the estimated
probabilities and empirical probabilities reach convergence.

IV. RESULTS
The model trained in a centralized approach, where all the
data are contained in a single database and the training was
performed without blockchain integration was used as the
reference standard. We assessed the two-year prediction per-
formance from the distributed and centralized survival CNN
models, respectively. Table 2 summarizes the comparative
performance in the test set of each approach (in 95 % con-
fidence interval).
A DeLong test [43] was used to compare the ROC curves

and calculate the p-values to determine the differentiation
significance between two independent means. The tests
yielded a p-value of 0.102, 0.907, 0.984, 0.962, 0.747, and
0.779 when comparing the centralized model versus sce-
narios 1-6 respectively. The comparison of the ROC curves
indicated that there is no statistically significant difference
(all p-values > 0.05) between the performance of the dis-
tributed models and the centralized model in terms of dis-
crimination, as shown in FIGURE 4. These results indicate
that the distributed models can learn appropriate features in
a comparable way to the centralized model learning; and that
integration of distributed learning and blockchain is feasible.
From the calibration plots presented in FIGURE 5, we can

observe a variation in the calibration of the models.
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FIGURE 4. Receiver operator characteristic curves for two-year survival model trained using centralized
learning and distributed learning.

TABLE 2. Discrimination performance (AUC) obtained by training
centralized and distributed CNNs predicting 2-year NSCLC survival.

The IRIS conclusions were the same as the NSCLC-
Radiomics dataset use-case. Detailed results are presented in
appendix A.

Appendix B represents the ROC curves of each iteration
of the scenario 3. The curves demonstrate how the learning
improves when centers with more data are included in the
training process.

V. DISCUSSION AND FUTURE WORK
Since its conception in 2013, Distributed learning has
shown significant efficacy when leveraging big data to drive
clinical insights [12]. This was recently demonstrated by

Deist et al. who leveraged over 23,000 datapoints to train
and validate a distributed logistic regression model, pre-
dicting post-treatment two-year survival [24]. In parallel
researchers have developed methods to improve model gen-
eralizability [44], and promote training transparency via
blockchain technologies [19], [45]. Chen et al. proposed a
fully blockchain-based privacy preserving distributed deep
learning pipeline [19] where local model weights, from
partners over the distributed network, are archived into the
blockchain ledger as a transaction before being updated by
the next collaborator’s local data iteratively. Similar works
have been demonstrated by Kuo et al. [45], [46] leveraging
blockchain using Logistic Regression machine learning mod-
els. While these pipelines [13], [32], [33] permit to secure
local training and guarantee full traceability of the shared
model weights, these methods are susceptible to drawbacks.
These methods primarily employ fully visible model weights,
which facilitate opportunities for misuse. Moreover, archiv-
ing the local weights to blockchain blocks along each itera-
tion/partner is costly (Ethers) and computationally expensive,
and not recommended for a highly scalable system with a
focus on throughput and efficiency.

Weng et al. proposed DeepChain, an optimized blockchain
for secure distributed deep learning training [20], however
the weights are saved directly to the blockchain and are
accessible by all the partners within the distributed net-
work. To overcome the risk of exposing the model weights,
Lugan et al. [47] proposed to train distributed learning mod-
els on encrypted data, preventing any exposure of local
weights. Nevertheless, when implementing deep learning and
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FIGURE 5. Calibration curves for centralized and distributed learning models.

encryptingmodel weights, model design requires careful con-
sideration as aspects such as the CNN activation functions
must be adapted [48]. Model design challenges are exacer-
bated with the need for extensive computation power asso-
ciated with complex encryption computations. Other studies
proposed adding noise to the shared model weights [49],
[50], as an attempt to prevent the extraction of sensitive
information. However, this approach can result in degra-
dation of model performance. In this work, we proposed
a solution to address the current challenges of distributed
learning by means of blockchain and architectural modi-
fications to the conventional distributed learning scheme.
This work builds on previous applications by incorporating
Ethereum, a validated, commercially used blockchain tech-
nology as opposed to ad hoc blockchain infrastructures1. The
proposed approach, C-DistriM, secures the shared models
within the distributed network by locking them when tem-
porarily downloaded to local machines for process – alle-
viating concern of unauthorized use of models (i.e., edit,
retrain, load model weights, or perform predictions). Post-
training, C-DistriM: (1) encrypts the locally trained model,
(2) uploads the encrypted model to the cloud and (3) removes
all local copies preventing unauthorized exposure of the
model. In contrary to other solutions, such as training on

1Ad hoc blockchains refer to use implementations that are designed to
replicate blockchains for test purposes but are not suitable for deployment.

encrypted data, C-Distrim: maintains the native implementa-
tions of machine/deep learning algorithms that may be used
for training. We observed that the AUC for distributed learn-
ing models generated by C-DistriM do not differ with statis-
tical significance from models trained in classical centralized
configuration. Calibration plots between models indicated
a slight variation between the predicted scores. As CNN
models have hundreds of millions of parameters that may
influence stable performance dependent on (1) the size and
type of training data, and (2) optimal batch size. Additionally,
the last layer of a CNN is not in the proper scale to evaluate the
reliability of the model [51]. To obtain appropriate probabil-
ities, one may consider rescaling the predictions by applying
Platt Scaling [52] or Temperature Scaling [53], however this
was out of the scope of this work.

While blockchain infrastructure does permit archiving
model iterations within the blockchain ledger, blockchains
are not suitable for large data storage [37]. To mitigate this
concern, C-Distrim archives model iterations over the cloud,
while the blockchain is used exclusively to store model
metadata (i.e., partner name, and model name - composed
of the partner name and iteration number) and monitor the
training performance. Based on the performance of the model
in a particular iteration, the improvement or deterioration of
the model can be traced back to a particular dataset/partner.
Blockchain tokens are used to generate access permissions
to the model in the cloud. C-Distrim facilitates the ability to
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TABLE 3. Summary of different blockchain infrastructures used for
privacy preserving distributed learning.

‘‘restore’’ a prior model state and retrain an updated model
by skipping the training step for a particular partner in the
case of model performance degradation. This functionality
can also be used as an internal quality control metric to
flag the incorporation of poor data into the training cycle.
Table 3 illustrates the key differences between the listed
blockchain infrastructures and the proposed C-DistriM.

One of the key features of the C-DistriM infrastructure is
its traceability. Traceability of the data and lineage of the
AI algorithms are key components of trustworthy AI. As the
transaction records are immutable on blockchain ledgers,
we can trace back any action performed by any of the partic-
ipating partners at any time. Furthermore, due to the inherent
traceability of our infrastructure, it is expected that all the
participating partners will have accentuated trust in using the
process. The blockchain ledger can also foster commercial
discussions such as royalties for the new AI algorithms pro-
portional to the number of patients provided by each partner
in the distributed network.

Deploying a smart contract to public Ethereum is payable.
Thereby, it is important to note that this work was developed
using the development and testing environments provided by
Ethereum.

In future works, we will extend the C-DistriM pipeline to
monitor the applications of the final models and integrate
a web portal accessible by all the participating partners to
visualize the transaction history. We also intend to extend
our development cycle using the Ethereum test networks
to simulate a real-word distributed learning network and
measure its performance in terms of scalability and costs.
Finally, wewish to investigate howC-DistriM performswhen
malicious partners are intentionally added to the network.

VI. CONCLUSION
In this work, we validated our hypothesis which is
Chained Distributed Machine learning combined with a
blockchain-based platform (C-DistriM), is feasible and gives
a similar result to the traditional centralized approach. Fur-
thermore, the blockchain architecture was beneficial to
trace data origin and monitor the training process against
model degradation and dishonest behaviors. We believe this
approach will increase trust between parties therefore stim-
ulate collaboration globally between parties when delivering
robust AI informed by big data.

APPENDIX A
A. MATERIALS AND METHODS
1) DATA PREPARATION
The IRIS dataset (n = 150) contains three iris species.
The dataset classes are balanced, fifty examples for each
species, therefore we did not any preprocessing on the
data.

We randomly split the data (n = 150) into training
(n = 120) and testing (n = 30) sets to train and evaluate the
centralized training. Following scenarios were prepared and
executed:
• ‘‘Scenario 1’’: a simulation of a network of two partners
by splitting the training data (same training data used to
train the centralized model) into two subsets (n = 60,
and n = 60 respectively).

• ‘‘Scenario 2’’: a simulation of a network of three partners
by splitting the training data into three subsets (n = 40,
n = 40, and n = 40 respectively).

• ‘‘Scenario 3’’: a simulation of a network of four partners
by splitting the training data into four subsets (n= 30, n
= 30, n = 30, and n = 30 respectively).

• ‘‘Scenario 4’’: we simulated a network of two partners
by splitting the training data into two non-equally dis-
tributed subsets (n = 80, and n = 40 respectively).

• ‘‘Scenario 5’’: a simulation of a network of three part-
ners by splitting the training data into three non-equally
distributed subsets (n = 24, n = 57, and n = 39 respec-
tively).

• ‘‘Scenario 6’’: a simulation of a network of four part-
ners by splitting the training data into four non-equally
distributed subsets (n = 24, n = 39, n = 18, and
n = 39 respectively).

In all scenarios the models were evaluated using the same test
data (n = 30).
All data splits were performed using scikit-learn library

version 0.22.

2) TRAINING
C-Distrim was prepared to train multi-class neural net-
work. Once the data is prepared, they are split between
the local centers and run locally using the C-DistriM
infrastructure.
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FIGURE 6. Receiver operator characteristic curves for IRIS species
prediction model trained using centralized learning and distributed
learning.

B. RESULTS
The ROC curves for each class are illustrated in FIGURE 6,
and the comparative performance of each approach (in 95 %
confidence interval) is illustrated in Table 4.

The Delong tests yielded a p-value of 1 when comparing
the centralized model versus scenarios 1-6 respectively for

TABLE 4. Discrimination performance (AUC) obtained by training
centralized and distributed multiclass neural network predicting IRIS
species.

class 0. The tests yielded a p-value of 0.508, 0.544, 0.575,
0.310, 0.778, and 0.544 when comparing the centralized
model versus scenarios 1-6 respectively for class 1. The tests
yielded a p-value of 0.479, 0.318, 0.318, 0.309, 0.318, and
0.318 when comparing the centralized model versus scenar-
ios 1-6 respectively for class 2.

APPENDIX B
See Fig. 7.

FIGURE 7. Receiver operator characteristic curves for two-year survival
models trained using ‘‘Scenario 3’’ data distribution, (A) model 1: data
from center 1 only (n = 141); (B) model 2: data from center 1 and center 2
(n = 141 + n = 140); (C) data from center 1, center 2, center 3 (n = 141 +

n = 140 + n = 141); (D) data from center 1, center 2, center 3, center 4
(n = 141 + n = 140 + n = 141 + n = 141).
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