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ABSTRACT Visually impaired people often find it hard to navigate efficiently in complex environments.
Moreover, helping them to navigate intuitively is not a trivial task. In sighted people, cognitive maps derived
from visual cues play a pivotal role in navigation. In this paper, we present a sight-to-sound human-machine
interface (STS-HMI), a novel machine vision guidance system that enables visually impaired people to
navigate with instantaneous and intuitive responses. The proposed STS-HMI system extracts visual context
from scenes and converts them into binaural acoustic cues for users to establish cognitive maps. A series of
experiments were conducted to evaluate the performance of the STS-HMI system in a complex environment
with difficult navigation paths. The experimental results confirm that the STS-HMI system improves visually
impaired people’s mobility with minimal effort.

INDEX TERMS Acoustic cues, human-machine interface, navigation, visually impaired.

I. INTRODUCTION
People rely on cognitive maps to navigate. A cognitive map
is the knowledge and understanding of an environment for
navigation [1]–[3]. Over the past decade, numerous systems
for assisting visually impaired people have been developed.
Previous studies focused on building an assisting device or
system that determines the position of the user and then gener-
ates instructions for navigation using voice prompts or haptic
cues. The proposed sight-to-sound human-machine interface
(STS-HMI) employs a camera to perform scene analysis and
generates novel binaural acoustic cues as feedback. Com-
pared with existing solutions, the proposed STS-HMI sys-
tem has the following advantages: (i) versatile and adaptive,
(ii) easy to use, (iii) rich in visual context, and (iv) simple to
realize with common technology.

Indoor positioning can be achieved through triangula-
tion [4], [5], patternmatching [6]–[8], direct sensing [9]–[12],
and dead-reckoning [13]–[16]. Triangulation requires a
device to measure the distance to at least three reference
objects in order to determine the location of the device accu-
rately [4]. Triangulation limits the type of indoor environ-
ments in which the method can be used since it is challenging
to maintain a line-of-sight connection with reference objects
at all times [4]. In contrast, wireless signal pattern matching
does not require line-of-sight connections. Instead, wireless
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signals (i.e., Wi-Fi) are used as fingerprints to achieve local-
ization [6]–[8]. Wireless signal pattern matching requires
an intensive survey of the signal pattern within an environ-
ment before usage. Similarly, visually based pattern matching
requires an intensive survey of the scenes within an environ-
ment in advance [17]–[19]. Direct sensing involves associat-
ing tags with objects or locations, which allows determining
the user’s location within an environment. Tags used for
direct sensing can be created using RFID (radio-frequency
identification) [9]–[12], infrared signals [20], [21], ultra-
sound identification [18], [22], Bluetooth beacons [23], and
barcodes [24], [25]. Like localization with pattern match-
ing methods, creating labels requires extensive studies of
the environment. Dead-reckoning estimates a user’s location
by recording the user’s cumulative steps [13]–[16]. Such a
method requires no modification or survey of the environ-
ment. However, the measurement error of the dead-reckoning
method will accumulate over time, resulting in reduced
accuracy.

Visual cues are critical for navigating in complex and
dynamic indoor environments [3]. Sighted people can navi-
gate while determining their location by observing and mem-
orizing key objects in the scenes. Furthermore, they can also
locate themselves by comprehending the context of surround-
ing objects. For example, a unique combination of furniture
can help sighted people to identify a room and determine
their location in a building. Visual perception is also critical
for finding a navigation path. For example, when exiting
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a building, one may look for a revolving door. Therefore,
if visually impaired people can perceive visual cues from the
environment, it will be much easier for them to navigate.

There have been many attempts to help visually impaired
people to gain awareness of their surroundings. Existing
systems assisting visually impaired people are often vision
substitution systems. These systems use sensors or cameras
to convert scenes into nonvisual feedbacks [26]. Moreover,
these systems provide the following functions: ETA (elec-
tronic travel aid), EOA (electronic orientation aid), and PLD
(position locator device) [26]–[29]. Conventional guiding
systems designed for visually impaired people lack the adapt-
ability to avoid obstacles and engage the users with their
environments [30]–[33]. As shown in Fig. 1, the conven-
tional guiding systems need to employ different subsystems
to navigate the users. Each subsystem requires sensors to
gauge the environment and then interacts with the users
through different interfaces. Consequently, each subsystem
requires specific software and hardware. Object detection,
localization, sign interpretation, and guidance performed by
multiple independent subsystemsmay greatly fatigue visually
impaired users.

FIGURE 1. Design of a conventional guiding system for assisting visually
impaired people.

To combat the shortcomings associated with conventional
guiding systems, this paper proposes the STS-HMI system.
The STS-HMI system informs visually impaired users by
extracting visual cues from scenes and translating them into
acoustic cues for guidance. As a result, complex information
can be sent to the user instantly. Moreover, by manipulat-
ing the amplitude (loudness) of the binaural acoustic cues,
the system enables users to infer a scene’s complex infor-
mation efficiently. By mitigating the limitations of conven-
tional human-machine interfaces, the new interface enables
visually impaired people to comprehend their surrounding

FIGURE 2. Proposed camera-based STS-HMI system.

environments with a richness similar to that experienced by
sighted people.

Fig. 2 shows the proposed STS-HMI system with inte-
grated multiple functions using computer vision. Moreover,
computer vision systems are becoming increasingly capable
of comprehending scenes through object detection, localiza-
tion, and classification. Furthermore, with more powerful
computing hardware, computationally demanding machine
vision algorithms can be executed in real time on mobile
devices for assisting visually impaired people.

Besides comprehending the environment for navigation,
existing methods interact with users inefficiently in terms
of intuitiveness, easiness to learn, instantaneousness, con-
strains on hardware, versatility, affordability, and/or the abil-
ity to interpret complex scenes. Some methods use voice
prompts or haptic feedback to interact with users. Voice
prompts and haptic feedback are unnatural and may cause
fatigue. Fig. 3 functionally compares conventional navigation
solutions with the proposed STS-HMI system. These conven-
tional solutions include guide canes, guide dogs, electronic
guiding devices, and voice assistants. We scored each type of
solution from 0 to 3 based on seven attributes (intuitiveness,
easiness to learn, instantaneousness, constrains on hardware,
versatility, affordability, and the ability to interpret com-
plex scenes). A higher score indicates better performance.
Fig. 3 shows that conventional solutions such as guide canes
are hard to use, while guide dogs are expensive to train and
cost prohibitive. Electronic guiding devices are vision substi-
tution systems that perform tasks such as ETA, EOA, or PLD.
These systems typically require cameras, ultrasonic sensors,
and lidar to perform scene analysis, the results of which are
conveyed to the user by tactile, vibration, or voice feedback.
Systems using sensors other than cameras usually require
a customized device, in addition to a smartphone. These
systems also lack versatility. Systems using voice prompts
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FIGURE 3. Radar chart comparing the proposed STS-HMI system with
various other techniques: guide canes, guide dogs, electronic guiding
devices, and voice assistants and guidance.

can convey complex information and are easy to comprehend;
however, they are not fast enough for real-time navigation and
are not intuitive [24], [34]. Other solutions such as wearable
devices using haptic feedback and ultrasonic sensors set limi-
tations on the system hardware [17], [35]–[38] or have limited
applications [39].

Section II presents methods for identifying and localizing
objects within the field of view of the camera. Section III
presents the novel STS-HMI system for navigating visually
impaired people. In Section IV, the experimental navigation
results are presented.

II. OBJECT IDENTIFICATION AND LOCALIZATION
The STS-HMI system comprises two major components:
(i) scene analysis for object detection, classification, and
localization and (ii) a human-machine interface for guiding
the visually impaired user. This section will explain how the
STS-HMI system detects and locates various objects to build
cognitive maps for navigation.

A. EXTRACTING VISUAL CUES FOR BUILDING
COGNITIVE MAPS
Constructing cognitive maps is feasible using scene analy-
sis, object detection, localization, and identification. In the
STS-HMI system, YOLO (you only look once) [40] is used
as the object detection engine for extracting visual cues from a
scene. YOLO [41] is a state-of-the-art, real-time, all-purpose
neural network for detecting a vast variety of objects in
real time. The COCO (Common Objects in Context) data
set [42] was used to train the YOLO network. The COCO
data set contains objects from 80 categories. These objects
are common in indoor environments such as homes, offices,
and hospitals. YOLO can be retrained with an expanded
COCO data set to identify additional objects if necessary.
In practice, depending on the indoor environment, only a
fraction of the object categories is relevant for scene analysis.

Each object detected and localized by YOLO represents a
visual cue. In the STS-HMI system, the object’s distance
and aspect are used to generate binaural acoustic cues for
navigation. A cognitive map representing the physical distri-
bution of objects within an environment can be constructed
by comprehending and deciphering the binaural acoustic
cues.

The STS-HMI system was designed on a smartphone plat-
form to analyze scenes and to identify objects for navigation.
Fig. 4 illustrates the necessary steps for a user to navigate.
Navigation can be achieved by recognizing key objects, fol-
lowing the predetermined waypoints, and spotting signs. Key
objects help the user to construct a cognitive map. Waypoints
help the user to navigate by staying on a predetermined path.
Signs provide essential guidance information regarding safe
and reliable paths in complex spaces. In scene analysis, when
an unsafe situation arises, such as encountering stairs or being
on course to a collision, the STS-HMI system can be designed
to generate a voice prompt to warn the user to proceed
cautiously. Complimenting acoustic cues with voice prompts
enables users to interact with the environment for efficient
and safe navigation.

FIGURE 4. Block diagram for the STS-HMI navigation system.

B. LOCATING OBJECTS USING PHOTOGEOMETRY
Typical cameras are not designed to measure the distance of
an object in captured images. The projection of an object
onto the image plane is determined by the intrinsic matrix
of the camera and the spatial relationship between the cam-
era and the object. More specifically, the intrinsic matrix
describes the optical characteristics of the camera including
distortion, focal length (shown as f ), and the resolution of
the image sensor. The intrinsic matrix can be determined
through calibration [43] and remains constant in a fixed-
focal-length camera. Consequently, the intrinsic matrix needs
to be measured only once for a particular camera. The pro-
jection of an object can be approximated using the pinhole
model. In the pinhole model, the size of an object on the
image plane is determined by the principle of similarity.
Hence, a system cannot calculate the distance and the size of
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FIGURE 5. Illustration of the pinhole camera model.

an object simultaneously. Fig. 5 illustrates the pinhole cam-
era model; this figure displays only the projection onto the
Y − Z plane.
As shown in Fig. 5, the projection of two objects is

determined by their size and distance to the camera. Object
1 appears bigger on the image plane even though in reality
it is smaller than Object 2. In general, the size and distance
estimation with a regular camera remains challenging. The
ambiguity of size and distance is intrinsic in vision systems,
as defined by the following equation:

d =
s
ŝ
× f (1)

The distance between the object and the camera d can
be inferred by the size of the projection ŝ, the camera’s
focal length f , and the actual object size s. In (1), s is the
only unknown variable. The system can infer the size s of
any detected object based on its label given by YOLO. For
example, when the system detects a person, it can estimate
the distance between the person and the camera based on the
expected height of a person. Hence, the system can infer the
distance between the person and the camera with reasonable
accuracy. The system can also determine the aspect using
the law of similarity. Fig. 6 shows the aspect of an object
relative to the user, θ , and this can be calculated using the
offset of the object x̂ on the image plane and the focal
length f :

θ = tan−1
(
x̂/f

)
(2)

FIGURE 6. Estimating the aspect of an object.

C. NAVIGATION USING COGNITIVE MAPS
Recently, we studied SLAM (simultaneous localization and
mapping) [43], [44] and AR (augmented reality) markers [45]
for computer-assisted navigation. SLAM attempts to estimate
the motion of the user and to map an indoor environment by
analyzing camera footage. SLAM estimates the movement of
the camera by comparing the changes between two frames.

These changes include the movement of structure lines and
feature points.

Another method that can assist indoor navigation is the
determination of AR markers [46]. An AR maker is a
square-based fiducial marker, which can easily be recognized
by simple image processing techniques. The coding of an
AR marker guarantees that any AR symbol will maintain
a nonzero Hamming distance with itself after rotation [47].
The precision of the estimation depends on the size of the
AR marker and the resolution of the camera. With a set of
markers of 85 by 85 mm and a camera recording at 1920 by
1080 pixels, the error in the distancemeasurement can be kept
below 50 mm within an angle of 0.2 rad [45].

FIGURE 7. Navigation based on a cognitive map.

SLAM and AR markers do not provide information for
constructing a cognitive map and, consequently, may not
deliver a complete solution for navigating visually impaired
people. People rely on cognitivemaps using visual cues based
on certain objects, landmarks, and signs. If visually impaired
individuals can perceive visual cues as sighted people do,
they will be able to navigate efficiently and intuitively. It is
counterintuitive for people to keep track of their orientation
and location step by step. Fig. 7 shows a sighted person
searching for Room6. Instead of counting the number of steps
toward the intended location, this person will arrive in Room
6 right after passing the Restrooms. Therefore, to guide a
visually impaired individual, a guiding system needs to detect
the location of the restrooms and then convey this information
to the user to construct a cognitive map. Therefore, the pro-
posed STS-HMI system is designed to convert visual cues
into acoustic cues and to guide visually impaired users by
making them perceive a cognitive map.

III. ACOUSTIC-BASED HUMAN-MACHINE INTERFACE
A graphical user interface (GUI) is a practical and intu-
itive approach for human-machine interactions. Since it is
impossible to assist visually impaired people using a GUI,
the proposed STS-HMI system interacts with the user through
predefined sound notes. These sound notes are binaural
acoustic cues generated according to the type and the position
of an object.

Mobile devices such as smartphones can assist visually
impaired people by capturing and analyzing a scene for object
detection, identification, and localization, as shown in Fig. 8.
A smartphone empowered by neural networks can detect and
classify objects in a scene [48]. The classified objects can
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be translated into subband binaural acoustic cues. Through
photogeometry, a machine vision system can calculate the
location and the aspect of detected and classified objects.
Based on an object’s location and aspect, binaural acoustic
cues can be generated for the user’s perception.

FIGURE 8. Design of the proposed acoustic-based user interface.

Typical navigation systems assist visually impaired people
through voice prompts. For example, Microsoft’s Seeing AI
application [48] analyzes video footage captured by a smart-
phone and sends verbal commands to the user for guidance.
In practice, it is difficult for a voice prompt to keep up with
changes in a scene in a continuous manner. It takes a whole
sentence for a voice prompt to describe a static scene. Hence,
when a person is moving, verbal cues will not be able to
pass sufficient information in real timewithout hampering the
mobility of the person. Besides, the machine-generated voice
prompt interferes with the natural communication activi-
ties of the user. Therefore, we developed efficient binau-
ral acoustic cues in the STS-HMI system to counter such
challenges.

A. ACOUSTIC CUES: A LANGUAGE FOR NAVIGATION
Human hearing perception can locate and unravel multiple
sound sources. One can achieve such cognitive ability by
analyzing interaural time differences (ITDs) and interaural
level differences (ILDs) of sounds [49]. ITDs represent the
difference between the arrival time of the same sound in both
ears. ILDs represent the difference in the loudness of the
sounds. By manipulating these two acoustic cues, a system
can guide human perception with the location of a sound
source. For example, surrounding sound technologies such
as DTS (dedicated to sound) can create an immersive movie
experience by mimicking the spatial arrangements of sound
sources in a movie scene. By manipulating the quality of

FIGURE 9. Top-down view of objects relative to the user.

sounds generated by the speakers, these technologies enable
audiences to identify a sound source’s location intuitively.
The proposed STS-HMI system relies on human perception
for sound source localization. Moreover, through training,
visually impaired individuals can develop a more sensitive
sense of hearing and sound source localization [50].

To create intuitive acoustic cues for navigation, the human-
machine interface needs to encode the location and the
aspect of each object by manipulating the loudness and
the frequency of the acoustic cue. Based on this principle,
an acoustic-based human-machine interface can be created.
Such a system enables visually impaired users to visualize the
context of their surroundings conveniently in real time. Once
the user’s surrounding has changed, the binaural acoustic cues
are triggered to inform the user. Thus, users can be updated
with their surrounding environment as if they can see.

Two attributes are defined for encoding the information
describing an object in a scene: (i) the frequency associated
with the class of the object and (ii) the loudness associated
with the distance and the aspect of the object. As shown
in Fig. 9, the human-machine interface chooses the frequency
of binaural cues based on the class of the object c. Then,
the ear closer to the object receives the primary acoustic cue
corresponding to the distance d , and the other ear will receive
the secondary acoustic cue corresponding to the aspect θ . The
following sections explain how navigation instructions are
encoded in the binaural acoustic cues.

B. OBJECT REPRESENTATION USING ACOUSTIC CUES
With a YOLO neural network, most common objects can
be detected in real time. During navigation, it is impor-
tant to identify those objects in the environment that might
guide or block visually impaired people. Hence, for this study,
seven classes of objects (see Fig. 10) have been defined.
Six classes represent common objects, and one represents a
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FIGURE 10. Audible subbands for object representation.

virtual object for the waypoint to direct the user. To represent
these objects using acoustic cues, we split a band of the
audible spectrum into seven subbands. Each of these sub-
bands is associated with a group of similar objects in one of
the seven classes. As shown in Fig. 10, the human audible
spectrum ranges from 20 to 20000 Hz. For this study, the pro-
posed STS-HMI system generates acoustic cues in a fraction
of the audible spectrum (the frequency band from 100 to
800 Hz). This frequency band offers acceptable sensitivity
and comfort [51]. Because of the limitation of using seven
object groups to represent many objects, a voice command
to the user may be the preferred method for alerting the user
with the object type and distance.

C. ACOUSTIC CUES FOR OBJECT LOCATING
Locating an object necessitates the determination of the dis-
tance and the aspect of the object (see Fig. 9). The STS-HMI
system encodes the distance and aspect information in acous-
tic cues. Depending on the position of the object, the ear
closer to the object receives the primary acoustic cue, which
encodes the distance information, while the other ear receives
the secondary acoustic cue indicating aspect information.
In the example shown in Fig. 9, the left ear receives the louder
primary acoustic cue, and the right ear receives the weaker
secondary acoustic cue. The user can differentiate and decode
these cues by the loudness sensed in both ears.

1) DISTANCE ENCODING
The loudness perception is measured in phons [51]. Quanti-
fying the loudness of generated sounds in phons allows the
system to model the amplitude and loudness uniformly as a
function of frequency. Equation (3) determines the amplitude
of an acoustic cue A as a function of the distance d between
the user and the object:

A = Amax −
Amin

1+ e−
d−5
2

, where d ∈ [0,+∞) (3)

where the maximum andminimum amplitudes of the primary
acoustic cue are Amax and Amin, respectively. In the proposed
STS-HMI system, the maximum loudness Amax is set at
60 phons, and the minimum loudness Amin is set at 30 phons.
The upper limit is set at the loudness level of the human
voice, while the lower limit is set at the intensity of ambient
noise [52]. By limiting the minimum loudness of acoustic
cues to 30 phons, users can maintain awareness of their sur-
roundings in a typical environment. Moreover, by limiting the
maximum loudness of acoustic signals to 60 phons, the user’s
verbal communication remains feasible. Equation (3) models
the loudness of the acoustic cue by a logistic function. One
of the benefits of using a logistic function is that the loudness
of the generated cue increases quickly when objects nearly
collide with the user (see Fig. 12). Such a quick increase in
loudness can draw users’ attention when objects are closer
than 5 m. On the other hand, objects that are more than 10 m
away can be ignored according to the acoustic cue loudness
model shown in Fig. 12.

2) ASPECT ENCODING
The primary acoustic cue reflects distance information, and
this information is insufficient for determining the location of
an object relative to the user (see Fig. 9). A secondary acoustic
cue is necessary to specify the object’s aspect. If an object
is on the left of the user, a louder acoustic cue is generated
in the left ear. When an object is centered in front of the
user, both ears receive acoustic cues with equal loudness.
This approach for loudness in the left or right ear is intuitive,
and (4) regulates the amplitude (loudness) of the secondary
acoustic cue A′ relative to the primary acoustic cue A:

A′ = (A− 30)k + 30 (4)

where

k = −
2
π
|θ | + 1, where θ ∈

[
−
π

2
,
π

2

]
(5)

The factor k ∈ [0, 1] is determined by θ , the aspect of the
object to the user. As a result, when the object is in front of
the user (θ = 0), both ears receive acoustic cues with the
same loudness. Once the object moves to either side of the
user, k decreases; the loudness, too, decreases as the aspect
|θ | increases. The loudness of the secondary acoustic cue will
decrease to 30 phons (i.e., background noise) when the aspect
reaches−π2 or π2 , a condition in which the object is no longer
in the user’s field of view.

During navigation, the STS-HMI system informs the user
of surrounding objects. In the vicinity of an object, the user
scans the environment by turning his or her head. The binaural
cues have equal loudness when the user’s head faces the
object. As the user walks toward the object, the loudness
of binaural cues will increase equally. Fig. 11 shows the
characteristics of acoustic cues according to the positions of
objects relative to the position of the user of the STS-HMI
system. Fig. 11a shows the user facing toward kitchenware
on the left and an appliance positioned on the right side.
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FIGURE 11. Signals changing in both ears while the user is moving.

FIGURE 12. The amplitude (loudness) of acoustic cues versus distance of
an object in the field of view for navigation.

Fig. 11b shows that when the user turns left, the aspects of
both objects change while the distances remain the same.
Consequently, the distance acoustic cue (blue line) in the left
ear and the aspect acoustic cue (green line) in the right ear
remain the same.When the user moves forward, the appliance
disappears from the user’s field of view. This can be observed
by inspecting Fig. 11c, in which the green acoustic cues
vanish in both ears.

D. REPRESENTATION OF MULTIPLE OBJECTS USING
ACOUSTIC CUES
As explained in Fig. 10, the STS-HMI system assigns seven
subbands from the audible spectrum to seven classes of

FIGURE 13. Subband splitting for multiple objects.

objects. However, in practice, it is common that multiple
objects from the same class appear in the field of view. To
inform the user of such a situation, the frequency of the acous-
tic cue within a class of objects needs to reflect the number of
objects. Let the frequency ωm be the cue representing object
m from class c, where i ∈ [1, n]. Hence, ωm can be calculated
using the following equation:

ωm = ωc +
m

n+ 1
× S (6)

where S represents the reserved bandwidth for a given sub-
band and ωc represents the lower-end frequency of the class c
subband. As a result, whenmultiple objects appear in the field
of view, the acoustic cue becomes a summation of multiple
discrete frequencies representing all objects:

� = 6n
i=1ωi (7)
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FIGURE 14. Top: chair(s) detected by STS-HMI. Bottom: generated binaural acoustic cues.

Equation (7) gives the acoustic cue’s broadband spectrum
for a complex scene with n objects from the same class.
Subband splitting will be carried out on binaural cues; hence,
primary and secondary acoustic cues representing the same
object will occupy the same frequency band. Then, by com-
paring the loudness of the binaural cues, users can locate the
objects. Fig. 13 shows an example of subband splitting.When
n chairs appear in a scene, the furniture subband will be fur-
ther split into n subbands. The frequency resolution of human
hearing (pitch) can be as small as 3.6 Hz [52]. However, in our
experiments, we observed that an untrained ear can resolve
frequency increments of 20 Hz. Given a bandwidth of 100 Hz
for each object class, an untrained person can differentiate
five objects within that class.

IV. STS-HMI EXPERIMENTAL RESULTS AND DISCUSSION
Several experiments were conducted to assess the per-
formance of the STS-HMI system. In particular, this
section examines the performance of the acoustic-cue-guided
navigation.

A. ACOUSTIC CUES FOR OBJECT IDENTIFICATION AND
LOCALIZATION
For the first experiment, a chair was placed 1.8 m in front of
the camera (see Fig. 14a). The chair was detected by YOLO,
and the image of the chair was framed by a bounding box.
The aspect angle is 0 since the chair is positioned in the center
of the camera’s field of view. Consequently, as shown in
Fig. 14d, the loudness (representing distance) of the binaural
acoustic cues is the same in both ears. In the second exper-
iment (see Fig. 14b), the chair was placed in the front-left
(1.8 m to the front and 0.9 m to the left) of the camera.

Fig. 14e shows that the aspect of the chair was encoded in the
acoustic cue applied to the right ear. In this experiment, the
chair was closer to the left ear; hence, the primary cue carry-
ing distance information was applied to the left ear while the
secondary acoustic cue carrying the aspect information was
applied to the right ear (for clarification of this action, see the
description of Fig. 9). In the third experiment, two chairs were
placed in front of the camera, with one in the center-front
and the other in the front-left of the camera (see Fig. 14c).
Fig. 14f shows that two discrete frequencies are required
to represent both chairs, as mentioned in Section III-D.
Both chairs are objects within the furniture class. Therefore,
the subband associated with the furniture class will be further
split into two subbands, each of them occupied by one chair.
As shown in Fig. 14f, the primary and secondary acoustic
cues associated with the chair on the left are sent to the left
and the right ear, respectively. The primary and secondary
acoustic cues associated with the chair directly in front of the
camera are the same.

B. ACOUSTIC CUES FOR NAVIGATION
A series of experiments were created using Panda3D (i.e.,
a lightweight video game engine developed by Disney and
Carnegie Mellon University) to test the effectiveness of the
STS-HMI system for navigating visually impaired people.
Before the experiment, all test subjects were given an oral
instruction on how to use the system. Then, the test subjects
learned the binaural acoustic cues by completing simple tasks
such as identifying an object and its location for navigation.
With a few trials, the test subjects were able to utilize the
system in a complex scene. First, a virtual navigation course
was designed for testing. The test subjects were asked to
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FIGURE 15. Top: chair(s) detected by STS-HMI. Bottom: generated acoustic cues.

follow the course using binaural acoustic cues. Like players
of the first-person shooter video game, they traversed a virtual
navigation course by moving an avatar via keyboards and
mice. When a test subject reached a waypoint, a feedback
sound was played, and the acoustic cues for the next waypoint
were generated. By comparing the test subject’s path and the

designated navigation course, we can quantitively assess the
effectiveness of the STS-HMI system.

The virtual navigation paths were modeled based on the
floor plan of the Crown Hall (Fig. 15.a) and the McCormick
Tribune Campus Center (MTCC) (Fig. 15.b) on the campus
of the Illinois Institute of Technology. By simulating the path
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in the virtual environment, the game engine was programmed
to generate acoustic cues for navigation. The test subjects
were blindfolded and guided by the binaural acoustic cues
only. As the test subjects were walking toward the desti-
nation, the position and heading were recorded. Figs. 15c
and 15d show the path and the heading of a test subject
as red lines and red arrows, respectively. In these figures,
the simulated paths and waypoints are shown as blue lines
and blue triangles, respectively. As can be observed from
Figs. 15c and 15d, the test subjects were able to follow
the acoustic cue and complete the course with reasonable
accuracy. In Figs. 15e and 15f, the binaural acoustic cues
are shown in time-frequency distributions. As a subject walks
closer to a waypoint, the system will increase the loudness of
the acoustic cues (see (4)) at a predefined frequency of 750Hz
(see Fig. 10). Similarly, other detected objects will trigger
their corresponding cues.

The performance of the STS-HMI system can be analyzed
quantitively by measuring the deviation of the test subject’s
track from the actual navigation path. As shown in Fig. 16
(navigation path in the Crown Hall), the test subject was able
to stay on the track within 2 m from the actual navigation
path. Considering the tight corner in the Crown Hall, main-
taining an error of less than 2 m (1.9% of the total distance
traveled) is an acceptable accuracy for indoor navigation.
Moreover, the divergence from the actual path is finite and
nonaccumulating. The error surges temporarily each time the
subject reaches a waypoint (see circled markers in Fig. 16).

FIGURE 16. Deviation from the course while traveling the path in the
Crown Hall (top) and the path in the MTCC (bottom).

Fig. 17 shows that the test subject’s distance to the final
destination decreases consistently as the subject advances
through the course. This further confirms the intuitiveness
and effectiveness of the binaural acoustic cues generated by
the STS-HMI system. The STS-HMI system can be realized
using common computational systems such as smartphones.
These systems are highly efficient, and their power consump-
tion may not exceed 10W. Therefore, a typical 10-Wh battery
can operate for at least one hour before recharging.

FIGURE 17. Distance to destination versus distance traveled in the Crown
Hall (top) and the MTCC (bottom).

C. DISCUSSION
In the current design of the STS-HMI system, a regular RGB
camera and a neural network are used to infer the depth
information in the field of view. This approach is realizable
using common devices such as smartphones, which are highly
practical in terms of cost, size, and robustness. There are rel-
atively costly application-specific devices available for depth
measurements [53]. For example, LiDAR sensors [54] pro-
vide high-precision object localization. Other devices such
as HoloLense AR goggles and stereovision cameras also
provide depth measurements [55].

The scene analysis for object detection and navigation
can be implemented on a portable device such as a smart-
phone or embedded devices (e.g jetson nano [56]). The
YOLO network is trained using COCO, a data set with
1.5 million object images acquired in a variety of set-
tings. In our experiments, the YOLO network exhibited
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promising performance in terms of speed, accuracy, and
robustness. Furthermore, YOLO can perform adequately in
object recognition regardless of the size of the object, obstruc-
tions, brightness, contrast, hue, saturation, and/or noise [57].
The YOLO network can also detect objects by process-
ing videos frame by frame. Video processing, although
computationally intensive, can be realized in real time
(6 – 207 frames per second depending on system speci-
fication, platform, and detection criteria) [57]–[59]. More-
over, the network can be retrained with a dataset eliminating
uncommon classes for a higher frame rate. Furthermore,
the 80 categories of objects in COCO are not unique for
a specific domain, so the STS-HMI system can adapt to
different environments such as hospitals, schools, and office
buildings. Also, object recognition by the YOLO network
can be extended by retraining it with additional classes of
objects.

There is a trade-off between the cognitive bandwidth for
the encoded information describing a scene and the intu-
itiveness for navigation. Short voice prompts offer limited
context and, therefore, are inefficient in describing a chang-
ing scene while the user is navigating. It takes a few sen-
tences for a verbal cue to describe a static scene. If the
user is moving continuously, the voice prompt is unable
to pass sufficient information in real time without ham-
pering the user’s mobility [48], [55], [60]. Moreover, it is
hard to provide intuitive spatial information via descrip-
tive sentences. To combat these limitations, the proposed
STS-HMI system encodes information regarding objects’
location and aspect by manipulating the frequency and the
amplitude of the binaural acoustic cues. Future studies of
binaural acoustic cues for scene analysis and navigation can
be extended to include information encoded in pitches since
human ears are also sensitive to pitch changes [52] and time
differences [61].

In summary, the motivation for designing the STS-HMI
system was to develop a machine vision system for rendering
a cognitivemap using binaural acoustic cues. Experimentally,
we demonstrated the feasibility of realizing such a concept for
indoor navigation since indoor spaces are often so complex
that only machine vision can render cognitive information.
On the other hand, for outdoor navigation, the STS-HMI
system can be supplemented by GPS to further increase its
versatility and accuracy.

V. CONCLUSION
This paper presents the STS-HMI system, a novel acoustic-
cue-based navigation system for assisting visually impaired
people. Existing navigation tools are task specific and lim-
ited. Hence, they are not suitable for object detection and
navigation in a complex environment. However, it is desir-
able to develop a portable integrated system that is capable
of object detection, localization, and navigation for visu-
ally impaired people. These design objectives are achiev-
able with advancements in computer vision and machine
learning.

The STS-HMI system creates a language that encodes
information for intuitive navigation using binaural acous-
tic cues. By manipulating the frequency and amplitude of
the cues, the system can convey the distance and aspect of
objects to visually impaired people so that they can build a
cognitive map. This approach is algorithm specific and does
not require specific hardware and resources for scene anal-
ysis and human-machine interfaces. The STS-HMI system
leverages neural networks and computer vision algorithms
to detect and locate common objects. Then, this information
is translated into binaural acoustic cues that enable visu-
ally impaired users to build cognitive maps for navigation.
The experimental results support that the STS-HMI system
is an intuitive and cost-effective mobile solution for nav-
igating visually impaired people in difficult environments.
The system is versatile and can readily be integrated with
common indoor positioning systems such as AR markers
and SLAM to achieve high-precision autonomous indoor
navigation.
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