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ABSTRACT The Internet of Things (IoT) technologies such as interconnection and edge computing
help emotion recognition to be applied in healthcare, smart education, etc. However, the acquisition and
transmission processes may have some situations, such as lost signals and serious interference noise caused
by motion, which affect the quality of the received data and limit the performance of IoT emotion detection.
We collectively refer to these as invalid data. A multi-step deep (MSD) system is proposed to reliably
detect multimodal emotion by the collected records containing invalid data. Semantic compatibility and
continuity are utilized to filter out the invalid data. The feature from invalid modal data is replaced through
the imputation method to compensate for the impact of invalid data on emotion detection. In this way,
the proposed system can automatically process invalid data and improve the recognition performance.
Furthermore, considering the spatiotemporal information, the features of video and physiological signals are
extracted by specific deep neural networks in the MSD system. The simulation experiments are conducted
on a public multimodal database, and the performance of the MSD system measured by the unweighted
average recall is better than that of the traditional system. The promising results observed in the experiments
verify the potential influence of the proposed system in practical IoT applications.

INDEX TERMS Internet of Things, multimodal emotion detection, invalid data, multi-step deep (MSD)

system, deep neural networks.

I. INTRODUCTION

The ability to perceive human emotions can be used to
provide more personalized interactive products. Due to the
massive data and powerful computational capacity, the fast
growth of Internet of Things (IoT) technologies helps to
realize the possibility of real-time human emotion detection
or perception in different scenarios. There have been many
novel studies combining the IoT and affective computing
to provide various emotion detection frameworks for differ-
ent applications, such as healthcare services [1], battlefield
environments [2] and smart homes [3]. These studies treat
emotion detection as a part of the overall framework and tend
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to explain the feasibility of communication and interaction
processes.

The IoT based on cloud servers can turn the monitoring of
real-time emotional states using big data into a reality. How-
ever, there are still some limitations in practical applications.
IoT data consist of a continuous stream of data derived from
terminal sensors. The data contain information pertaining to
the physical states of human beings, such as their physiologi-
cal signals and facial expressions. Therefore, the reliability of
sensors would affect data quality. In addition, Transmission
protocols and network environments also affect synchroniza-
tion and the quality of IoT data. Considering the existence
of the above problems, the quality of data in the IoT is not
as good as the modal data collected by the lab. Specifically,
we use the phrase ““invalid data” to refer not only to the miss-
ing data, but also to the data whose extracted feature does not
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represent the current emotional state, such as received images
that are captured to the wrong location instead of the human
face. The work of Azimi et al [4] showed that the performance
of emotion detection using the IoT could be vulnerable to
the inconsistency and incompleteness of invalid data. Invalid
data may lead to invalid features that do not have the ability
to represent the latent emotional semantic information; and
in a further detection model, the invalid features cannot be
mapped to the right labels. Hence, the detection performance
can be affected by invalid data.

Moreover, most studies on multimodal emotion detec-
tion focus on the audiovisual method. However, in some
situations, such as medical monitoring, audio signals are
not long-standing and perform as noncontinuous signals.
Physiological signals can provide information regarding the
intensity and quality of an individual’s internal state [5].
Some peripheral physiological signals derived from wear-
able noninvasive devices make real-time stress monitoring
a reality for humanity [6]. In addition, image data contain
facial expression information, which is the most intuitive
emotional representation that can further help to understand
the emotional state of an individual. Therefore, the com-
bination of peripheral physiological signals and expression
information can improve the recognition performance due to
the complementarity of multimodal information [7].

Therefore, we can summarize the two problems to be
solved in this paper as follows:

1. How can the emotion detection performance be
protected from invalid data?

2. How can the information of multimodal data be effec-
tively utilized in the presence of invalid data?

Various works have addressed each of these problems
separately (see section 2). Most work focused on improv-
ing the sensor quality and network architecture to prevent
the generation of invalid data, which requires higher costs
and is less selective for application scenarios. We build
a multi-step deep (MSD) system that addresses the above
two problems simultaneously. The spatiotemporal, semantic
information and multimodal complementary information are
utilized together to reduce the impact of invalid data and
further improve the emotion detection performance.

In order for the MSD system to protect the emotion
detection performance from invalid data, the methodologi-
cal difficulty is how to filter out invalid features automat-
ically. We construct the discriminative module considering
the semantic compatibility and continuity instead of the tra-
ditional methods addressing outliers [8], [9]. These tradi-
tional methods measure the similarity between the features
from invalid data and the features from other effective data,
and the data with small similarities are treated as outliers.
However, the computation of this similarity can considerably
increase the computing and time costs, which is unrealistic for
real-time practical applications. In addition, the computation
of the similarity between high-dimensional multimodal fea-
tures can lead to the famous ‘““curse of dimensionality” prob-
lem. By contrast, utilizing the latent semantic information can
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avoid the calculation of excessive dimensions. Furthermore,
potential semantic information encompasses the relationship
between modalities’ features and the corresponding emo-
tional information, enabling the indirect measurement of the
similarity between different modal features. Hence, we eval-
uate the compatibility between modalities and labels in the
latent semantic spaces, and the discriminative module filters
out the invalid features considering the semantic difference
and the modal continuity. In principle, the discriminative
module can be extended to various combinations of modal-
ities that can be preconverted into 1-dimensional feature
vectors. With the detected invalid features being discarded,
the new features are produced by the traditional imputation
method and used as an alternative to invalid data. The new
combination of features is input to the final detection model.

To utilize sufficient information of multimodal data, the
spatiotemporal feature method by 3-dimensional convolution
neural networks (C3Ds) and deep belief networks (DBNs) is
introduced and converts all raw data into 1-dimensional vec-
tors, which are involved in the discrimination, compensation,
and detection processes. The main contributions of this work
are threefold:

1. We established an MSD system for multimodal emotion
detection with records containing invalid data.

2. A method of real-time multimodal emotion detection
based on the combination of peripheral physiological signals
and video was implemented.

3. We conducted the experiment on the Remote Collabo-
rative and Affective Interactions (RECOLA) [10] database to
imitate emotion detection with temporarily invalid data in the
IoT and further investigated the effectiveness of the proposed
system.

The remainder of this paper is organized as follows.
Section II presents the related work, Section III describes
our proposed system, Section IV illustrates our experimental
results, Section V provided the discussion and Section VI
concludes the paper.

Il. RELATED WORK

A. AFFECTIVE COMPUTING IN THE 10T

Several existing works combining the IoT and affective com-
puting focus on four detailed aspects: data collection, the net-
work architecture, the detection model and the interaction
framework in a specific scene.

The emergence of servers and various sensors in the 10T is
the cornerstone of emotion detection. Hui and Sherratt [11]
used common wearable biosensors to predict human emotion
and addressed the problems of limited processing power,
size constraints and battery capacities existing in the selec-
tion of embedded sensors using a lightweight methodology.
Chen et al. [12] achieved emotion sensing through the collec-
tion of ECG signals by smart clothing and the behavioral data
by smartphones. Kim ez al. [13] innovatively provided an idea
to create a virtual emotion barrier that used a wireless signal
and its reflection for emotion detection.
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Since the collected data must be transmitted to the detec-
tion model through communication, communication qual-
ity is also one of the main factors affecting the results of
emotion detection. The emerging 5G technology helps the
implementation of big data-oriented wireless technologies.
Hossain and Muhammad [1] proposed a framework using
5G technology for personalized and seamless emotion-aware
healthcare services. The network architecture affects the qual-
ity of the received data, and a reasonably flexible architecture
can use edge computing [14] to speed up the computational
response. For example, Hao et al. [15] introduced a smart-
edge- Computation, Caching, and Communication (CoCaCo)
algorithm to reduce the computation delay in an affective
interaction as the amount of computing task data and the
number of concurrent users increase in a real environment.

The work of Alam et al. [16] focused on the detec-
tion model part. They constructed an affective state mining
framework using a distributed CNN-based module to recog-
nize human emotions through biosignals. However, only the
modality of the biosignal was utilized, and there was a lack of
consideration for the applicability of transmitted modal data.

Eriksson et al. [17] designed personal emotion-tracking
applications to conduct emotional evaluations and support
emotion-sensing IoT systems. Chen et al. [18] proposed a
prototype system of Smart Home 2.0 to achieve the affective
interactions between householders and greens. Lin et al. [2]
focused on obtaining soldiers’ emotions in a battlefield envi-
ronment based on an emotion-aware system model. These
diverse studies have confirmed that the combination of the
Internet of Things and affective computing has broad appli-
cation scenarios, and the practicality and pertinence of these
IoT systems improves as the theory and algorithms are further
implemented.

Although the emphases of these studies are different,
almost all of the works aim to improve the emotion detection
performance in the IoT from different aspects. In addition,
existing research is more inclined to improve the reliability
of the data sources to improve information acquisition and
transmission in the system construction. However, there is
little research work on the processing of invalid data existing
in collected records. Due to the complexity and uncontrol-
lability of the real communication environment, the goal of
our paper is to contribute to the processing of these data to
make the results more robust, which helps to further extend
the emotion detection applications in a variety of scenarios.

B. EMOTION FRAMEWORK

Definition and assessment are the cornerstones of emotion
recognition. The definition of emotional state originated from
Charles Darwin’s study of the evolution of emotion, who
treated the emotions as separate discrete entities, or mod-
ules [19]. At present, the most popular discrete emotion
model is the six emotional states proposed by Ekman and
Paul [20], which are often used in the research of facial
expression recognition. Since discrete categories may not
fully reflect the complexity of the emotional state, another
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main theory is to use multiple dimensions to label emotions.
Dimensional model aims to avoid the limitations of discrete
models, and allow more flexible definition of emotional states
as points in a multidimensional space. The two most com-
monly used dimensions are valence and arousal [21]. The
former is related to whether the emotions are positive or not,
while the latter measures how calming or exciting the subject
is.

The subjective measurement of emotive responses is one
of the main factors affecting the performance of emotion
recognition. Due to heavy difficulties and inherent ambi-
guities in emotional displays, the ground truth is generally
unreliable. Therefore, the training set is of poor quality,
which further leads to the limited generalization ability and
overfitting. Therefore, many studies on public databases have
tried to reduce the subjectivity of label measurement, so as
to ensure that there is a clear probability distribution rela-
tionship between samples and labels. After reviewing the
literatures on multi-modal affective databases, the three main-
stream approaches aimed at reducing subjectivity can be
summarized: bagging, sorting and data cleaning. In RECOLA
database, 6 assistants received a document including a short
list of some well identified emotional cues to perform the
annotation task. The database experiment followed the idea
that as many assistants as possible are arranged to annotate
the same sample to obtain the final ground truth by vot-
ing or averaging. Similar to model averaging, one of the
common strategies in machine learning, this approach can
reduce variance by increasing randomness. Annotations of
LIRIS-ACCEDE [22] database are performed via crowd-
sourcing under a pairwise comparison protocol, thereby
ensuring that the annotations are fully consistent. eNterface
database [23] discards the samples in which no emotion is
clearly recognized. This data cleaning approach can ensure
that the database only contains the samples carrying obvious
emotional displays.

The dimensional space can be operationalized as a regres-
sion task or as a classification task which discretizes the
continuous space into several regions. Regression tasks tend
to evaluate the similarity between ground-truth and emotional
predictions, and its output is on the metric space. Classifi-
cation tasks’ output is qualitative. The difference between
the two tasks makes the emotion recognition performance of
different tasks impossible to fairly measure.

The three mainstream emotion calculation approaches
include knowledge-based methods, statistical learning meth-
ods, and hybrid methods [24]. The knowledge-based method
realizes the rapid mapping between keywords and emotional
labels by constructing rules. Obviously, this method is diffi-
cult to work with modal data that contains complex semantics
or has complex forms. The most popular method at present
is the statistical method. This method uses machine learn-
ing and deep learning algorithms and has a strong learning
ability to construct mapping from various forms of data onto
emotional labels. For example, Zhang et al. [25] provided
a machine learning framework, called dynamic difficulty
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awareness training (DDAT), to utilize the difficulties in learn-
ing to promote the performance of emotion prediction model.
The hybrid method, which combines the statistical learning
method and knowledge-based method, can predict emotion
and detect polarity. For example, Chaturvedi ef al. [26] com-
bined deep convolutional neural networks and fuzzy logic
models to construct a convolutional fuzzy sentiment classi-
fier (CSFC) to predict the degree of specific emotions.

C. MULTIMODAL EMOTION DETECTION

At present, multimodality emotion detection by statistical
learning approaches usually uses the fusion method. It tends
to deal with the feature of each modality separately and
affects the unified recognition effect by combining different
layers. The fusion method is divided into feature-layer fusion
and decision-layer fusion. The former aggregates each modal
feature and then inputs them together into the recognition
model [27]-[29]; the latter trains each modal feature sepa-
rately and outputs an n-type probability distribution as the
input to the decision-making layer [30].

The classical work [31] from Johannes et al. considered
the situation of temporarily unavailable modalities caused
by some missing data. They obtained the final recognition
results from 11 decision fusion categories through combina-
tions of different quantities of subresults derived from the
respective modality to ignore the influence of the missing
data. However, the contribution from the implicit relationship
between different modalities was not evaluated. To overcome
this drawback, Du et al. [32] proposed a novel multiview
deep generative framework that computed the existing shared
latent variables between generative networks trained sepa-
rately from multimodal data. In addition, the holistic scheme
of generating missing data can be treated as a specialized
missing data imputation task. However, there are still some
limitations. First, the framework did not consider the con-
ditions under which multimodal data were invalid except
missing data. Second, only the latent variables between
modalities are measured. This means that the multimodal data
at each moment are processed independently, regardless of
the temporal continuity of the modality including emotional
information.

In practical IoT applications, invalid data also affect the
detection process. Therefore, in our work, we not only pro-
pose improved methods working around the aforementioned
two limitations, but we also implement an emotion detection
experiment with invalid data existing in the test set based on
multimodal data from video and physiological signals.

lll. METHODOLOGY

The complete emotional IoT framework involves four
aspects: (1) Data Acquisition; (2) Data Storage; (3) Trans-
mission; and (4) Application Process, such as multimodal
emotion detection that is researched in this article. Data
acquisition involves mobile sensors, fixtures, wearable sen-
sors, Local Area Network (LAN) and other components con-
nected to remote or edge clouds. Various LAN structures,
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such as Body Network, can be built in this aspect to obtain
a variety of raw multimodal data according to the required
distance between sensors and human bodies. Data storage
provides a high-performance and robust data storage for a
vast amount of time series data from sensors, so as to ensure
efficient and fast access to data for machine learning and
deep learning computations. Transmission is related to the
communication infrastructures as a bridge between Local and
Cloud. As this study mainly focuses on data processing of
emotion detection based on video and physiological signals,
the rest aspects of IoT framework can solely rely on the
methods described in relevant works, such as [1], [11], [33].

In this section, we present the problem setup and describe
the MSD system we tested. Figure 1 shows a brief overview of
the system. The system has four parts: (1) Feature Extraction;
(2) Compatibility Measurement; (3) Discriminative Module;
and (4) Compensation and Detection.

A. PROBLEM SETUP

Emotion detection is mainly divided into two steps, namely
feature extraction and classification. The feature extraction
process is to map the preprocessed data into feature vectors.
Assuming that the input is x, the feature extraction process is
defined as:

X =f(x) ey

where f(-) denotes the model of feature extraction, and X is
the corresponding feature. The classification process, with
the input x, is given by:

y = model(x) 2)

where model(-) denotes the model for classification and y
is the predicted label. For the feature fusion method of
multi-modal emotion detection, the input x is a vector of
multiple modal features, which are connected in series.

We define one training instance for a certain short period
of time as:

1) = {52} 3)
= v M) )

where V@ denotes the ith video feature that derives n; contin-
uous frames and is given a ground-truth label 2, where 7! €
{z1,22..zm}. There are a total of K physiological signals, and
each signal’s feature is described as g,((l).

Similarly, the test instance is defined as:

Tjte _ {s](e’ Z(j)} 5)

where z0) denotes the predicted label corresponding to sJ’.e.
There may be features from invalid data existing in s%.
We use V* and g* to refer to the invalid features derived
from video and physiological signals, respectively. Among
them, the invalid feature suffering from missing data is treated
as a null value. The main goal of the proposed system is to
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FIGURE 1. Illustration of the MSD system, which describes the feature extraction, compatibility measurement, discrimination and detection

processes.
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As shown in Figure 1, we utilize the latent semantic space
to evaluate the compatibility between modalities and labels.
In addition, the discriminative module is constructed consid-
ering the modal continuity and semantic differences between
different modalities to determine whether invalid data are
present. The compensation module utilizes the imputation
method to find a feature as the substitute for the invalid
feature, further participating in the next classification process.

and sj’.e containing invalid features

B. FEATURE EXTRACTION

DBNs and C3Ds are applied in this part for feature extrac-
tion. DBNs can be treated as a stack of multiple restricted
Boltzmann machines (RBMs) and achieve an optimal solu-
tion by adopting layer-by-layer training and fine-tuning [34].
Due to its powerful unsupervised learning style in many
nonlinear hidden layers, DBNs are exceptionally good at
capturing implicit nonlinear information in the data structure.
C3Ds have a typical 3D convolution net structure, which is
more suitable for extracting temporal-spatial features than
2D nets [35]. In addition, C3Ds have the advantage of high
computational efficiency due to their concise structure.

We utilized the C3D model to extract the temporal-spatial
features from video. The features from multiple one-
dimensional physiological signals are extracted by DBNSs.
The detailed process is described as follows.

187212

1) EXPRESSION FEATURE

To reduce the influence of insignificant regions, we first
capture the face region using a face detection algorithm.
Considering the group application scenarios, the advanced
work of Jian et al. [36], which can detect faces in various
situations, has been applied to the RECOLA dataset. Each
facial image is reconstructed with a size of 112 x 112.

We established the network structure and use the pretrained
model “sportlm” following the works of Du et al. [35] and
Yin et al. [37]. In addition, the fully connected activations
are treated as the extracted features. The multiple frames
are converted into one 1024 dimensional feature. We trained
the C3D with 5 convolution layers, 5 max pooling layers
and 1 fully connected layer. The fully connected layer has
1024 outputs. The C3D network is trained with a batch size
of 20. The initial learning rate is set to 0.01 and divided by
5 after every 10 epochs.

The preallocated training samples of RECOLA are used
to construct the parameters. Each training instance is created
as one clip with 16 consecutive frames. Each adjacent clip
has 8 overlapping frames. Since the RECOLA database’s
label ratings were assessed by six assistants and each frame
has one independent rating, the adjacent frames may have
inconsistent ratings. Averaging all six ratings was used for
some works [10], but this simple operation caused impre-
cise gold standards. Mencattini et al. [38] provided a gold-
standard estimation method designed to mitigate the impact
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TABLE 1. The manual features.

Cha. Feature Description

GSR Number of peaks Number of peaks in resistance exceeding 100 Q
Amplitude of peaks The amplitude from the saddle pointto the nearest peak.
Rise time The time from the saddle point to the nearest peak.

ECG IBI Mean IBI
Multiscale entropy (MSE) MSE at the 5th level

HR Statistical moments Mean and SD

HRV Statistical moments Mean and SD

SCR Number of peaks
Amplitude of peaks
Rise time

SCL Statistical moments

Number of peaks in the resistance exceeding 100 Q

The amplitude from the saddle point to the nearest peak.
The time from the saddle point to the nearest peak.
Mean and SD

of subjectivity of ratings. We calculate the mean of their result
as a label for one clip. It is worth noting that the end of the
video uses the last 1 to 16 frames as the last clip.

2) PHYSIOLOGICAL FEATURE

The peripheral physiological signals derived from wear-
able noninvasive devices can be obtained readily. Therefore,
all physiological signals of RECOLA, including the gal-
vanic skin response (GSR), electrocardiogram (ECG), heart
rate (HR), heart rate variability (HRV), skin conductance
response (SCR) and skin conductance level (SCL), are uti-
lized for feature extraction.

Corresponding to the time of the video clip, each physi-
ological signal window size of RECOLA is 160. The DBN
is constructed with hidden layers sized [160, 1000, 500,110]
and fully connected layers sized [110,50,45]. The training
process contains pretraining and fine-tuning. The training set
is utilized for the two training stages, and the learning rate is
set to 0.0001. Each physiological signal trains its individual
DBN feature extraction model, and a trained DBN produces
110 features from the topmost hidden layer. Although the
fine-tuning process does not change the parameter informa-
tion of the hidden layer, it can be used as an obvious measure
of the hidden layer.

The DBN features and manual features are both utilized in
this paper. The manual features are listed in Table 1.

C. COMPATIBILITY MEASUREMENT

The primary focus of this subsection is to encode the multi-
modal data via the relationship between modalities and labels.
We learn the maps from feature set s; and corresponding
label z® to a shared semantic space R”. The compatibility
is obtained between different modalities’ features and the
label set by applying the WSABIE algorithm [39] to extracted
video feature V) and each physiological feature g}l) , which
computes K + 1 similarities q(’) (1), fq(l) @) ..., q(l) (K+1)
for label z,4, where z, the gth class, and ¢ = 1, 2, ..M. Each
similarity between the gth label and the video feature of the
ith sample is defined as:

)@ =wje0w?) ©)
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where W, denotes the gth column of the label embedding
matrix, and @(V ?) represents the linear projection from the
feature space to RP. Similarly, the linear transformation of
physiological features is @(g,(;)), and we use modality; to
represent the /th modality.

The preallocated training set is utilized to update the
parameters online via stochastic gradient descent (SGD)
while the trained parameters are locked in the testing process.
Several sets of label embeddings and linear conversions are
trained based on the modalities. This means that each modal-
ity corresponds to an independent semantic space. Therefore,
we obtain compatibility indicators between different modali-
ties and each label.

Since this is a supervised learning process, the emotional
information hidden in the modal features is mined to deter-
mine the greatest similarity to the corresponding emotional
label. Compared to complete effective data, invalid data with
insufficient emotional information will likely be converted to
outliers in the semantic space, producing a small similarity
value with the corresponding label. There may be a case
where although the feature data are extracted from the data
with the noise or the missing portion, the similarity with the
corresponding label is still large. This is because this low
quality raw data has enough modal emotional information
and hence has less impact on further processing. Besides,
the online learning method of WSABIE is applicable to
massive data sets. Unlike the traditional classification meth-
ods [40], [41], it obviously outperforms them in terms of time
complexity and memory requirements.

D. DISCRIMINATIVE MODULE

Inspired by traditional imputation methods that deal with
missing data, since the modalities’ performance varies grad-
ually, we assume that the modality of the previous moment
has a certain similarity with the current one in a short period
of time. From another perspective, since the emotional labels
represent the semantic information related to the linear pro-
jection from feature, the label distribution is computed using
each modality’s compatibility measurement, which is equiva-
lent to the indirect measurement of the difference between the
modalities. Therefore, the discriminative module is designed
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to utilize the combination for the semantic compatibility and
temporal continuity of the modality to filter out the invalid
features.

First, for each s™ in the test set, the objective function for
discriminating true invalid data is defined as:

g,n)+b <0 @)

where g (/,t) denotes the comprehensive score of the /th
modality at time ¢, and b; is the discriminative threshold.
We compute the sum of two factors as a comprehensive score:

g,ty=piad L, 1)+ praxD) (8)

where p; 1 and p; 7 are the scaling parameters. The first term
is the temporal similarity of the modality while the other term
measures the semantic difference of each modality from the
others. The former uses the cosine similarity in R” between
the linear mappings from modalities’ feature at the previous
time and current time:

C} (modalityfl)T@ (modality})
® (modalityf_l)

Following the works of [42], [43], we learn the semantic
difference by using the maximum normed residual test theory,
assuming that the set of labels has an approximately normal
distribution. Each modality’s semantic difference is measured
by the x(I) that is obtained based on a two-sided test by

applying Egs. (10)-(12)

¢, =

|| ® (modality;) H

x) =y —Cr (10)
g1 — mean(Q)|
n="—so (1)

Cr

K 72
* (12)
K+1 K+1412

where 0 = {q; =gqlmax,f; (1).I=1,2.K +1}, and 7
denotes the critical value of the t distribution, which has a
significance level of «/(2K+2) and K -1 degrees of freedom.
Recall that the structure of Eq. (7) contains the fixed
parameter ¢ ([, ¢) and the binary inputs x (/) to determine the
final discriminative results (True or False). This function can
be treated as a linear classifier with the binary inputs as the
feature of the classifier, p;,1 and p; 2 as the weights and b;
as the bias. This avoids manually tuning the parameters. We
train the logistic regression classifier (LRC) and the obtained
parameters are used for the discriminative process.

E. COMPENSATION AND DETECTION

The detected invalid modal feature is treated as a missing
feature at this stage and is not involved in the classification
calculation. Considering the correlation between multimodal-
ities, we use the feature fusion method for classification.
However, the fusion method needs to ensure that the input
features have the same dimension. Therefore, imputation is
utilized to compensate for the missing feature. For temporary
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invalid data, replacing the discarded feature with the nearest
neighboring feature with emotional semantics can be the
easiest and most effective method. For invalid features that
are continuously produced for a long time, autoencoder-based
methods [32], [44], [45] can be integrated into the MSD
system to generate new features/views using the remaining
features/views.

Due to the powerful approximations of the fully connected
network (FCN), the fusion feature is input into the FCN to
reconstruct the nonlinear relationship between the modalities
for recognition. The sizes of the fully connected layers are
[1698, 800, 400, 200].

We also use support vector machine (SVM), known as
the best shallow classifier, as the multimodal classifier. The
radial basis function (RBF) kernel projects the input features
into a higher-dimension feature space and helps to process
nonlinear separable samples by constructing the hyperplane.
Therefore, the SVM-RBF can be effective for multimodal
emotion classification.

IV. EXPERIMENT AND RESULTS

A. DATASETS AND SETTINGS

1) RECOLA DATASET

The RECOLA database has been widely utilized for multi-
modal emotion recognition and has been provided for The
Audio/Visual Emotion Challenge and Workshop (AVEC)
since 2015 [46]-[48]. The dataset was created using remote
collaborative tasks and the audiovisual and physiological
signals of the subjects’ spontaneous and natural interactions
were recoded. The training and development parts, each
containing 9 subexperiments, were allocated in advance for
AVEC 2018 by balancing the influence caused by the differ-
ent ages, genders and native languages of the subjects. More-
over, there are six assistants giving the continuous ratings of
the subjects’ valence and arousal based on each frame derived
from the five-minute recorded video. The total number of clip
samples for our experiment is 8397 (for training)+8411 (for
testing). Each instance contains 160 x 6 physiological data
and 16 frames sized 112 x 112.

2) EXPERIMENTAL SETTINGS
First, the feature extraction and detection models were trained
using a raw training set. A binary classification of two
emotional dimensions, valence and arousal, was provided
to detect positive and negative emotion. The experimen-
tal results of the raw data were verified on the test set
and were compared with the results of the state-of-the-art
approach. In the detection module, the FCN was trained using
an initial supervised learning rate of 0.005, which was divided
by 5 after every 10 epochs. The parameters of the SVM-RBF
were set to C = 0.5 and y = 0.5 and were optimized by grid
search cross-validation.

In the supervised learning process of the compatibil-
ity measurement and discriminative module, the perfor-
mance with too few classes relies heavily on the quality
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of the database and the complexity of semantic embedding
algorithms. More classes can reflect the cohesiveness of
multimodal semantic embeddings. Therefore, the RECOLA’s
ratings of valence and arousal were divided into five intervals
to the screen modalities with outlier semantics at this stage
to prevent the discriminative module from taking too long.
We added artificially generated invalid data to the raw train-
ing set as the subtraining set and the subtest set at this stage.

For the detection process with invalid data, the previously
trained models at various stages were assembled to detect
emotions. We presented the comparison results between the
MSD system and the traditional system.

B. RESULTS

1) CLASSIFIER PERFORMANCE

Table 2 and Table 3 present the classification performance
on the RECOLA database using the SVM-RBF and FCN
classifiers. We provide the detection results for the video,
the combination of peripheral physiological signals, and the
combination of all modalities. They show a comprehensive
evaluation measured by the accuracy, unweighted average
recall (UAR) and F1 score. We can draw some conclusions
from the observations as follows. The FCN usually achieves
better performance than the SVM-RBF except for the results
of the physiological signals. The results reported for different
combinations show that the detection using physiological
signals and video in the FCN outperforms the others (UAR of
valence = 57.9% and UAR of arousal = 61.9%). The com-
bination’s performance of physiological signals is generally
slightly below the results for the video. Therefore, the per-
formance of the MSD system is superior using the visual-
physiological multimodality. In addition, the comparison of
the two tables shows that the performance for arousal is more
prominent than the performance for valence.

TABLE 2. The detection performance(%) of the raw test set by different
classifiers (Valence).

SVM-RBF(classifier)
Accuracy 58.5 52.1 58.5
UAR 58.5 51.0 59.0
Fl1 score 58.0 51.5 584
FCN(classifier)
Accuracy 58.4 54.1 60.0
UAR 59.0 50.1 59.7
F1 score 61.0 49.3 57.2

Regarding the comparison between different emotion clas-
sification systems on the same publicly available database,
Table 4 shows the UAR (%) from our proposed system and
from some retrievable state-of-the-art works. The work of
Neumann et al [49] developed a system to detect emotion
recognition using speech. The authors’ best model achieved
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TABLE 3. The detection performance(%) of the raw test set by different
classifiers (Arousal).

SVM-RBF(classifier)
Accuracy 64.7 543 63.5
UAR 59.0 51.3 59.6
F1 score 58.5 50.5 59.4
FCN(classifier)
Accuracy 543 47.3 59.1
UAR 59.8 55.8 61.9
F1 score 50.5 48.4 51.6

TABLE 4. The UAR(%) comparison between the system using Recola
database (Negative/Positive).

Method Modality Valence Arousal

State-of-the-art approach

Attentive convolutional .

neural network (ACNN)[49] Audio 323 60.77

L2-regularized support Video 50.6 51.8

vector classification[50] Audio, Video 50.5 51.7

Our method

C3D Video 59.0 59.8

DBN+DBN Physiology 50.1 55.8

(C3D+DBN)+FCN Video, 59.7 61.9
physiology

UAR (Arousal) = 60.77% and UAR (Valence) = 52.3% using
RECOLA’s samples. Kantharaju et al. [50] used facial action
units (FAUs) and audiovisual signals to classify negative
and positive emotions. Their emotion detection samples were
filtered based on laughter episodes. We find that our proposed
system based on video and physiology performs best on
valence (59.7%) and arousal (61.9%). This indicates that the
combination of video and peripheral physiological signals
may be more effective for multimodal emotion recognition
than the audiovisual method.

2) DISCRIMINATIVE MODULE

The temporarily invalid data were randomly produced to train
the discriminative module and test the MSD system perfor-
mance. Face detection is often affected by occlusion and
other factors, causing background images that do not contain
faces to be captured. In order to ensure the comparability
and reproducibility of the experiment, we used the following
method based on a public database to simulate invalid data in
the IoT:

(1) The invalid data of video was created by capturing
partial images from raw frames randomly; For physiological
invalid data, non-stationary noise was added into the raw
signals by the form of multiplication and addition. In detail,
a random number (1-10) conforming to the Gaussian dis-
tribution was generated, and then the number was added or
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multiplied with the original number. The obtained signal was
compressed into an interval [0,1].

(2) Invalid data was selected by k-Nearest Neighbors
(kNN). The extracted feature of data was the input of kNN.
The invalid data closest to the opposite class of the original
data were chosen to replace these original data, as shown
in Figure 2. The value of k is set to 100.

Raw facial image

Randomly captured image

FIGURE 2. The process of generating invalid visual data. The black dots
represent the raw features and the yellow dots represent the feature
extracted from the generated invalid data.

The t-Distributed Stochastic Neighbor Embedding (tSNE),
with the perplexity value of 30, was utilized to visualize an
example of clustering results of features extracted from both
raw facial image and invalid image. These image’s emotional
label was negative valence. As shown in Figure 3, a map was
constructed in which the distribution difference between the
classes of features extracted from invalid data and raw data is
obvious. Invalid data were generated by separate modalities.
Each modal data containing invalid data and original data
were used to compute ¢ (/,¢) and x (/) to train the LRC.
The total number of training samples and test samples was
141288.

t-SNE

75 1

50

254

—254

—50 1

—75

FIGURE 3. Visualization of high-dimensional features using tSNE.
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The confusion matrix of the discriminative module is dis-
played in Figure 4. Regarding the procedure for identify-
ing invalid data, the results of the recall (valence: 85.5%,
arousal: 83.9%) show that the method is effective at detecting
invalid data. Interestingly, the number of FNs (false nega-
tives), which represent the number of times that data are
incorrectly identified as invalid data, are slightly above the
number of TNs (true negatives). This may be caused by the
subjectivity of the emotional ratings’ evaluation.

TP 21423 9726 P TP

F N..TN FN..TN

Arousal Valence

10898 8767 FP

FIGURE 4. The confusion matrix of discriminative module. Left: Arousal.
Right: Valence.

3) MULTIMODAL EMOTION DETECTION WITH INVALIDDATA
The proportion of unimodal or two modal invalid data in the
test set varied from 20% to 60%. The two experiments, using
the discriminative module (DM) or not using this module
(NDM), were repeated 10 times for each proportion group.

As shown in Figure 5, the recall results of invalid data,
averaged over 10 independent runs, are generally above 80%.
It is seen that the invalid data detection of valence universally
outperforms arousal. The arousal results for invalid data con-
tained in ECG or HR data are not ideal.

The emotion detection results obtained on the invalid data
are shown in Figure 6. The evaluation is measured by the
average UAR. It is shown that the performance of multimodal
emotion detection with invalid data using the discriminative
module generally has better performance than that using the
NDM.

The left part of Figure 6 shows the comparison between
different modalities. The detection performance with invalid
data present in physiological signals seems to be stable, which
varies slightly for the NDM or DM. It is proven that the
MSD system did not significantly improve this case since the
video modality can well represent the emotional information
and the invalid data present in physiological unimodalities
such as EDA does not have much impact on the detection
performance. Comparing the two conditions (DM and NDM),
the performance of detection with 60% invalid data present
in video is the most improved in the DM. Comparing valence
and arousal, the arousal results in the DM reported for the
proportion groups of the physiological modalities are slightly
better than those in the NDM. However, in the valence results
of physiological signals, the DM does not improve the emo-
tion detection performance.
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FIGURE 5. The performance (recall %) of the discriminative module in processing multimodal emotion detection.
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FIGURE 6. The UAR (%) of multimodal emotion detection with invalid data. The blue horizontal lines represent the UAR results of the raw test set. Upper
Left: Invalid data only exist in one unimodality, corresponding to the abscissa (valence). Upper Right: Invalid data exist in two modalities (valence).
Bottom Left: Invalid data only exist in one modality (arousal). Bottom Right: Invalid data exist in two modalities (arousal).

The right part of Figure 6 shows the multimodal emotion
detection performance of the two modalities containing the
invalid data simultaneously. We can observe that the perfor-
mance of the two modalities is slightly below the performance
of one modality. The UAR of the video condition in the
DM significantly surpasses that in the corresponding NDM.
The above descriptions show the effectiveness of the MSD
system, especially in the case of invalid video data.

4) RUN TIME IN FIELD STUDY

The computer running the MSD contained a 3.6 GHz,
Intel(R) Core(TM) 17-4790U, 8 GB of RAM, and an 8 GB
NVIDIA GeForce GTX 1080; and the program platform
used was Spyder. The programming language is Python 2.7,
the background development framework was Pytorch. The
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TABLE 5. The time performance (ms) of multimodal emotion detection.

NDM DM
SVM-RBEF (classifier)
Mean 24.69 39.96
SD 7.15 7.09
FCN (classifier)
YOLEUMEXX 2017

Mean 204.87 220.93

SD 17.48 17.50

feature extraction of physiological signals and video was
processed in parallel.

Table 5 shows the time performance of the proposed sys-
tem, revealing the practicality of the MSD. It was measured
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TABLE 6. Comparison of the recent multimodal emotion detection research.

Assessment indicators

Dataset Annotators Modality (Valence/ Task
Arousal)
Nguyen et al.[51] eNterface Self-assessment Audio, visual Average Classification
guy ) accuracy(90.85)
Zhang et al.[52] LIRIS-ACCEDE 3 annotators using the Audio, visual CCC(91.8/94.6) Regression
. pairwise comparisons  Aydio, visual  Accuracy(46.22/57.40) e
Yi et al.[53] LIRIS-ACCEDE  for each video excerpt UAR(45.63/38.20) Classification
Av+ec 2018 Bca Epa
baseline[48] RECOLA HR ,HRV SCR7 CCC(57.0/58.5) Regression
MT-Lasso ’ ’ ’
SCL
Avtec 2018 B Epa
baseline[48] RECOLA HR }{RV SCR’ CCC(C(77.5/49.2) Regression
Lasso ’ ’ ?
SCL
6 annotators for each Audi ) .
Neumann et al.[49] RECOLA frame udio UAR(52.3/60.77) Classification
Kantharaju et al.[50] RECOLA Visual UAR(50.6/51.8) Classification
Presented work RECOLA Visual UAR(59.0/59.8) Classification
Kantharaju et al.[50] RECOLA Audio, visual UAR(50.5/51.7) Classification
Visual, ECG,
Presented work RECOLA EDA, HR, UAR(59.7/61.9) Classification
HRV,SCR, SCL

by calculating the time to recognize emotions once and
repeated 100 times. The MSD with the DM has a larger time
cost than that with the NDM using either the SVM-RBF
or FCN. This is primarily caused by the calculation cost of
the compatibility measurement and discrimination. From the
results, we can conclude that the SVM-RBF achieves the best
time performance. However, in many real-time applications,
the running time of the MSD with the DM using the FCN may
be acceptable due to a minor delay (<0.25 s). It is noteworthy
that the differences in the configuration of the operating
platform could bring about an order of magnitude difference.
In addition, the time consumption of face recognition and
communication needs to be considered in practice.

V. DISCUSSION

In the related work, it can be seen that deep neural net-
work are main frame of most state-of-the-art multimodal
emotion recognition systems. They are applied for learning
of (i) feature representations, and (ii) joint classification for
multimodality. Considering the latest trend towards real-time
emotion detection for spontaneous affective displays using
IoT big data streams, deep learning based on spatiotemporal
feature extraction is usually suitable for addressing such sys-
tem challenges. In addition, most studies only consider audio-
visual signals for multi-modal emotion recognition. However,
in real life, audio signals need to be generated in a continu-
ous conversation scene, which limits the implementation of
audiovisual multimodal emotion recognition. Based on the
daily acquisition equipment (such as wristbands) of periph-
eral physiological signals and the physiological mechanism
process of emotions, this paper utilized the combination of
video and peripheral physiological signals as the input signal
of multi-modal fusion. In particular, our results show that
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the multimodal emotion recognition performance based on
physiology and video is better than the recent audiovisual
results using the same database.

As shown in Table 6, many studies on multi-modal emo-
tion detection based on different databases have acquired
obviously different results. This can, in part, be attributed
to the different subjective measurement methods of emo-
tive responses, due to inherent ambiguity of the response.
In addition, a lot of studies on public affective databases
have made great efforts to mitigate the impact of subjective
measurement. For example, RECOLA hired 6 assistants to
annotate each frame, and our proposed system can achieve
UAR (Arousal) = 61.9% and UAR (Valence) = 59.7%.
LIRIS-ACCEDE, by which Yi et al. [53] achieved UAR =
45.63/38.20(valence/arousal) and Zhang et al. [52] achieved
CCC = 91.8/94.6 (valence/arousal), takes pairwise compar-
isons, rather than rating approaches. From each pair of video
excerpts, three annotators have to identify the one which can
convey most strongly the given emotion in terms of valence or
arousal. Based on the eNterface database, Nguyen et al. [51]
deliver the best performance of 90.85 (at the average accu-
racy) by implementing the idea of data cleaning. It can be
seen that the database obtained through data cleaning can
achieve the seemingly best performance. Nevertheless, this
method can only recognize the emotional states of obvious
displays, and it requires a lot of manpower for manual screen-
ing. In addition to assessment methods, different collection
methods and potential data cleaning approaches are also one
of the important factors that affect the recognition results.
Because data aggregation involved in the learning process
determines the form of the sample distribution, which can
accurately represent the implicit population and is the basic
guarantee for the model learning performance.
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The experimental results with invalid data show that the
poor quality of video data results in a significant reduction in
the recognition performance, while the existence of invalid
data in the physiological signals delivers less impact. These
findings are attributable to the fact that the annotators’ work-
ing on the RECOLA database is based on the emotional
displays in the videos, leading to a strong correlation between
the videos and the labels. But the correlation with the physi-
ological signals has not been further measured. Due to this
correlation, the multimodal emotion detection results with
invalid data existing in the videos are obviously improved
after DM processing. A conclusion can be drawn that the
effectiveness of the MSD with the DM also depends on
construction methods of the database.

VI. CONCLUSION AND FUTURE WORK

A multistep deep system to reliably detect multimodal emo-
tion using collecting records containing invalid data is pro-
posed. The proposed system includes a feature extraction
and emotion detection method using peripheral physiological
signals and video modalities via deep neural networks. The
invalid data are filtered out in the discriminative module using
the semantic compatibility and continuity. The experiments
are conducted using a public database containing different
proportions of invalid data. The results verify the effective-
ness of the discriminative module. Besides, the performance
of the MSD is compared with the state-of-the-art approach
in two conditions (the records contain invalid data and do
not contain invalid data), and the proposed system based
on peripheral physiological signals and video significantly
improves the detection performance. The promising results
imply that the proposed system can be deployed in many IoT
scenarios, even without the complex network structure and
brilliant data acquisition facilities. This work can be extended
further in the following ways:

1) In practical applications, due to the emergence of large-
scale data on people, advanced face recognition technology
can be utilized. For example, the segmentation of face images
in complex environments such as the wild can be input into
the MSD to achieve the emotion detection of large-scale
crowds. Besides, wearable physiological signal devices and
cameras can be used in limited application scenarios, such
as hospitals and nursing homes. Our research framework
can receive these preprocessed facial images and acquired
physiological signals to further detect emotions.

2) Advanced view learning algorithms can be integrated
into the MSD to generate new features as a substitute for
the discarded features. In this way, emotion detection with
long-term invalid features can be achieved. In addition, a suit-
able algorithm can further improve the recognition perfor-
mance of the MSD.
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