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ABSTRACT For the Internet of things, having sensors in devices used for video surveillance services, such
as cameras, is crucial. The advancement of edge computing technology has enabled high computing capacity
and the handling ofmassive data sets. The concept of cloudlets is employed in edge computing for in-network
processing, especially for large-size multimedia data processing. Cloudlets are essential for services with
high computing costs. Contrary to traditional cloud computing, data can be offloaded to in-network devices
and core clouds, thereby improving the quality of service and enhancing resource utilization. However,
the trade-off between network transmissions and nodal processes with delay-aware multimedia traffic has
been demonstrated to be an NP-complete problem. The problem is presented as a mathematical formula
to maximize the minimal delay gap between the tolerable event delay, sending time, and processing time.
The problem is subject to in-network processing node assignment, routing paths, transmission capacities,
computing capacities, and the effective service period. The Lagrangian approach was employed to evaluate
the method proposed in this study; a near-optimal solution was obtained, and several experiments were
performed to demonstrate that the proposed method outperforms existing methods.

INDEX TERMS Edge computing, offloading, quality of service, routing, video surveillance.

I. INTRODUCTION
The most crucial breakthrough in the Internet of things (IoT)
field has been the increased computing capability of sensors.
Previously, sensors could only complete tasks with simple
data processing or return raw data to the sink node [1],
whereas they are now capable of performing highly complex
tasks, such as handling complex and massive data processes,
because of novel artificial intelligence (AI) chips [2], [3].
Despite assistance from AI chips, IoT devices remain reliant
on machines with high-power computing capacities, such as
cloudlet or core cloud capability, for the processing of high
quality multimedia data [4].

The traditional cloud computing structure is insufficient
for handling IoT applications because of the limited com-
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puting power of IoT devices and the transmission capacity
and round-trip time delay constraints of these services. The
concept of edge computing was proposed to overcome these
limitations. The main idea of edge computing is to process
the data through last-mile services [2], [5]–[8]. For IoT appli-
cations, multimedia data are offloaded to the edge cloudlet
or fog-computing hosts to ensure high computation capac-
ity [2], [5], [6], [9]. This method reduces the time required for
transmission and processing and the workload of the central
servers.

Several IoT applications–such as the smart city, health
care, and campus safety–involve video surveillance, which
is employed to detect incidents of interest [4], [8], [10]–[13].
The main concept of video surveillance is to apply data
analytic methods to real-time data, including videos obtained
using IoT cameras distributed across a city or campus [14].
Guards can then inspect the city or campus for safety and
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make decisions using the patterns extracted from the data.
This paper discusses the use of video for detecting dangerous
events. Internet protocol (IP) cameras equipped with AI chips
were used to detect incidents involving, for instance, danger-
ous individuals, fire, and violence [15]. Situations involving
the foregoing may be dangerous for individuals or threaten
property if they are not promptly detected and prevented
or quickly stopped. Therefore, the present study employed
tolerable delay as a metric to ensure that events were detected
within a given time.

Real-time facial recognition has been demonstrated to be
a practical and effective technology with high recognition
accuracy [16], [17]. An IP camera records images at a rate
of 30 frames per second in most usage configurations. The
highest human movement speed is approximately 10 m/s.
We assume that the effective range of an IP camera is 30 m.
Therefore, the IP camera captures enough frames to enable
analysis of when a person moves through the zone covered
by the IP camera. The face is captured using several cameras
and highly accurate facial recognition algorithms. The danger
that the person presents can be determined by analyzing the
video recordings.

A common practice for detecting fire using IoT systems
is to employ smoke sensors. However, smoke detectors only
work well in enclosed spaces, such as classrooms, shops,
and factory workshops [15], [18]. Smoke detectors are not
effective at detecting fire with high accuracy in open spaces,
such as parking lots and parks, because the smoke must accu-
mulate to a sufficient level before an alert can be issued. Some
researchers have proposed algorithms with high accuracy and
a low false alarm rate [19] that are purely based on computer
vision. Therefore, IP cameras are more suitable in open areas
than smoke detectors are.

The bag-of-words model is employed in the field of image
processing and tends to be efficient at performing highly
complex computer vision tasks. The concept of the bag-
of-words model originates from the domain of information
retrieval [20], [21]. A document is represented by a bag-of-
words, with the order of words not considered. The document
is thus transformed into a high-dimensional vector and can
be used in further information retrieval applications, such as
document classification. In the computer vision field, this
idea is used to extract critical features (the ’words’). Each
image is then transformed into a high-dimensional vector
to represent a feature [20]. The vectors are used for motion
classification. In this study, we classified frames inwhich vio-
lence was captured and demonstrate the reasonableness and
appropriateness of using IP cameras for violence detection.

IP cameras are deployed near devices with a continuous
electric power supply. For example, traffic lights and street-
lights are often selected as locations for IP camera installation
because they enable continuous operation of the cameras.
Planners must be familiar with the landscape to ensure that
the locations of the IP cameras do not result in blind spots.
An IP camera can offload its computation task onto neigh-
boring IP cameras that can perform detection of a type of

incident. However, IP cameras can become overloaded with
computation from other cameras if an appropriate offloading
scheduling assignment scheme is not implemented. Although
the compression algorithm can reduce the amount of data,
media data must be processed by the cloudlet when all IP
cameras offload their data. Therefore, a long computation
delay occurs, and the transmissions between IP cameras and
cloudlets are congested. High transmission latency occurs
when all videos are sent to the core cloud for processing.
An in-network offloading algorithm is required to solve this
problem.

Currently, IP cameras are principally used for recording
videos that are then sent to a security office where a secu-
rity guard assesses the threat. The present study investi-
gated in-network processing through both edge computing
and offloading [5], [9] along the routing path to the secu-
rity office. The selected processing functions were prede-
fined and installed on the responding nodes to match the
required functions before routing to the next processing node.
We identified a near-optimal solution that provides stable
and reliable transmission and processing. In the proposed
system, the IP cameras determine the target, and the hosts
and cameras cooperate to manage the computation and link
capacity constraints. Accordingly, the objective of this study
was to maximize the minimal delay gap between the tolerable
delay of a detected event and the actual event processing time
to enhance performance.

The main contributions of this study are as follows:
1) Development of in-network multimedia processing for

operations with IoT devices, edge computing, and a cloud
network.

2) Model of the offloading and routing assignment prob-
lem using linear and nonlinear mathematical planning for-
mulations. The objective was to maximize the minimal gap
between the processing and transmission tolerable delay for
various types of events.

3) Proposal of an in-network processing node to match the
processing of the type of event within a tolerable delay.

4) Evaluation of the proposed method through comparison
with existing methods.

In the next section, we discuss and compare the main idea
with existing approaches. Section III describes the research
problem. Section IV details the proposed method. Section V
presents the simulation results and discusses related issues.
Finally, in Section VI, the conclusions are presented.

II. RELATED WORK
An IP camera typically detects several types of events.
Three tasks–facial recognition, fire detection, and violence
detection–were considered in this study. When implementing
facial recognition, the first step is to determine whether each
frame contains a face. The frame information and the back-
ground are then removed by selecting a rectangular region
of interest from which to extract the face. These rectangular
images are then inputted to a trained classifier to identify the
face [22].
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The procedure for violence detection is as follows.
In the training phase, we employ motion scale-invariant fea-
ture transform (MoSIFT) to detect and describe features.
A MoSIFT comprises the normal SIFT descriptor and a his-
togram of optical flow. The features obtained using MoSIFT
are then processed using k-means clustering. The center of
each cluster is selected as a ’word’ in the bag-of-words
model. A histogram of word occurrence is then generated by
changing the image into descriptors and assigning them to the
closest visual words. The final step is classifying these high-
dimensional vectors in which each entry represents a visual
word; this classification is achieved using a support vector
machine [23]. During testing, frames are classified as either
containing or not containing violence.

In fire detection, regions in a video that contain flame
movement are identified. The regions in which motion has
been detected are passed to the fire color classifier. The
dynamic textures models are constructed for video sequences
containing specific stationarity. We then use the nearest
neighbor classifier to determine whether the region is on
fire [19]. Other procedures, such as sensor network-based fire
detection [15], are also used in this work.

Numerous papers have discussed IoT applications and con-
straints in light of the properties of various IoT architectures.
Sensors and smart devices with data-gathering abilities are
battery powered. The protocols for these low-power devices
are usually supported with low bandwidth. Bluetooth low
energy (BLE) and ZigBee are commonly used protocols in
the IoT, and they connect edge hosts with gateways. The
main purpose of these protocols is to increase the life cycle
of battery-operated devices and manage the constraint of low
bandwidth shared with other devices [24]. The throughput of
BLE and ZigBee is 270 and 150 kbps, respectively, which are
low compared with Wi-Fi and Ethernet networks.

Research on video surveillance has mainly discussed how
the accuracy of event detection or object tracking can be
improved [10], [25], [26]. Because of the considerable vol-
ume of data involved in video streaming, a video must
be preprocessed before being transmitted to a cloudlet and
subjected to advanced computing tasks [5]. The three main
preprocessing methods currently used are decreasing the
frame rate, discarding frames, and decreasing the resolution
[11], [27]. These methods are set in advance and are
not adjustable during the execution period. Although these
methods reduce the amount of data, some can cause data
loss that reduces the accuracy of event detection or object
tracking.

In-network processing had been studied in sensor networks
as an approach to reduce the amount of transmitted data that
consequently also reduces the transmission delay. Although
edge computing supports local processes to avoid routing to
far cloud servers, most studies have discussed the processing
range between edge servers and end-users [2], [7], [25] or
processing when data are fully sent to the core cloud for
processing [28]. Few studies, such as [6], have addressed data
analytics with collaborative edge and cloud computing.

Traditional routing methods have been discussed and
designed for transmission from source to destination using
shortest-path algorithms, such as Dijkstra’s algorithm and
the Bellman-Ford routing algorithm [29]. The main idea of
these methods is to identify a routing path with a quality-
of-service (QoS) metric, such as transmission bandwidth or
delay [30]. However, nodal delay and segment routing [31]
are not included as strategies for in-network processing appli-
cations, such as monitoring applications of wireless sensor
networks (WSNs) [32].

Segment routing strategies, such as multiprotocol label
switching (MPLS), are beneficial to in-network processing.
The main idea of the MPLS routing technique is to transmit
data from one node to the middle node but not to the des-
tination [33]. This technique has been adopted in telecom-
munications networks to reduce routing table search costs
and accelerate traffic flows. The minimal computation times
attained through node selection and min-max link utilization
using flow assignment problems are addressed in [32]. Seg-
ment routing methods address the routing problem from the
perspective of network access and IP layers. However, the
present study aimed to address routing and nodal processes
using cross-layer methods (covering network to application
layers). The main idea of the segment routing method was
adopted in this work, and a newly designed nodal selec-
tion approach with a delay-aware routing strategy was also
adopted.

Zhang, Lei, and Zhang (2020) proposed a multipath mul-
timedia segment routing method to provide the required
bandwidth and end-to-end transmission delay for real-time
interactive multimedia [34]. This work addresses routing and
nodal process problems as well as diverse data aggregation,
offloading, and in-network process strategies to reduce the
amount of data transmitted along the routing path to the
destination. Although the main idea of wireless multimedia
sensor networks is to reduce the amount of multimedia
data transmitted through the intranode fusion process [35],
the specific functions of selecting and routing data
to a specific node was not included in their study.
From the event-driven routing viewpoint, reducing the
transmission and nodal processing time is a major
problem [1], [11], [32], [36].

The reverse multicast routing method has been studied for
WSNs that concentrate on simple data collection and data
aggregation. Studies have investigated the collection of event
data by sensor nodes, summarized the collected data, and
forwarded the data to the sink node [1], [37]. The present
work extends the use of WSNs for complex problems that in-
network processes require for specific functions, computing
power, storage, and support services. The routing discovery
constructs the spanning tree with Prim’s method [29]. The
present work extends the reverse multicast routing strategy
for multimedia processes and specific functional devices.
Both the routing pathway and the status of functional device
selection are balanced tomaximize the gap between transmis-
sion/processing and tolerable delays.
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TABLE 1. Comparison of routing strategies.

Several routing methods adopt the number of hops, band-
width, traffic load, and delay as link metrics. The number of
hops does not reflect the bandwidth and aggregated flow. The
bandwidth does not reflect the traffic load. Although the traf-
fic load reflects the transmission link status, the nodal status is
not reflected [30]. Therefore, herein, both transmission delay
and nodal processing time were employed as combination
metrics for routing to identify the near-optimal routing path
and processing node.

Table 1 summarizes the comparison of routing strategies
from the various factors. These factors were correlated with
this work, but the strategies and feasibility did not match
the problem studied. Therefore, we modified and extended
these methods to suit the objective of the research problem.
Shortest-path routing methods are based on the idea of reduc-
ing the transmission and processing delay. The segment rout-
ing method must be extended to suit the required functional
node. This work adopts reverse multicast on data aggregated
in the middle nodes, but we cannot only select the closest
node.We considered the link delay, nodal delay, traffic load of
links and nodes, and the functions of in-network processing
nodes. This work combines these factors and develops a set
of algorithms to achieve the research goal of this work.

III. PROBLEM DESCRIPTION
Here, we consider an actual case of a video surveillance
system in a parking lot (see ‘‘The Bank of New Hampshire
Pavilion in New England,’’ https://www.videosurveillance.
com/blog/applications/event-surveillance/new_case_study_
highlights_crowd_management.asp). The monitoring of

potential accidents and damage to vehicles, theft, or vandal-
ism in large parking lots requires a powerful high-definition
(HD) video surveillance system. The detected event must
be processed within a tolerable delay. Several cameras are
installed to capture HD videos from various angles. The
videos are then subjected to in-network processing to filter
and eliminate redundant transmission to the cloudlet hosts.
Then, the initial image analysis results are sent to the security
guard. The processed videos are also sent to a core cloud for
facial and behavioral recognition to be recorded in facial and
behavioral databases.

FIGURE 1. Network architecture.

Accordingly, the system model is a hierarchical structure
with three levels: IoT device, cloudlet, and core cloud levels.
At the IoT device level, a circle represents an IP camera,
and some IP cameras are associated with a Wi-Fi local area
network, as illustrated in FIGURE 1. Each link represents
two nodes associated with a network, which transmits data
through a wireless mesh network or a wired network. Most
of the wireless links transmit data through the independent
channel because the number of channels suffices. Cloudlets
are associated with some IP cameras on the IoT device level
through Ethernet or 4G/5G networks. IP cameras connected
with cloudlets through Ethernet are spatially close to build-
ings. At the core cloud level, the core cloud is connected
to cloudlets through optical fibers. The system automatically
updates end-users with information regarding the location at
which a certain type of event has been detected.

This study assumed that an IP camera is triggered by one
type of sensing device. The IP camera must detect one type
of event in our model. The software-defined network (SDN)
assumes that inclusion in the network relies on network
statuses being periodically collected for routing decisions.
We also assumed that background loading for the IP camera
must be computed, and thus, the IP cameras tend to offload
tasks to other devices, cloudlets, or cloud hosts. The comput-
ing capacity and detection functions of IoT devices, cloudlets,
and the core cloud hosts are varied because of the properties
of the hardware.

The IP cameras in the IoT system record video if they are
triggered by the embedded sensors. For instance, if smoke is
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detected, the IP camera is triggered, the video is tagged with
the type of suspected event, and the video data are offloaded
for further image processing and application. We designed
an algorithm to prevent the overloading of IP cameras and
transmissions because of the various computational capabil-
ities of IP cameras, cloudlets, and the core cloud. Overload-
ing contributes to high computation and transmission times,
resulting in an exceedance of the tolerable delay. Therefore,
the goal of this study was to maximize the minimum delay
gap between the tolerable delay of the detected event and the
actual transmission and processing time.

A. NETWORK MODEL
V refers to the set of IoT devices, cloudlet hosts, and core
cloud hosts. L is a set of links, including routers, switches,
and access points, used to associate the IoT devices. The set
of hosts and devices V and links L form a graph G(V ,L).
FIGURE 1 illustrates the network architecture. A set of events
U is recorded by a camera device, with u ∈ U being an
individual event. Another device, a cloudlet or the core cloud
v ∈ V , is assigned to execute in-network processing.
The given parameters and decision variables are listed
in Tables 2 and 3, respectively. A trade-off exists between data
processing and transmission time. If an event video is sent
to the core cloud, the processing time is short, but the trans-
mission time is long. If an event can be processed by another
device or an edge computing host, the processing time is long
but the transmission time is short. This study aimed to reduce
the response time for various types of detection events.

The objective function (IP) is used to maximize the min-
imum delay gap, which is calculated using (15). The main
idea of function (IP) is to consider various types of events that
require various delay ranges. Achieving the minimum delay
for emergency events may affect the required delay for emer-
gency data. Therefore, the objective function aims to achieve
the required delay for all events and balance loads through
maximizing the minimal delay gap d , which is determined in
Constraint (15).

max d (IP)

subject to the following constraints.

1) OFFLOADING ASSIGNMENT CONSTRAINTS
Constraint (1) states that function i can be performed by node
v to determine whether the required functions can be satisfied
by node u. Once all functions are satisfied, the decision
variable αuvi is set to 1; otherwise, the requested job of node
u should not be performed by node v.

αuvi ≤ hvi, ∀v ∈ V , u ∈ U , i ∈ Iu (1)

Once a job has been requested by node u, Constraint (2)
states that all functions i will be processed by one or fewer
nodes v. The job cannot be handled by neighboring nodes,
but it is finally handled by the core cloud, which ensures that

TABLE 2. Given parameters.

TABLE 3. Decision parameters.

all jobs can be processed in the network.∑
v∈V

αuvi ≤ 1, ∀u ∈ U , i ∈ Iu (2)
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Constraint (3) states that a path must exist once the function
i is offloaded from node u to node v. Not all paths between
nodes u and v must be listed. This is achieved using a greed-
based routing algorithm.

αuvi ≤
∑
p∈Puv

xp, ∀v ∈ V , u ∈ U , i ∈ Iu (3)

If a link (m, n) is on the selected path p from nodes u to v,
the link is marked with the decision variable yu(m, n), which
can be used to assess the number of paths passing through
the link, to calculate aggregated traffic load and transmission
delay. Constraint (4) states that if a link (m, n) is on a path p,
the link is used by a node u.∑
p∈Puv

xpδp(m,n) ≤ yu(m,n), ∀(m, n) ∈ L, u ∈ U , v ∈ V

(4)

2) RETURN RESULT PATH CONSTRAINTS
Once the process requirement is offloaded to node u, a path
routes to end-user v must be identified. Constraint (5) states
that a path must exist for node v to send the result to an end-
user.

αuvi ≤
∑
q∈Qv

xq, ∀v ∈ V , u ∈ U , i ∈ Iu (5)

Once path q is determined from nodes u to v, the set of
links on path q should be recorded. Decision variable yv(m,n)
is used to mark whether a link (m, n) is used. Constraint (6)
states that if the link (m, n) is on path q, the link is used by
node v.∑

q∈Qv

xqδq(m,n) ≤ yv(m,n), ∀(m, n) ∈ L, v ∈ V (6)

3) AGGREGATE FLOW CONSTRAINTS
After node u offloads the process to node v, the aggregated
load is calculated and Constraint (7) constrains the aggregate
computation on node v. The ‘‘less than and equal’’ symbols is
used in this equation because the Lagrangian approach [39]
is adopted to solve the minimum problem.∑

u∈U

αuviβu ≤ gv, ∀v ∈ V , i ∈ Iu (7)

Constraint (8) constrains the aggregate flow on the link
(m, n) that is the sum of all paths transmitted through the
link (m, n), including the source node that offloads the traffic
load to in-network processing nodes and the offloading nodes
sending the processed results to the end-user.∑

u∈U

yu(m,n)γu +
∑
v∈V

yv(m,n)ωv ≤ f(m,n), ∀(m, n) ∈ L (8)

4) DELAY CONSTRAINTS
Constraint (9) constrains the computation delay of node v.
The processing delay is calculated based on the M/M/1

queuing model because herein only one process unit is used
for the in-network process host.

1
Cv − gv

≤ dv, ∀v ∈ V (9)

Constraint (10) constrains the transmission delay of the
link (m, n). The delay is calculated using anM/M/1 queuing
model because a single process is used to forward the data for
each device. The traffic load used in this system is aggregated
because the outbound traffic load is difficult to collect. The
delay value is stored in the decision variable d(m,n).

1
C(m,n) − f(m,n)

≤ d(m,n), ∀(m, n) ∈ L (10)

Constraint (11) constrains the end-to-end transmission
delay from node u to node v. According to this constraint,
the transmission delay must be considered when is set to 1.
If yu(m,n) is set to 0,M is a sufficiently large positive number
for d(m,n) - M to be less than zero. However, the decision
variable χu(m,n) is ultimately set to 0 because of the physical
meaning assigned to it.

d(m,n) − (1− yu(m,n))M ≤ χu(m,n), ∀(m, n) ∈ L, u ∈ U

(11)

Constraint (12) states that the transmission delay must be
considered when both αuvi and yu(m,n) are set to 1. M is
a sufficiently large positive number under conditions that
d(m,n) - 2M is less than zero. However, the decision variable
λu(m,n) is ultimately set to 0 because of the physical meaning
assigned to it.

d(m,n) − (2− αuvi − yv(m,n))M ≤ λu(m,n),

∀(m, n) ∈ L, v ∈ V , u ∈ U , i ∈ Iu (12)

Constraint (13) states that the computation delay must be
considered when αuvi is set to 1. If αuvi is set to 0, M is a
sufficiently large positive number for dv - M to be less than
zero. However, the decision variable ψu is ultimately set to
0 because of the physical meaning assigned to it.

dv − (1− αuvi)M ≤ ψu, ∀v ∈ V , u ∈ U (13)

5) END-TO-END DELAY CONSTRAINTS
According to the link and nodal delay, Constraint (14) con-
strains the end-to-end delay with all links and nodes used for
the given detected node u. At least two paths and one in-
network node are used to process an event. The total delay
is recorded on the decision variable u.∑

(m,n)∈L

χu(m,n) + λu(m,n) + ψu ≤ du, ∀u ∈ U (14)

The aim is to minimize the maximal delay gap between the
tolerable delay and the actual transmission delay to achieve
weighted fairness and satisfy the required delay for each
detected event. Constraint (15) states that the delay must be
maximized and the results d are maximized by the objective
function (IP). The division of the gap by Tu does not affect
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the results. The normalization delay gap results are calculated
to ensure the ratios are set in [0,1] to fairly compare the QoS.

d ≤
(Tu − du)

Tu
, ∀u ∈ U (15)

IV. SOLUTION APPROACH
Lagrangian relaxation (LR) can be used to solve constrained
optimization problems, such as integer programming, linear
programming with a combinatorial objective function, and
nonlinear programming. The main concept of LR is relaxing
complicated constraints of primal problems and moving them
into objective functions. A corresponding Lagrangian multi-
plier exists for each relaxed constraint. The primal problem
is then transformed into an LR problem, and the LR problem
is divided into several subproblems [39], as illustrated in the
Appendix. An optimization-based algorithm is employed to
solve each subproblem.

Relaxing the complicated constraints reduces the com-
plexity and difficulty of primal problems. For minimization
problems, the optimal value of the LR problem is a lower
bound of the primal problem. The subgradient method is
used to adjust the Lagrangian multiplier iteration by iteration
to reduce the gap between the primal problem and the LR
problem; this is referred to as a Lagrangian dual problem.

To apply the LR method and decompose the problem into
subproblems, themaximization problemmust be transformed
into a minimization problem. The objective function (IP) is
transformed into

min−d (IP’)

The constraints to form the following LR problem are
relaxed through the introduction of the Lagrangian nonneg-
ative multiplier vectors µ1

uvi, . . . , µ
13
u .

Objective function:

ZLR(µ1
uvi, µ

2
(m,n)uv, µ

3
uvi, µ

4
(m,n)v, µ

5
vi, µ

6
(m,n),

µ7
v, µ

8
(m,n), µ

9
(m,n)u, µ

10
(m,n)uvi, µ

11
uvi, µ

12
u , µ

13
u )

= min− d

+

∑
u∈U

∑
v∈V

∑
i∈Iu

µ1
uvi[αuvi −

∑
p∈Puv

xp]

+

∑
(m,n)∈L

∑
u∈U

∑
v∈V

µ2
(m,n)uv[

∑
p∈Puv

xpδp(m,n) − yu(m,n)]

+

∑
u∈U

∑
v∈V

∑
i∈Iu

µ3
uvi[αuvi −

∑
q∈Qv

xq]

+

∑
(m,n)∈L

∑
v∈V

µ4
(m,n)v[

∑
q∈Qv

xqδq(m,n) − yv(m,n)]

+

∑
v∈V

∑
i∈Iu

µ5
vi[
∑
u∈U

αuviβu − gv]

+

∑
(m,n)∈L

µ6
(m,n)[

∑
u∈U

yu(m,n)γu +
∑
v∈V

yv(m,n)ωv − f(m,n)]

+

∑
v∈V

µ7
v[

1
Cv − gv

− dv]

+

∑
(m,n)∈L

µ8
(m,n)[

1
C(m,n) − f(m,n)

− d(m,n)]

+

∑
(m,n)∈L

∑
u∈U

µ9
(m,n)u[d(m,n) − (1− yu(m,n))M − Xu(m,n)]

+

∑
(m,n)∈L

∑
u∈U

∑
v∈V

∑
i∈Iu

µ10
(m,n)uvi

[d(m,n) − (2− αuvi − yv(m,n))M − λu(m,n)]

+

∑
u∈U

∑
v∈V

∑
i∈Iu

µ11
uvi[dv − (1− αuvi)M − ψu]

+

∑
u∈U

µ12
u [

∑
(m,n)∈L

Xu(m,n) + λu(m,n) + ψu − du]

+

∑
u∈U

µ13
u [d −

(Tu − du)
Tu

] (LR)

subject to (1) and (2).
The LR problem can be decomposed into 14 subproblems,

and each subproblem can be solved optimally, as detailed
in Appendix. Once these subproblems have been solved,
the useful information in the corresponding multipliers can
be utilized. We used µ5

vi, µ
6
(m,n), µ

7
v , and µ

8
(m,n) to design our

algorithm to be able to obtain feasible solutions to the primal
problem.

Step 1: Use Dijkstra’s algorithm to determine the
total transmission delay to each node. The link cost is

µ8
(m,n)

C(m,n)−µ
6
(m,n)f(m,n)

.

Step 2: Sort the nodes with an appropriate function type
that can process the task. The weight to be sorted is the total
transmission delay to that node plus the computation delay.

µ7
v

Cv−µ5
vgv

.
Step 3: Use Dijkstra’s algorithm [29] to determine the

total transmission delay to the core cloud. The link cost is
µ8
(m,n)

C(m,n)−µ
6
(m,n)f(m,n)

.

We designed and implemented two algorithms for com-
parison. The First-Fit algorithm is used to offload the tasks
generated by the source node to the first node that can perform
the function type of that task.

Step 1: Use Dijkstra’s algorithm to determine the shortest
path to each node for a device, which detects an event for
processing.

Step 2: Offload the task to the first node that can perform
the function type of the task.

Step 3: Use Dijkstra’s algorithm to calculate the shortest
path to the core cloud.

Step 4: Send the result to the core cloud.
The All-Core algorithm is employed to offload all the tasks

to the core cloud.
Step 1: Use Dijkstra’s algorithm to identify the shortest

path to the core cloud.
Step 2: Offload the task to the core cloud.
Theorem 1: The LR algorithm can be evaluated using

O(|0||L||T ||V |2).
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TABLE 4. Experimental environment and parameters.

Proof: Suppose that the time complexity of the event
process is O(|0|), which is dependent on the complexity of
a detected event. Finding the shortest path with a centralized
shortest-path algorithm for each pair [29] requires O(|V |2)
to run with |T |, yielding O(|0||L||T ||V |2), where |L| is the
number of affected links for calculating the coefficient of
Lagrangian multipliers. Therefore, the time complexity in the
least favorable situation isO(|0||L||T ||V |2) as determined by
the LR-based algorithm.

V. PERFORMANCE EVALUATION
We designed a series of experiments with various parameters
to evaluate the solution quality of our primal feasible solu-
tion algorithm. Furthermore, we employed two algorithms,
the All-Core and First-Fit algorithms, to assess the perfor-
mance of our algorithm.

A. EXPERIMENTAL ENVIRONMENT
The computational experiment was performed in Python, and
we used a Linux server as our running platform. Table 4 dis-
plays the experimental parameters. A series of experiments
were performed with various parameters to observe the trend
and performance of the LR-based algorithm proposed in this
paper. We used two performance metrics to evaluate the
solution quality, the ’Gap’ and ’Improvement Ratio’. These
metrics are defined as follows:

Gap =
|Primal − LB|
|Primal|

× 100% (16)

ImprovementRatio =
Algorithmi − Algorithmj

Algorithmj
× 100%

(17)

The experiment results, illustrated in FIGURE 2, indicate
the effect of the number of source nodes on the objective
value obtained using each algorithm. When the number of
source nodes increased, the objective value decreased. The
primal feasible solution algorithm maintained the objec-
tive value at approximately 0.904 as the number of source
nodes increased. The All-Core algorithm displayed a more

FIGURE 2. Normalized delay gap effect on the number of source nodes.

favorable performance than did the First-Fit algorithm. The
objective value was affected by the number of source nodes
in both algorithms. TheGapwasmaintained at approximately
9.6% when the number of source nodes increased. The high-
est Improvement Ratio for theAll-Core algorithmwas 9.95%,
whereas it was 22.83% for the First-Fit algorithm.

This study also determined the effect of the number of total
nodes on the objective value obtained using each algorithm,
as displayed in FIGURE 3. When the number of total nodes
increased, the objective value was determined to increase
slightly. The primal feasible solution algorithm maintained
the objective value at approximately 0.86 as the number
of total nodes increased. The All-Core algorithm exhibited
superior performance to the First-Fit algorithm, especially for
more than 90 nodes. Gap was maintained at approximately
12% as the number of source nodes increased. The highest
Improvement Ratios achieved using the All-Core and First-
Fit algorithms were 14.77% and 23.54%, respectively.

FIGURE 3. Normalized delay gap effect on the number of total nodes.

We investigated the effect of the size of data on the
objective value obtained using each algorithm. The results are
displayed in FIGURE 4. When the size of the data increased,
the objective value decreased. The primal feasible solution
algorithm maintained the objective value at approximately
0.88 as the quantity of data increased. The objective values
obtained using the All-Core and First-Fit algorithms both
decreased considerably when the number of source nodes was
larger than 50 and 60, respectively. Gap was maintained at
approximately 12% as the number of source nodes increased.
The highest Improvement Ratios obtained using the All-Core
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FIGURE 4. Normalized delay gap effect on the data size.

FIGURE 5. Normalized delay gap effect on the event types.

and First-Fit algorithms were 23.56% and 32.37%,
respectively.

Furthermore, we investigated the effect of the number of
functions on the objective value obtained using each algo-
rithm. The results are illustrated in FIGURE 5. The primal
feasible solution algorithm maintained the objective value at
approximately 0.87 as the number of functions increased.
The All-Core algorithm maintained the objective value at
0.842. However, the objective value obtained using the
First-Fit algorithm was strongly affected by the number of
functions. Gap was maintained at approximately 13% as the
number of functions increased. The highest Improvement
Ratios obtained using the All-Core and First-Fit algorithms
were 3.33% and 5.45%, respectively.

B. DISCUSSION
This study aimed to apply its results to the real world, such
as video surveillance monitor for in parking lots, which was
built-up by the Bank of New Hampshire Pavilion in New
England. However, the LR-based algorithm proposed herein
requires a relatively long calculation time to obtain the opti-
mal solution. Several advanced methods can be studied to
address this problem. To use this method in real-time situ-
ations, we could record the computational result in the form
of a phone book. When an IP camera is triggered, it could
search the phone book with the information observed from
the SDN controllers, which periodically collect the network
and device traffic load, service status, storage, and host status,
to implement a routing and offloading strategy. The sec-

ond method would be to continually execute the converged
LR-based algorithms with the update status to reduce the exe-
cution time because observing the results for each iteration
and outputting the results at any iteration is a feature of the
LR approach.

The SDN controller had been integratedwith networkman-
agement tools to collect the network, buffer, storage, CPU,
and memory status of IoT devices (e.g., IP cameras) and
cloudlet hosts. These data are used by network management
to monitor the status of devices and cloudlet hosts so that
real-time information is adopted in the proposed method to
identify a feasible solution and periodically update the deci-
sion variables to support event-driven monitor applications in
in-network processing within a tolerable delay.

The network architecture used to process event data with
cloudlets forms a cluster-based network, as illustrated in
FIGURE 1. The formation is event-centric, with shortest-path
routing used to reduce the transmission time; hence, the range
is narrowed to a cluster with a subset of IoT devices and
cloudlet hosts. The network calculation range and the time
used to collect hosts and network statuses are then reduced.
Therefore, the decision variables, illustrated in Table 3,
are periodically updated on each device, with the proposed
LR-based method calculated using the cloudlet hosts. Any
device can decide, based on calculation results, to com-
plete an in-network multimedia processing operation when
an event occurs.

The LR-based method solves a complex problem by using
the principle of ’divide and conquer’ [39]. In this method,
the original (IP) problem is divided into 14 subproblems,
as shown in Appendix. Each subproblem can be divided
into small independent subproblems, enabling a series of
decentralized algorithms for these subproblems to be partially
offloaded on various hosts, thereby accelerating the process-
ing. The nodes of Subproblems 1, 6, 8, 12, and 13 are divided
into |V| independent subproblems, which can be processed
and distributed on each node. The results are then sent to the
SDN controller. The linking and routing of Subproblems 2,
3, 4, 5, 7 9, 10, 11, and 14 require the statuses of all links.
To avoid duplicate transmissions among the nodes, the cal-
culations are performed by the SDN controller and cloudlet
hosts. Although the overhead exchange message might be
large, achieving the objective of this work to support QoS
multimedia processing is more important. The overhead can
be controlled by handling the event data within a given seg-
ment area. For example, Area I in FIGURE 1 is set as a solu-
tion range. Through these techniques, the proposed algorithm
can be used in real-time applications with IP camera devices
to obtain near-optimal solutions.

When an IP camera offloads various functions, it transmits
a duplicate video. When it offloads the functions to the core
cloud or a cloudlet, the video only requires one transmission.
The problem can be viewed as a network planning problem
and solved near-optimally.

The transmission delay is higher when the volume of data
is larger. Recording video in high resolution also increases
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the computational delay. All-Core algorithms transmit tasks
to the core cloud. The high computation power of the core
cloud can result in a relatively low computational delay.
However, the video must be transmitted through numerous
links, causing the total transmission delay to be extremely
high. Furthermore, the links between the IP cameras and
cloudlets, and the links between the cloudlets and the core
cloud, bottleneck. The First-Fit algorithm offloads the task
generated by the source node to the nearest node that can per-
form the function type of the task. This algorithm can reduce
the transmission delay because the video is transformed into a
message that tells the end-user whether an IP camera detects
a certain event. The size of the message is relatively small
compared with that of a video. However, given the computa-
tional capacity of IP cameras, the computational delay is high,
and the number of IP cameras that can perform a certain type
of task may be small. Therefore, the IP cameras may have
to perform numerous tasks, resulting in high computational
delay.

VI. CONCLUSION
Routing and offloading in video surveillance that combine
a core cloud, cloudlets, and IP cameras still face several
problems. This study considered several elements, including
the computational capacity of each device and host, the trans-
mission capacity of each link, and, most crucially, the tol-
erable delay of each type of event. An LR-based approach
was employed to solve these complex problems. A series
of experiments using different parameters demonstrated that
the proposed method outperformed the All-Core and First-Fit
algorithms. This study modeled the entire system within an
extremely small time. A long-term study on the applications
in video surveillance is intended for future work.

APPENDIX
The solutions of 14 subproblems separate from the LR prob-
lem are represented in this section. Each subproblem must be
optimally solved. The summation of these objective results is
the LB value, which is the final result of the dual problem.

A. SUBPROBLEM 1 (Related TO DECISION VARIABLE αuvi )
Objective function:

min
∑
i∈Iu

∑
u∈U

∑
v∈V

(
µ1
uvi + µ

3
uvi + µ

5
viβu

−
( ∑
(m,n)∈L

µ10
(m,n)uvi + µ

11
uvi
)
M
)
αuvi

subject to (1) and (2).
Subproblem 1 can be divided into |U ||V | independent

subproblems. Each node u that needs to offload an event to
another node is recorded. Both the index and coefficient of the
candidate node v, which can handle the event, are calculated
to determine the minimum value of µ1

uvi + µ
3
uvi + µ

5
viβu −( ∑

(m,n)∈L
µ10
(m,n)uvi+µ

11
uvi

)
M . For the candidate that can process

the event, αuvi is simply set to 0. To determine the optimal

value, because an event can be handled by only one candidate
node, all candidate nodes that have been recorded are tested,
and the candidate with the minimum αuvi is selected. The
pseudocode of the algorithm is as follows:

1: For each node u:
2: For the event i:
3: For each node v:
4: If hiv = 1:
5: Calculate the coefficient of αuvi->a_cof[v]
6: Else:
7: a_cof[v] = infinity
8: Sort a_cof
9: Select the minimum value of a_coef;

10: record the node and the value
11: For each node v:
12: If v == the node with the minimum value

of a_coef < 0:
13: Set αuvi to 1
14: Else:
15: Set αuvi to 0

B. SUBPROBLEM 2 (Related TO DECISION VARIABLE xp)
Objective function:

min
∑
u∈U

∑
v∈V

∑
p∈Puv

( ∑
(m,n)∈L

µ2
(m,n)uvδp(m,n) −

∑
i∈Iu

µ1
uvi

)
xp

subject to :
∑
u∈U

∑
v∈V

∑
p∈Puv

xp ≤ 1.

Subproblem 2 can be divided into |U ||V | subproblems. For
each node u that must offload a function to another node v,
the shortest path is computed using the Dijkstra’s algorithm
for all paths with link costs µ2

(m,n)uv. The pseudocode of the
algorithm is as follows:

1: For each node u:
2: For each node v:
3: Find the shortest path xp by using Dijkstra’s

algorithm.
4: Calculate the coefficient of xp.
5: Select the path p with the minimum aggregated link

coefficient along path plus
∑
i∈Iu

µ1
uvi.

C. SUBPROBLEM 3 (Related TO DECISION VARIABLE
yu(m,n))
Objective function:

min
∑
u∈U

∑
(m,n)∈L

(∑
v∈V

(−µ2
(m,n)uv)− µ

9
(m,n)uM

+µ6
(m,n)γu

)
yu(m,n)

subject to yu(m,n) ≤ 1.
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Subproblem 3 can be divided into |V ||L| independent sub-
problems. The decision variable yu(m,n) is set to 1 if the coef-
ficient is less than 0 in each subproblem; otherwise, yu(m,n) is
set to 0. All objective values of all divided subproblems are
then aggregated. The pseudocode of the algorithm as follows:

1: For each node u:
2: For each link (m, n):
3: Calculate the coefficient of yu(m,n) -> y_cof[(m,n)]
4: If y_cof[(m, n)] < 0:
5: Set yu(m,n) to 1
6: Else:
7: Set yu(m,n) to 0

D. SUBPROBLEM 4 (Related TO DECISION VARIABLE xq)
Objective function:

min
∑
v∈V

∑
q∈Qv

(
−

∑
i∈Iu

∑
u∈U

µ3
uvi +

∑
(m,n)∈L

µ4
(m,n)vδq(m,n)

)
xq

subject to
∑
v∈V

∑
q∈Qv

xq ≤ 1.

This subproblem can be divided into |V | independent
subproblems. For each node u that must offload a function
to another node v, the shortest path is calculated using the
Dijkstra’s algorithm for all paths to all candidate nodes with
link costs µ4

(m,n)v. The path with the aggregated link coeffi-
cient µ4

(m,n)v along path q minus
∑
u∈U

∑
i∈Iu

µ3
uvi is selected. The

pseudocode of the algorithm is as follows:

1: For each node u:
2: For each node v:
3: Find the shortest path xq by using the Dijkstra’s

algorithm.
4: Calculate the coefficient of xq
5: Select the path with the minimum aggregated link

coefficient µ4
(m,n)v along path q minus

∑
u∈U

∑
i∈Iu

µ3
uvi.

E. SUBPROBLEM 5 (Related TO DECISION
VARIABLE yv (m,n))
Objective function:

min
∑

(m,n)∈L

∑
v∈V

(
µ6
(m,n)ωuv −

∑
u∈U

∑
i∈Iu

µ10
(m,n)uviM

−µ4
(m,n)v

)
yv(m,n)

subject to yv(m,n) ≤ 1.

Subproblem 5 can be divided into |V ||L| independent sub-
problems. The decision variable yv(m,n) is set to 1 if the coeffi-
cientµ6

(m,n)ωuv−
∑
u∈U

∑
i∈Iu

µ10
(m,n)uviM−µ

4
(m,n)v is less than 0 in

each subproblem; otherwise, yv(m,n) is set to 0. Accordingly,
the objective value of each subproblem is minimized so that
the objective function of the subproblem 5 is minimized. The
pseudocode of the algorithm is as follows:

1: For each node v:
2: For each link (m, n):
3: Calculate the coefficient
µ6
(m,n)ωuv −

∑
u∈U

∑
i∈Iu

µ10
(m,n)uviM − µ

4
(m,n)v of yv(m,n) ->

y_cof[m,n]
4: If y_cof[m,n] < 0:
5: Set yv(m,n) to 1
6: Else:
7: Set yv(m,n) to 0

F. SUBPROBLEM 6 (Related TO DECISION VARIABLE gv )
Objective function:

min
∑
v∈V

(
µ7
v

1
Cv − gv

−

∑
i∈Iu

µ5
vigv

)
subject to

1
Cv − gv

≤ maxTu.

Subproblem 6 can be divided into |V | independent sub-
problems. By applying the derivative of f (gv) = µ7

v/

(Cv − gv) − µ5
vgv, the optimal value of gv (0 ≤ gv) can be

obtained. The decision variable gv is then set toCv−µ5
v/µ

7
v , 0,

or (1−maxTu×Cv)/maxTu, which can lead to the minimum
value. The pseudocode is as follows:

1: For each node v:
2: f (gv) =

µ7
v

Cv−gv
− µ5

vgv
3: Calculate f ′(gv) = 0
4: µ7

v(Cv − gv)
−2
− µ5

v = 0
5: gv = Cv − (µ5

v/µ
7
v)

2

G. SUBPROBLEM 7 (Related TO DECISION
VARIABLE f(m,n))
Objective function:

min
∑

(m,n)∈L

(
µ8
(m,n)

1
C(m,n) − f(m,n)

− µ6
(m,n)f(m,n)

)
subject to

1
C(m,n) − f(m,n)

≤ maxTu.

Subproblem 7 can be divided into |L| subproblems.
By applying the derivative of h(f(m,n)) = µ8

(m,n)
1

C(m,n)−f(m,n)
−

µ6
(m,n)f(m,n), the optimal value of f(m,n) can be obtained. The

decision variable f(m,n) is then set to 0, C(m,n) − (µ6
(m,n) −

µ8
(m,n))

2, or (1−maxTu×C(m,n))/maxTu, which can lead to
the minimum value. The pseudocode is as follows:
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1: For each link (m, n):
2: h(f(m,n)) = µ8

(m,n)
1

C(m,n)−f(m,n)
− µ6

(m,n)f(m,n)
3: Calculate h′(f(m,n)) = 0
4: µ8

(m,n)(C(m,n) − f(m,n))−2 − µ6
(m,n) = 0

5: f(m,n) = C(m,n) − (µ6
(m,n)/µ

8
(m,n))

2

H. SUBPROBLEM 8 (Related TO DECISION VARIABLE dv )
Objective function:

min
∑
v∈L

(
− µ7

v +
∑
i∈Iu

∑
u∈U

µ11
uvi

)
dv

subject to 0 ≤ dv ≤ maxTu.

Subproblem 8 can be divided into |V | independent sub-
problems. For each node v that must offload data to another
node, the process delay is calculated to the candidate nodes
with coefficient −µ7

v +
∑
i∈Iu

∑
u∈U

µ11
uvi. If the coefficient value

is less than 0, the decision variable dv is set to maximum Tu,
otherwise, dv = 0. Accordingly, the objective value of each
subproblem is minimized. The pseudocode is as follows:

1: For each node v:
2: Calculate the coefficient of dv
3: If the coefficient of dv < 0:
4: Set dv to maximize Tu
5: Else:
6: Set dv to 0

I. SUBPROBLEM 9 (Related TO DECISION
VARIABLE d(m,n))
Objective function:

min
∑

(m,n)∈L

(∑
u∈U

µ9
(m,n)u +

∑
i∈Iu

∑
v∈V

µ10
(m,n)uvi

−µ8
(m,n)

)
d(m,n)

subject to 0 ≤ d(m,n) ≤ maxTu.

Subproblem 9 can be divided into |L| subproblems. The
transmission time required to transmit data from nodes m to
n for each link (m, n) is calculated using the link coefficient.
The objective value is minimized such that themaximum pos-
sible value is set if the coefficient is less than 0, and otherwise,
the decision variable d(m,n) is set to 0. The pseudocode of the
algorithm is as follows:

1: For each link (m, n):
2: Calculate the coefficient of d(m,n)
3: If the coefficient of d(m,n) < 0:
4: Set d(m,n) to maximize Tu
5: Else:
6: Set d(m,n) to 0

J. SUBPROBLEM 10 (Related TO DECISION
VARIABLE Xu(m,n))
Objective function:

min
∑

(m,n)∈L

∑
u∈U

(µ12
u − µ

9
(m,n)u)Xu(m,n)

subject to 0 ≤ Xu(m,n) ≤ Tu.

Subproblem 10 can be divided into |V ||L| subproblems.
The time required to transmit data from node u to node
v for each link (m, n) is calculated using the coefficient
µ12
u − µ

9
(m,n)u. The decision variable value is set to Tu if

the coefficient is less than 0, otherwise, the decision variable
Xu(m,n) is set to 0. Then, the minimum aggregation time from
node u to offloading node v is calculated using a greedy
routing method, such as Dijkstra’s algorithm. The decision
variable Xu(m,n) is set along the path to observe the minimum
objective value for this subproblem. The pseudocode of the
algorithm is as follows:

1: For each node u:
2: For each link (m, n):
3: Calculate the coefficient µ12

u − µ
9
(m,n)u of Xu(m,n)

4: If the coefficient of Xu(m,n) < 0:
5: Set Xu(m,n) to Tu
6: Else:
7: Set Xu(m,n) to 0

K. SUBPROBLEM 11 (Related TO DECISION
VARIABLE λu(m,n))
Objective function:

min
∑

(m,n)∈L

∑
u∈U

(
µ12
u −

∑
i∈Iu

∑
v∈V

µ10
(m,n)uvi

)
λu(m,n)

subject to 0 ≤ λu(m,n) ≤ Tu.

Subproblem 11 can be divided into |V ||L| subproblems.
The time requires to transmit data from nodes m to n
for each link (m, n) is calculated using the link coefficient
µ12
u −

∑
i∈Iu

∑
v∈V

µ10
(m,n)uvi. The decision variable value is set to

Tu if the coefficient is less than 0, otherwise, the decision
variable λu(m,n) is set to 0. Then, the minimum aggregation
time from node u to end user is calculated using a greedy
routing method, such as Dijkstra’s algorithm. The decision
variable λu(m,n) is set along the path to observe the minimum
objective value for this subproblem. The pseudocode of the
algorithm is as follows:

1: For each node u:
2: For each link (m, n):
3: Calculate the coefficient of λu(m,n)
4: If the coefficient µ12

u −
∑
i∈Iu

∑
v∈V

µ10
(m,n)uvi of λu(m,n) < 0:

5: Set λu(m,n) to Tu
6: Else:
7: Set λu(m,n) to 0
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L. SUBPROBLEM 12 (Related TO DECISION VARIABLE ψu)
Objective function:

min
∑
u∈U

(
µ12
u −

∑
i∈Iu

∑
v∈V

µ11
uvi

)
ψu

subject to 0 ≤ ψu ≤ Tu.

Subproblem 12 can be divided into |V | subproblems. The
time required for node u to process data is calculated using
the coefficient µ12

u −
∑
i∈Iu

∑
v∈V

µ11
uvi. The objective value is

minimized if the coefficient is less than 0 and the maximum
possible value is set, otherwise, the decision variableψu is set
to 0. The pseudocode of the algorithm is as follows:

1: For each node u:
2: Calculate the coefficient of ψu
3: If the coefficient µ12

u −
∑
i∈Iu

∑
v∈V

µ11
uvi of ψu < 0:

4: Set ψu to Tu
5: Else:
6: Set ψu to 0

M. SUBPROBLEM 13 (Related TO DECISION
VARIABLE du)
Objective function:

min
∑
u∈U

(µ13
u

Tu
− µ12

u

)
du

subject to 0 ≤ du ≤ Tu.

Subproblem 13 can be divided into |V | subproblems.
The process time for variable du requires handling data on
node u. The computation delay is calculated using coefficient
µ13
u /Tu − µ12

u . The objective value of this subproblem is
minimized if the coefficient is less than 0 and the maximum
possible value is set; otherwise, the decision variable du is set
to 0. The pseudocode of the algorithm is as follows:

1: For each node u:
2: Calculate the coefficient µ13

u /Tu − µ
12
u of du

3: If the coefficient of du < 0:
4: Set du to Tu
5: Else:
6: Set du to 0

N. SUBPROBLEM 14 (Related TO DECISION VARIABLE d)
Objective function:

min
(∑
u∈U

µ13
u − 1

)
d

subject to 0 ≤ d ≤ 1.

If the coefficient
∑
u∈U

µ13
u − 1 is less than 0, d is set to

the maximum value, otherwise, it is set to 0. Accordingly,

the maximum objective value for this subproblem and dual
problem can be observed.

1: Calculate the coefficient
∑
u∈U

µ13
u − 1 of d .

2: If the coefficient of d is less than zero:
3: Set d to 1
4: Else:
5: Set d to 0.
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