
Received September 20, 2020, accepted September 28, 2020, date of publication October 7, 2020, date of current version October 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029397

Degradation Dynamics Cognition and
Prediction of Li-Ion Battery: An Integrated
Methodology for Alleviating Range Anxiety
LAIFA TAO 1,2, TONG ZHANG1,2, JIE HAO1,2, XIAOLIN WANG3,
CHEN LU 1,2, MINGLIANG SUO 1,2, (Member, IEEE), AND YU DING 4
1School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
2Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, Beijing 100191, China
3Beijing Institute of Control and Electronic Technology, Beijing 100038, China
4School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Corresponding author: Yu Ding (dingyu@buaa.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61973011, Grant 61803013,
and Grant 61903015; in part by the Fundamental Research Funds for the Central Universities under Grant YWF-20-BJ-J-723;
in part by the National Key Laboratory of Science and Technology on Reliability and Environmental Engineering under Grant
6142004180501 and Grant WDZC2019601A304; and in part by the China Postdoctoral Science Foundation under Grant 2019M650438.

ABSTRACT We report an integrated methodology (FMC-XGBoost) that mainly consists of a five-state
nonhomogeneous Markov chain model (FMC) and XGBoost model. Unlike those existing methods in which
capacity fading processes are assumed to be irreversible, the proposed integrated methodology can combine
user-specific driving patterns (UDP) and capacity recovery effects (CRE) to predict battery fading dynamics
even with partially available data for an individual battery. The parameters of the constructed FMC model
are linked to the known physicochemical and material properties of Li-ion battery fading dynamics, which
aims to cognize and predict the primary fading dynamics, and the proposed XGBoost model is to cognizes
and predicts the fluctuation dynamics regarding UDP & CRE. To comprehensively verify the capabilities of
the proposed integrated methodology, a series of cases and comparisons are conducted and analysed based
on partial available fading data by selecting batteries to simulate situations of individual differences and
different UDPs & CREs. The averages of MAE, MRE and RMSE are approximately 0.0128, 0.9251%, and
0.0153 respectively even when only 60% of the data are available. All verifications and comparison analyses
reveal that the proposed integrated methodology provides an accurate, robust, stable, and general way to
cognize and predict battery fading dynamics during usage, and subsequently to alleviate range anxiety for
batteries in real applications.

INDEX TERMS FMC-XGBoost, fading dynamics prediction, user-specific driving patterns, capacity
recovery effects, Li-ion battery, range anxiety.

I. INTRODUCTION
Electric vehicles (EVs) and plug-in hybrid electric vehicles
(PHEVs) are recognized as promising green ways to reduce
CO2 emission [1]. These vehicles have attracted much atten-
tion by many manufacturers around all over the world.
However, range anxiety, as one of the major barriers to the
large-scale adoption of (P)HEVs, significantly perplexes the
vehicles’ users [2]. To alleviate range anxiety among (P)HEV
drivers, a series of strategies involving the deployment of
extensive charging infrastructure, the development of higher
battery capacity, battery swapping technology, etc. have been
conducted to support the wide use of PHEVs [3].
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approving it for publication was Minho Jo.

Actually, for (P)HEV drivers, the concerns are:
1) If the vehicle has sufficient range to reach its destina-

tion, i.e., for a given route or a driving plan, whether
the real battery capacity (100% state-of-charge) has the
capability of reaching the expected destination.

2) How much the batteries have degraded in contrast to
the nominal range over a period?

To these ends, one should predict the real battery capacity
under the upcoming individual UDP. Thus, one significant
way to alleviate range anxiety is to predict the battery fading
dynamics of capacity accurately, which will provide suffi-
cient information about the real driving range of the batteries
for users.

Generally, the existing prediction approaches can be
sorted into model-based, data-driven, and hybrid approaches.
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Typically, electrochemical models, electrical equivalent cir-
cuit models, and mathematical models are the kernels of
model-based approaches, which are conducted to predict
the fading dynamics of battery. However, these models are
always complicated [4], and the significant reliance on the
features with a typical formulation makes it inappropriate
to establish models for each kind of battery. In addition,
the key parameters of those models are always difficult to be
collected in real applications [5], [6]. Data-driven approaches
have been conducted in terms of battery fading dynamics pre-
diction of various fields due to easy implementation, inexpen-
sive cost, and less complexity. Statistical methods, as one kind
of data-driven approach, are mainly based on the collected
time-to-failure data in which prior knowledge is needed such
as short voltage sequence [7], [8].

Most of these existing methods have contributed to battery
fading dynamics prediction. However, they are mainly based
on sufficient datasets throughout the battery whole life as
well as a couple of priors, including short voltage sequence,
accurate battery model, etc. In addition, regarding capacity
loss, most battery predictionmodels are subject to irreversible
degradation, i.e., the CRE is rarely considered when execut-
ing battery fading dynamics prediction. However, as figured
out by the authors in Ref. [9], CRE significantly affects the
fading dynamics of battery. Two kinds of capacity losses,
i.e., irreversible and reversible, were clarified by the authors
in Ref. [10].

In addition, in (P)HEV applications, the energy usage of
large-scale battery systems is strongly correlated with the
users’ driving patterns which even differ significantly from
one driver to another, i.e., the batteries in (P)HEVs suffer
from various alternate patterns of ‘working-standing’. Take a
common route between someone’s house and his or her office
as an example, and set the house as the start point of a route
cycle (one typical user-specific pattern). One should experi-
ence ‘‘house (standing) - driving (working) - office (standing)
- driving (working)-house (standing)-charging (working) -
standing’’, where different reversible CRE will take place
related to individual pattern.

Thus, it makes sense to integrate UDP & CRE even with
only fading and truncated data to give the drivers accurate
battery capacity to further alleviate range anxiety.

The standing time slot (STS) and stop-SOC (State of
Charge) are main factors that significantly affect CRE [11].
In addition, generally, an arbitrary UDP can be equivalent
to a combination of various working states with differ-
ent stop-SOCs, and different STSs which divide the UDP
into various workings. So, to model and predict the fading
dynamics of a battery with consideration of UDP & CRE,
abstractly, it requires us to combine three factors STS and
stop-SOC together for accurate prediction results. In this
article, we focus on investigating the two factors to facilitate
a unified modelling analysis, and together, apply them to pre-
dict battery fading dynamics with only partial and truncated
data.

As mentioned in Ref. [12], like analytical models,
stochastic models are used to depict batteries theoretically
with less time consumption than electrochemical models and
better accuracy than the other models. In practice, com-
plex electrochemical reactions taking place within batter-
ies are significantly affected by the factors aforementioned
[13]. Compared to other existing models, stochastic models,
particularly Markov chain processes [14], can be used to
characterize the stochastic nature within batteries.

Among the machine learning methods used in prediction,
gradient tree boosting is one technique that shines in many
applications. XGBoost is an improvement of machine learn-
ing system for tree boosting, which not only can ensure
the accuracy and robustness, but can enhance the operation
efficiency greatly.

Faced with the aforementioned issues, and with the pur-
pose of maximizing the available partial data, in this study,
we set the procedures of capacity fading dynamics cognition
and prediction into two main modules. The first one is to
cognize the primary fading dynamics, mainly by the proposed
five-state nonhomogeneousMarkov chainmodel (FMC)with
the inspiration of the four state Markov chain in cognizing
the fading dynamics of Li/S batteries [10]. The parameters
of FMC are linked to the known physicochemical degrada-
tion dynamics and material properties of Li-ion batteries.
In addition, the changes in the battery continuous fading
process are also modelled by introducing the dynamic tran-
sition probability matrix among different cycles, which will
further enhance the capability of the FMC model. Further,
UDP & CRE modelling is conducted, which will be applied
to cognize and predict the fluctuation dynamics based on
the XGBoost model which refers to the effects of STS and
stop-SOC on Li-ion battery fading dynamics. The fading
dynamics for each individual battery with different UDP &
CRE can be obtained by adding the primary fading dynamics
and fluctuation dynamics correspondingly.

We also conduct a series of experiments by selecting the
battery dataset with different individual differences regarding
UDP & CRE from NASA to verify the capabilities of the
proposed integrated methodology. The qualitative and quan-
titative analyses conducted in this study suggest that the pro-
posed integrated methodology provides an accurate, robust,
stable, and general way to predict battery fading dynamics
during usage, and subsequently to alleviate range anxiety.

II. MATERIALS AND METHODS
A. DESCRIPTION OF PROBLEMS
We assume that the whole fading dynamics of Li-ion bat-
tery can be decomposed into two parts, i.e., primary fading
dynamics and fluctuation dynamics, as a constraint of this
problem. Primary fading dynamics are the main part which
are related to the state transition of ions inside the battery,
and the proposed FMC model could handle this part well.
The fluctuation dynamics mainly caused by CRE, which
will be determined by STS and stop-SOC, two important
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FIGURE 1. The procedure of the proposed FMC-XGBoost methodology.

components of UDP. Therefore, the core problem is how
can we establish a mapping between STS and stop-SOC
and the capacity fluctuation of battery. Herein, we develop
a technology for excavating features regarding STS and
stop-SOC, and associate with the XGBoost model to solve
this problem.

To simplify the process, we build a qualitativemathematical
formula.

CW = Cprimary + Cfluctuation
= fFMC (Cprimary)+ f (CRE,UDP)

= fFMC (Cprimary)+ fXGBoost
× (STS, stop− Soc, capacity fluctuation) (1)

B. TECHNOLOGY STRATEGY
To solve the mentioned problem above step by step, we set
two main modules in our methodology. More details can be
seen in Fig. 1.

1) PRIMARY CAPACITY FADING DYNAMICS COGNITION AND
PREDICTION
a: DATA PROCESSING
We extract the primary trend information of the training data
and use it as the input to build the FMC model. After wavelet
decomposing, the approximation signals covering the low
frequency information and the detailed signals covering the
high frequency information are obtained, and the former is
the ingredient we need.

b: STOCHASTIC PROCESS MODELLING
For each individual battery, we construct the FMC model
based on the primary fading trend acquired in a1. We cal-
culate all six parameters in the model for cognition and
prediction, and then, we can obtain the prediction result of
primary fading dynamics as the output of this module.

2) UDP & CRE MODELING
a: PREPARATORY WORKS
After analysing the characteristics of the degradation pro-
cesses, we extract a series of 16 time-related features as well
as two other features from training data which are as the
inputs of XGBoost model for training and testing.

b: MODELLING
Inspired by the advantages of the XGBoost model,
the achieved extracted 18-D features and dc are collected to
train and test the XGBoost to model UDP & CRE.

The cognition and prediction of Li-ion battery fading
dynamics via FMC-XGBoost with consideration of UDP
& CRE can be obtained by adding the outputs of a and b
correspondingly. More details of the proposed methodology
can be seen in Sections IV-A and IV-B.

C. BATTERY PRIMARY FADING DYNAMICS COGNITION
AND PREDICTION
The main fading factor of Li-ion battery on the negative
electrode is the development of the solid electrolyte inter-
phase (SEI) [15] over time, which induces an electrolyte
decomposition accompanied by a continuous loss of Li-ions
[16]. In this article, to cognize and predict the primary fading
dynamics within the Li-ion battery, we develop herein the
FMC model for battery primary fading process cognition
and prediction, which undergoes transitions from one state
to another on the battery health state space.

Generally, the five states of FMC can be described as a
sequence of random health state variables X1, X2, X3, X4, X5
with the Markov property, namely the probability of moving
to the next health state depends only on the present health
state and not on the previous health states. As a sequence,
the health state space of the FMC model is S1, S2, S3, S4, S5.
When we employ the FMCmodel to describe the discharge

capacity fading of Li-ion battery, to intuitively describe the
FMC model, three phases named hibernating phase, active
phase, and absorbing phase, are mentioned, where the five
health states are contained, as shown in Fig. 2. The inactive
behaviours of the active ionic materials (Li, alloys and others)
can be generally depicted by health state S1 in the hibernating
phase, as shown in Fig.2, i.e., the fraction of active materials
within this phase does not participate in the regular charge and
discharge process, but can be converted into the active phase
by chemical reaction within the battery during cycling. In the
FMC model, the health state S1 is assumed to be able to be
converted into active health state S3 (a state of active phase)
only, with a conditional transition probability P(S3|S1).
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FIGURE 2. The proposed FMC model.

During the early cycling periods, the electrode passivation
and/or the film formation of the SEI layer could lead to
the decay of electrochemical capacity. S2 is an active state
representing the necessary amount of the active phase for
the initial film/slayer formation. P(S5|S2) is also a condition
transition probability.

The electrode’s impedance may lead to the loss of active
surface at the SEI when the battery is used for a period.
Therefore, the role of the active state S3 accounts for the phe-
nomena. Thematerials inside the battery in state S4 represents
their quite stable activity when participating in the long-term
charge / discharge process. All the three states, S2, S3, and S4,
comprise the second part: the active phase.

The active phase plays an important role in the electro-
chemical capacity of a Li-ion battery. The quantity of the
active materials in the active phrase is equal to the maximum
available discharge capacity in some way. The active phase
can be deemed as the fraction of Li-ions and/or other active
materials that participate in the whole process. Therefore,
the measurable maximum available discharge capacity of a
Li-ion battery is the sum of the values S2, S3 and S4.
In the absorbing phase, all active substances will be

degraded or fixed in other chemical compounds. This phase is
denoted by the absorbing state S5, where the materials cannot
contribute to the charging and discharging processes any-
more. The transitions among these five states are governed by
nine conditional transition probabilities, as shown in Fig. 2.

In Fig. 2 and, generally in this study, a one-step transition
from time slot k to time slot k+1 represents a one-time use or
a charge and discharge cycle (a time slot) of the battery, where
Li+ is employed to denote all active materials for simplicity.
The transition probabilities of going from one health state
at time slot k to other health states at time slot k+1, i.e., P
(Xk+1 = Sj| Xk = Si) (i, j ∈ 1, 2, 3, 4, 5) are located near the
corresponding arrows in Fig. 2, which together constitute the
transition matrix of a time-nonhomogeneous Markov chain.

For simplicity, at time k , P(k) (Sj|Si) is employed to denote
P(k+1) (Xk+1 = Sj|Xk = Si).
The state of a fading battery at the math cycle can be

represented by a state vector with five fractions:

S(m) =
[
S(m)1 S(m)2 S(m)3 S(m)4 S(m)5

]T
, m = 0, 1, 2, · · ·

(2)

For arbitrary cycle k , each state Si is transformed into state
Sj with a transition probability P(k)(Sj|Si) × P(k)(Sj), where
P(k)(Sj|Si)P(k)(Sj|Si) is the conditional transition probability.
The conditional transition probability is determined by the
probability of the active materials shift from state SiSi to SjSj
given that they are originally in state SiSi. AndP(k)(Sj)P(k)(Si)
is the probability of finding active materials in state SiSi. All
these probabilities can be written as follow:

P(k)
(
Sj|Si

)
= P

(
Xk = Sj|Xk−1 = Si

)
S(k)sum = S(k)1 + S

(k)
2 + S

(k)
3 + S

(k)
4 + S

(k)
5

P(k) (Si) = S(k)i

/
S(k)sumi, j ∈ {1, 2, 3, 4, 5} (3)

Thus, for arbitrary cycle kk , the battery fading dynamics of
a Li-ion battery can be denoted by a 5 × 5 transition matrix
T (k), (4), as shown at the bottom of the page.
The state vector at cycle (k-1), can be derived by applying

T (k)T (k):

S(k) = S(k−1)T (k) (5)

For a given initial state, S(0), of a Li-ion battery, the state
vector of a battery at the k th time slot is:

S(k) =
∏
k

[S(0) · T (k)] (6)

In a certain given aging status of the battery, the transition
ability among each state is different; here, in the proposed
FMCmodel, the transition probabilities are set to change over
time. Exponential functions are utilized to express the transi-
tion probability matrix. For simplicity, only P(k)(S5|S4) is set
to change over time since the stable active state determines the
primary trend. Each transition probability of a fading battery
at a cycle when k ≥ 2 is written as:

P(k) (S5|S4) =


e
θ45
k − e

θ45
k−1

1− e
θ45
k−1

k ≥ 2

1− eθ45 k = 1

P(k) (S5|S2) = 1− eθ25

P(k) (S3|S1) = 1− eθ13 (7)

T (k) =

∥∥∥∥∥∥∥∥∥∥
1− P(k) (S3|S1) 0 0 0 0

0 1− P(k) (S5|S2) 0 0 0
P(k) (S3|S1) 0 1− P(k) (S5|S3) 0 0

0 0 0 1− P(k) (S5|S4) 0
0 P(k) (S5|S2) P(k) (S5|S3) P(k) (S5|S4) 1

∥∥∥∥∥∥∥∥∥∥
(4)
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where θ13, θ25, θ45 are the three dimensionless parameters
required to be estimated.

Since the number of Li-ions in S3 is quite less than those
in S4, in the interest of simplicity, P(k)(S5|S3) and S

(1)
3 are

assumed to be 0. Thus, the simplified transition matrix at time
slot k should be rewritten in (8), as shown at the bottom of the
page.

As aforementioned, the sum of all active states represents
the maximum available discharge capacity of a battery. Thus,
the maximum discharge capacity can be written as:

C(k) = S(k)2 + S
(k)
3 + S

(k)
4 (9)

By applying (6) and (8) to (9), we can obtain:

C(k) = S(k)2 + S
(k)
3 + S

(k)
4

=

{
S(k−1)2 ×

[
1− P(k) (S5| S2)

]}
+

{
S(k−1)1 × P(k) (S3| S1)+ S

(k−1)
3

}
+ S(k−1)4 ×

[
1− Pk (S5| S4)

]
(10)

Thus, by combining (7), it yields:

C(k) = S(k)2 + S
(k)
3 + S

(k)
4

=

{
S(k−2)2 ×eθ25×2

}
+

{
S(k−2)1 ×

(
1− eθ13×2

)
+S(k−2)3

}
+ S(k−1)4 ×

 1− e
θ45
k

1− e
θ45
k−1

×
1− e

θ45
k−1

1− e
θ45
k−2


= S(0)1 ×

(
1− eθ13×k

)
+ S(0)2 × e

θ25×k

+ S(0)4 ×

(
1− e

θ45
k

)
(11)

with three linear constraints:

θ13 < 0

θ25 < 0

θ45 < 0 (12)

D. UDP & CRE MODELLING
As aforementioned, in this article, STS and stop-SOC have
been considered to investigate UDP & CRE. Herein, we find
a way to model these two elements by employing XGBoost.
In this study, STS has been represented by a series of
standing-time-related features (refer to Section IV-B(1)),
based on which the detailed relationship between UDP &
CRE and STS & stop-SOC will be modelled with the help
of XGBoost.

For the Gradient Boosting Decision Tree (GBDT)
algorithm, only the derivative information of the first order
can be used. When training the nth tree, it is necessary to
employ the residual error of the former (n−1) tree, which
makes it difficult to achieve the expected distributions.
To find the optimal solution, the loss function of XGBoost
is expressed by using a 2 order Taylor expansion joined with
corresponding regularization process. Therefore, there is a
trade-off between the decline of the loss function and the
complexity of the model to avoid fitting.

With the improvement of prediction accuracy, another
highlight of XGBoost is that it can automatically use the
multi-threading of CPU to perform parallel operations, which
takes less time than GBDT. The efficient operation speed
of XGBoost can be applied to various engineering fields,
including diagnosis, prognostics, etc.

For prediction by XGBoost, the raw dataset should be
firstly divided into multiple sub-datasets, and then each
sub-dataset would be randomly assigned to a base classi-
fier for prediction. The final prediction results of XGBoost
are calculated based on all predicted results as well as the
predetermined weights of all base classifiers.

The steps of the algorithm are as follows:
1) The objective function of the algorithm is:

L =
∑
i

l(ŷi, yi)+
∑
k

�(fk ) (13)

where we assume the model has K decision trees

ŷi =
K∑
k=1

fk (xi) (14)

Decision tree complexity function:

�(f ) = γT +
1
2
λ ‖w‖2 (15)

where T is the number of leaves, w is the weight of the leaves,
andŷ(t)i = ŷ(t−1)i + ft (xi).
2) Training objective function:

L(t) =
n∑
i=1

l
(
ŷ(t−1)i + ft (xi) , yi

)
+�(ft) (16)

3) Taylor’s quadratic approximation of the target function:
Second-order approximation can be used to quickly optimize
the objective in the general setting.

L(t) ∼=
n∑
i=1

[l (yi, ŷ
(t−1)
i )+ gift (xi)+

1
2
hif 2i (xi )]+�(ft )

(17)

T (k) =

∥∥∥∥∥∥∥∥∥∥
1− P(k) (S3|S1) 0 0 0 0

0 1− P(k) (S5|S2) 0 0 0
P(k) (S3|S1) 0 1 0 0

0 0 0 1− P(k) (S5|S4) 0
0 P(k) (S5|S2) 0 P(k) (S5|S4) 1

∥∥∥∥∥∥∥∥∥∥
(8)
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where gi = δ2ŷ(t−1)l(yi, ŷ
(t−1)) is the first derivative of the

sample and hi = δ2ŷ(t−1)l(yi, ŷ
(t−1)) is the second derivative

of the sample.
4) Remove the constant terms to obtain the following

simplified objective at step t .

L̄(t) =
n∑
i=1

[
gifi(xi)+

1
2
hif 2t (x i)

]
+�(ft ) (18)

5) Find the optimal solution of the objective function.
Define Ij = {i|q (xi) = j} as the jth leaf spot. We can obtain:

L̄(t) =
n∑
i=1

[
gift (xi)+

1
2
hif 2t (xi)

]
+ γT +

1
2
λ ‖w‖2

=

n∑
i=1

[
gift (xi)+

1
2
hif 2t (xi)

]
+ γT +

1
2
λ

T∑
j=1

w2
j

=

T∑
j=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + λ

w2
j

+ γT
(19)

Then we take the derivative of the top equation and make
the derivative result equal to 0. Then,

w∗j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
(20)

We can substitute the optimal solution w∗j for wj into the
target function. We can obtain the optimal solution of the
objective function:

L̄(t)(q) = −
1
2

T∑
j=1

(∑
i∈gi gi

)2
∑

i∈Ii hi + λ
+ γT (21)

XGBoost uses a greedy algorithm that adds segmentation
to existing leaf nodes. Suppose IL and IR are the sets of left
and right nodes, the information gain is as follows,

Gain=
1
2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi+λ

−

(∑
i∈I gi

)2∑
i∈I hi+λ

]
−γ

(22)

III. DATASET DESCRIPTION AND MODEL VERIFICATION
OUTLINE
A. BRIEF DESCRIPTION OF THE NASA LI-ION BATTERY
DATASET
In this study, a series of cases are investigated based
on the entire capacity fading datasets collected from a
custom-built battery set up at the NASA Ames Prognostics
Center of Excellence to verify the efficiency of the proposed
FMC-XGBoost methodology.

The custom-built experimental setup primarily consisted
of a set of Li-ion cells (rechargeable 18650-size Gen 2 Li-ion
cells with the same rated capacity of 2 Ah), chargers, loads,
electrochemical impedance spectrometry equipment, a suite
of sensors (voltage, current, and temperature), some custom

TABLE 1. Typical data for testing the efficiency of the proposed model.

switching circuitry, a data acquisition system, and a com-
puter for control and analysis [17]. The experiments can be
abstracted through four different operational profiles (charg-
ing, discharging, impedance measuring, and standing). The
charge runs were in constant current (CC) mode at 1.5 A until
the battery voltage reached 4.2 V and continued in constant
voltage mode until the charge current dropped to 20 mA.
Discharging was conducted and stopped at different end-of
discharges (EODs). Impedance measurement was performed
during the charging and discharging processes. Standing took
place whenever a battery did not experience any of the for-
mer three profiles. The experiments were conducted until
the capacity decreased to the specified end-of-life criteria
(EOLC).

Generally, since all standing profiles are irregularly
distributed throughout the experiments, one can refer to the
raw data for details.

Different stop-SoCs can be represented by different EODs,
and the STSs can be divided into a series of features regarding
standing time (related to UDP & CRE). One can see the
details of the extracted features of STS in Section IV-B(1).
Furthermore, the situations of partial available of fading data
will be simulated based on the selected typical data (B05,
B06, B07, and B18) shown in Table 1.

B. VERIFICATION OUTLINE
A series of cases have been designed and investigated.
Two prediction cases and 3 contrast cases are introduced as
follows.
Case 1 (Section IV-A). The FMC model is employed to

cognize and predict the primary fading dynamics even when
only partial fading data is available.
Case 2 (Section IV-B). In this case, the proposed

FMC-XGBoost methodology is an integrated method which
combines the FMC model with the XGBoost model.

Based on the prediction cases, we further set a series of
contrasting cases, which are Case 4, 5, and 6.
Case 3 (Section V-A). FMC vs. FMC-XGBoost.

We compare the prediction results of the proposed
stochastic model FMC and the proposed integrated model
FMC-XGBoost. In this section, one can see that great
improvements in predicting and dynamic tracking have been
achieved by considering UDP & CRE based on the proposed
integrated model FMC-XGBoost.
Case 4 (Section V-B). FMC-XGBoost predict in various

amount of training data available. To mimic real-life usage
scenarios as much as possible and to test the adaptability
and robustness of FMC- XGBoost which is critical for real
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FIGURE 3. Approximate signals of all batteries and all components of B07.

applications, four typical and different amounts of training
data are used.
Case 5 (Section V-C). FMC-XGBoost vs. reported typical

models. We examine a series of typical approaches which
have been proven to be effective in cognizing nonlinear
dynamics especially for Li-ion battery prediction, to verify
the effectiveness of our proposed methodology with the same
metrics for an intuitive and direct comparison.

We employ 60% of the entire data of each battery to
train and cognize battery fading dynamic, and then predict
the following fading dynamics, i.e., the former 100 cycles
of datasets of B05, B06, and B07 are utilized for feature
extraction and training, while only the former 80 cycles are
employed for B18. The rest of the cycles of each battery
dataset will be used to test the proposed FMC-XGBoost
methodology.

IV. EXPERIMENTAL EVALUATIONS
A. PREDICTION WITHOUT CONSIDERATION OF UDP
&CRE: THE PROPOSED STOCHASTIC MODEL (FMC)
1) PRIMARY FADING DYNAMICS COGNITION BASED ON
PARTIAL FADING DATA
By referring to [18], Daubechies4(db4) is selected accom-
panied with decomposition layers of 5. Fig. 3 shows the
corresponding approximate signals of all batteries and all
components of B07 as an example of wavelet decomposition.

In Fig. 3, the approximate signals, which demonstrate and
contain the primary fading trend of the partial fading data of
each battery, are the expected primary fading dynamics and
will be used further to establish the proposed FMC model.
Moreover, the approximate signals differ from each other,
which can be regarded as one aspect of individual differences.

The proposed FMC is a five-state nonhomogeneous
Markov chain model, which generally has a parameter vector
of six unknown parameters (see (11)), i.e., to establish the
FMC model for each battery. Different parameter vectors
come with different fading dynamics and vice versa. The
purpose we develop FMC model is to cognize the primary
fading dynamics within each partial fading data, and then
predict with each established FMC model with the estimated
parameter vector.

Herein, the FMCmodel is trained by using the decomposi-
tion approximate signals of partial fading data of each battery
and then is utilized to cognize the primary fading dynamics
of the rest of the fading data of the corresponding battery.

TABLE 2. Estimated parameters of the FMC model of B07 when 60% of
the data are available.

FIGURE 4. The predicted primary fading dynamics based on FMC (B07).

TABLE 3. Quantitative analysis on the primary fading dynamics and
prediction (FMC model).

As shown in Table 2, the corresponding parameters of the
FMC model for B07 battery are estimated for example.

Once those parameters which reflect the primary fading
dynamics of each battery are achieved, the corresponding
established FMC can be used to make predictions.

2) PREDICTION BASED ON FADING DYNAMICS COGNITION
For different batteries, the start points of prediction are the
first ones following the last points of available fading data,
i.e., 101st for B05, B06, B07, and 81st for B18. Fig. 4
intuitively demonstrates the prediction result of the primary
fading dynamics as well as the corresponding residuals
of B07.

As seen from the residuals in Fig. 4, there are several
obvious fluctuations in both the training and testing parts.
These fluctuations caused by UDP & CRE cannot be cog-
nized and predicted by FMC which will inevitably enlarge
the errors of fading dynamics prediction, accompanying with
uncertainties.

In this study, a series of uncertain deviations of capacity
may take place during the battery fading process due to
the integrated effects of UDP & CRE. To this end, in
Section IV-B, the FMC-XGBoost methodology is proposed
to figure out those effects introduced by UDP & CRE, which
will enhance the accuracy and stability of fading dynamics
prediction.

B. FADING DYNAMICS COGNITION & PREDICTION WITH
CONSIDERATION OF UDP & CRE: THE PROPOSED
FMC-XGBOOST METHODOLOGY
1) INPUTS CONSTRUCTION FOR UDP & CRE MODELLING
Herein, 16 standing-time-related features are extracted to
recognize the relationship between UDP & CRE and STS.
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For clear understanding, herein, all these 16 features (stand-
ing time interval, STI) are introduced accompanied with
succinct notations and descriptions.
D2D: The STI between the start points of every two

continuous discharging processes; D2C: The STI of the start
points of the discharging process and the following charging
process; D2E: The STI of the start points of the discharging
process and the following impedance measurement. C2C,
C2D, C2E, E2E, E2C, E2D are defined in the same way,
in which, ‘C’ represents ‘charging processes’ and ‘E’ rep-
resents ‘impedance measurement’. M-C2D: The difference
between two continuous ‘C2D’, and in the same way, M-
D2C, M-E2C, M-C2E, and M-D2E are defined. Dist: The
distance between the current start point of a discharging
process and that of another discharging processwhich is in the
neighbourhood of the current discharging process that lasts
the longest.

In addition to the 16 standing-time-related features,
stop-SoC (denoted SS in Feature) and cycling number (CN)
are treated as the other two features, which is adopted to
reflect UDP & CRE. Hereto, all factors regarding UDP &
CRE are considered and can be summarized and extracted
from real applications for training and predicting, such as the
given routes and driving plan. For each feature of STS and
stop-SoC, the extracted values vary over CN, which illus-
trates and simulates one kind of UDP & CRE in application,
i.e., it makes sense for us to combine all these UDP & CRE
extracted from all the selected batteries together to simulate
the cases in real applications.

2) OUTPUTS CONSTRUCTION FOR UDP & CRE MODELLING
Once the features regarding UDP & CRE are obtained,
we need to find out the fluctuation dynamics regarding UDP
& CRE for each battery, which will be treat as the outputs
(dependent variable) of the XGboost model.

To construct the outputs, the first thing is to calculate the
residuals between the measured capacities and the estimated
and predicted capacities by the established FMC models
with the estimated parameters (refer to Section IV-A). Then,
the difference values (denoted dc) of the continuous residuals
for each battery are calculated by (23):

dc(i) = r(i+ 1)− r(i) (23)

dc is a parameter that represents the fluctuation of capacity
mostly caused by UDP & CRE. To simplify the model,
we ignore the random noises and regard dc as the dependent
variable of the XGBoost model. Once the XGBoost model is
trained, the predicted dc will be obtained with the features
mentioned in Section IV-B(1) which can be counted and
calculated in the real applications.

Same as the data structure used in Section IV-A, the for-
mer 60% partial dc of all selected batteries and the features
regarding UDP&CREwill be used as the dependent variable
to train the XGBoost model. The rest 40% of the data of
each battery will be employed to evaluate the effectiveness
of the established FMC-XGBoost model on battery fading
dynamics cognition and prediction.

FIGURE 5. The predicted dc of the rest of the 40% data of each battery.

3) PREDICTION BASED ON THE PROPOSED FMC-XGBOOST
METHODOLOGY
The blue and red lines in Fig. 5 demonstrate the cognized
and predicted dc under a specific UDP & CRE, respectively.
As we can see intuitively, in all cases, most of the predicted
dc values are consistent with the real dc values calculated.
Especially, the inhomogeneously distributed extreme points
which present different location characteristics from battery
to battery in Fig. 5 can be understood as the outcomes of
UDP & CRE.

The predicted red lines follow the real actual dc values well
in all batteries which demonstrates the powerful ability of
the proposed XGBoost model in handling different UDP &
CRE. Importantly, from Fig 5, one can see a minor dc value
(0.021) of B07 and a significantly bigger dc value (0.109) of
B18. Faced with huge differences, the predicted dc stays the
same as the actual dc, which indicate the high adaptability
and accuracy of the information mining of UDP & CRE.

The favourable results obtained in this step can lay a
foundation for the accurate prediction of the results in the next
step.

Once the predicted values of dc are obtained, the
fluctuation dynamics regarding UDP & CRE of each battery
can be calculated, respectively. To further achieve the final
expected predictions of the rest of the 40% data of each bat-
tery, the predicted primary fading dynamics and the predicted
fluctuation dynamics regarding UDP & CRE of each battery
should be added up correspondingly, i.e., the final expected
predictions of each battery are the sum of the predictions
of the primary fading dynamics (the outputs of the FMC
model) and the corresponding predicted fluctuation dynamics
regarding UDP & CRE obtained by the XGBoost model,
as shown by the red lines in Fig. 6.
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FIGURE 6. Fading dynamics cognition & prediction (FMC-XGBoost).

Intuitively, the predicted signal based on FMC-XGBoost
and the actual capacity basically coincide with each other. For
a detailed data display, all metrics of each battery are labelled
in Fig. 6. TheMAE ranges from 0.0081 to 0.0144, theMRE%
ranges from 0.5541% to 1.0289% and the RMSE ranges from
0.0097 to 0.0169, which stay relatively steady at low levels.
All these metrics illustrate that the proposed FMC-XGBoost
methodology has high adaptability and stability adapted to
different individuals with different UDP & CRE.

V. DISCUSSIONS
A. THE EFFICIENCY ANALYSIS OF PREDICTION WITH
CONSIDERATION OF UDP & CRE
Facing individual differences, we compare all prediction per-
formance of the proposed stochastic model FMC and the
proposed integrated model FMC-XGBoost by examing the
case values of the corresponding metrics in SectionIV-A(2)
and IV-B(3). The detailed comparison can be seen in the
histograms of Fig. 6 case by case. Illustrated in Fig. 6,
the averages of the statistical metrics, MAE,MRE and RMSE
are reduced conspicuously by 60.6 %, 60.6 % and 57.6 %,
respectively. Moreover, the RMSE which is a popular met-
ric in predictive performance evaluation of FMC-XGBoost
reduced by 44.7%, 52.0%, 62.5% and 71.1% respectively.
Overall, there are huge improvements for all four batteries.
A maximum reduction by 71.1% and the biggest fluctuations
can be both seen in B18 from Fig. 10 indicating that the
proposed FMC-XGBoost can cognize and predict the pri-
mary and fluctuation dynamics well. Meanwhile the partial
enlarged drawing in the subgraph of B07 visually shows the
precise dynamic tracking capability in battery capacity fading
prediction.

Themost important factor contributing to these improvements
is the UDP & CRE modelling. So, it can be concluded that
the proposed FMC-XGBoost methodology is powerful in
handling the effects of UDP & CRE and in predicting the
fading dynamics.

FIGURE 7. Prediction metrics under different partial data availabilities.

B. ADAPTABILITY AND ROBUSTNESS ANALYSIS OF
FMC-XGBOOST
In all cases mentioned, 60% of the entire data are employed
to train the models and is utilized to cognize and predict
the fading dynamics of the rest 40% of the entire data of
the corresponding battery. For generally verification, herein,
we conduct and train the proposed integrated methodology
based on other typical partial cases, say 20%, 40%, and 80%
of the entire data, and then to cognize and predict the rest
fading dynamics.

For visualization, here, MRE and RMSE are selected for a
concise description. As we can see from Fig. 7, the averages
of MRE and RMSE are 5.3705% and 0.0969 when 20%
data are available, i.e., one can make the prediction of the
capacity with an accuracy more than 90% even based on a
considerably small amount of data. From the overall point
of view, with the increase of data proportion, the prediction
accuracies of the models keep improving, which can be seen
from Fig. 7. Together, one can see that the proposed method-
ology has a high capability of 1) learning the driving pattern
even with very limited data; 2) cognizing and predicting
the fading dynamics throughout a battery lifetime; 3) adapt-
ing to the given user-specific patterns and/or driving plans;
4) providing stable and credible information for a driver
which is significant for real applications.

C. COMPARATIVE ANALYSIS WITH THE REPORTED
TYPICAL MODELS
Several reported typical models which have been proven to be
effective in cognizing and predicting battery fading dynam-
ics, are examined in this article [19]–[22]. Herein, some fur-
ther comparison will be conducted for a comprehensive ver-
ification of the effectiveness of the proposed FMC-XGBoost
model.

A couple pieces of information on the proposed and the
referenced approaches such as model name, predicting mode,
and data structure of training and testing, are listed in Table 4.
For a deep comparison, those quoted approaches have been
divided into three groups (a, b and c) according to differ-
ences among the predicting mode, training data, and testing
data.

Note that, in this study, the proposed FMC-XGBoost
methodology has been applied to all four batteries B05, B06,
B07, and B18, which have been widely employed to verify
publishedmodels. However, for comparison, the same battery
and metrics as well as similar data structures are chosen
according to the situations within each corresponding group.
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TABLE 4. Introductions of the contrast models.

FIGURE 8. Quantitative analysis (reported typical models vs. FMC-XGBoost).

(e.g., the fading dynamics prediction results regarding B18
with the former 60% of fading data for training, accompanied
with the metrics ofMAE and RMSE, will be employed to ver-
ify the efficiency of the proposed methodology by comparing
with [21], [22] where only B18 was selected and tested using
the metrics of MAE and RMSE.
Group a: Model-based approaches, i.e., NASA_PF and

ND-AR_RPF
In this group, the referenced approaches and the proposed

one have a similar data structure of the former 60% of data.
More importantly, as shown in Fig. 8, the last 32 cycles of
B18 demonstrating great fluctuations which always highly
increase the difficulty and uncertainty of prediction were not
considered in [21]. However, one obvious conclusion that can
be achieved is that our integrated methodology is with higher
accuracy and

stability according to comparisons via both MAE (reduced
by 72.4% and 57.0% respectively) and RMSE (reduced by
57.7% and 35.0% respectively), as shown in Fig. 8(a).
Group b: Deep learning approaches, i.e., CNN and

LSTM
In this group, to predict one battery fading dynamics, say

B05, all fading data of the other three batteries, say B06,
B07, and B18, were used to train the corresponding model,

where at least three complete fading dynamics pictures from
the very beginning to the end-of-life were available for com-
prehensive modelling rather than the extreme data situa-
tion, i.e., only one individual partial fading dynamics, which
has been used in our methodology. As shown in Fig. 8(b),
the proposed FMC-XGBoost has a better prediction perfor-
mance by using only partial fading data of each individual
battery.
Group c: Hybrid approaches, i.e., SE-MGPR and

BM-PF
In this group, each battery dynamics were modelled and

predicted by hybrid approaches, i.e., SE-MGPR and BM-PF.
Different from the extrapolated prediction applied in this
study, Fig. 8(c) demonstrates all metrics on B05, B06,
and B07 for both SE-MGPR and BM-PF by executing a
one-step-iterative prediction which always has very high pre-
diction accuracy. However, the proposed methodology gives
a series of perfect MREs and RMSEs.

Combining the comparisons, the advantages of our
proposed FMC-XGBoost methodology in fading dynamics
cognition and prediction are comprehensive verified. Benefit
from UDP & CRE modeling, we can obtain the primary
dynamics and especially the fluctuation dynamics for each
battery even with individual partial fading data.
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D. THE ALLEVIATION OF USERS’ RANGE ANXIETY
The main concern of this article is users’ range anxiety which
may happens in everyone’ s daily routine. To minimize the
users’ anxiety, numerous efforts have been made in this arti-
cle. Faced with individual differences and real applications,
we select battery data with different characteristics, consider
the partial data condition, conduct UDP & CRE modelling
and build the integrated methodology, i.e., FMC-XGBoost.
A tremendous improvement in the prediction accuracy
has been made by considering UDP & CRE, meanwhile,
the robustness, stability, and dynamic tracking capability in
prediction have also been verified based on different indi-
vidual partially available data. Combining all these efforts,
the fading dynamics prediction of batteries can be grasped
accurately, i.e., the real battery health conditions subject to
the driver’s specific pattern at different fading stages can
be accurately cognized and predicted, which would provide
powerful information in the decision making of whether it
is suitable to still use the battery or when it is the right
time to exchange the battery for a new one (given a lifetime
threshold). All these together will inevitably enhance the user
experience on (P)HEV as well as alleviate range anxiety.

VI. CONCLUDING REMARKS AND OUTLOOK
To achieve accurate prediction results and alleviate range
anxiety in (P)HEV applications, we introduce an inte-
grated methodology combining FMC and XGBoost in which
UDP & CRE are considered. To comprehensively verify the
proposed integrated methodology as well as to analyse on
how to employ themethodology to cognize and predict fading
dynamicswith partial fading data availability, a series of cases
are conducted step by step based on the published NASA
dataset, where the situations regarding individual differences
of batteries and different UDP & CRE in real applications
are simulated by the selected batteries. Typically, the aver-
ages of MAE, MRE and RMSE achieved by the proposed
methodology are 0.0128, 0.9251% and 0.0153 with consid-
eration of UDP & CRE when only 60% of the entire data are
available.

Further qualitative and quantitative comparison analysis
conducted in this study suggests that the proposed method-
ology has a considerable high capability of learning driving
patterns even with very limited data, cognizing and predicting
fading dynamics throughout a battery lifetime, and providing
stable and credible information to a driver which is significant
for real applications. All together makes it a promising way to
alleviate users’ range anxiety. Future researches to be carried
out following this study would be: 1) Datasets collected from
real applications with individual UDP will be acquired and
employed in the study. 2) Other effects, such as temperature
will be integrated into the modelling process.
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