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ABSTRACT This work deals with clinical text mining for automatic classification of Electronic Health
Records (EHRs) with respect to the International Classification of Diseases (ICD). ICD is the international
standard for the identification of diseases and health conditions in EHRs and the foundation for reporting
health statistics. Machine learning-based techniques have proven robust to infer classification models from
EHRs. Since each EHR tends to involve multiple diseases, multi-label classification is required. The concern
in this work is the versatility of the models inferred and their ability to generalise in two ways: as time goes
ahead and across hospital services or health specialties. Indeed, in this work, we show the capabilities of
a Bidirectional Recurrent Neural Network (RNN) with GRU units and ELMo embeddings on two corpora
(a corpus comprising a set of EHRs within the Basque Health System, namely Osakidetza, and the well-
knownMIMIC-III corpus). To delve into and assess the versatility of the models, we focus on their resilience
across hospital admissions taken over two different years and also across six distinct hospital services.
In addition, we paid attention to the classification performance to estimate ICD codes of different granularity
(e.g. with or without essential modifiers). Our best results are 39.55% and 47.28%F-Score for the Osakidetza
and MIMIC-III datasets respectively, with the original main label-sets. Regarding the models evaluated per
specialty, the most remarkable results are 57.00% and 72.74% F-Score, in the Cardiology and Nephrology
medical services respectively.

INDEX TERMS Extreme multi-label classification, electronic health records, international classification of
diseases, classification across-time, classification across hospital-services.

I. INTRODUCTION
Natural Language Processing (NLP) is gaining relevance
within the clinical documentation services to copewith exten-
sive information conveyed by Electronic Health Records
(EHRs). Healthcare data is getting increasingly larger and
complex to process [1], but evidence shows its usefulness in
such different sectors as Adverse Drug Reaction extraction
[2], [3] and identification of complex symptoms, assessed in
several cohorts of patients in hemodialysis [4], as well as rel-
evant symptoms in patients with schizophrenia [5], and breast
cancer [6], and the creation of phenotypes to characterise
patients [7], [8].

Facilitating access to information is crucial for accu-
rate clinical documentation. International Classification of
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Diseases (ICD) [9] is a standard used to classify diagnosis and
procedures within EHRs. These codes are used to quantify
vital statistics, for surveillance, to seek cohorts of patients
with similar diagnoses in downstream studies and also as a
standardised information exchange method between hospi-
tals. The thorough and accurate coding of EHRs affects crit-
ical clinical information extraction and also other industries
such as insurance billing [10]–[12].

Nowadays EHRs are manually encoded by healthcare
professionals specially trained to cope with complex ICD
nuances. Note that ICD-10 is arranged in 24 chapters or
branches of medicine and comprises nearly 70 thousand
codes for diseases (ICD-10-CM) and as many for procedures
(ICD-10-PCS). The ICD versions evolve rapidly e.g. from
the 9th version to the 10th the number of codes increased
five-fold and, what is more, the code structure changed from
a maximum of 5 characters to 7; the alpha-numeric coding
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structure was also modified. The chapter is encoded in this
structure and would reflect a coarse-grained classification of
the EHR into branches referred to as ICD chapter. Besides,
in this coding we typically find a sub-set of characters (often
3 of them) that are referred to as the main ICD class, and
the remaining characters comprise what is referred to as
non-essential modifiers (e.g. laterality and severity). Alto-
gether these are referred to as ‘fully-specified ICD class’.
Additionally, manual coding is time-consuming. As an exam-
ple, let us focus on a well-known collection of EHRs, i.e.
MIMIC-III [13], a set of nearly 55, 000 EHRs made available
by the MIT Lab for Computational Physiology from the Beth
Israel Deaconess Medical Centre. Each EHR has, on average,
1, 947 words that are carefully read by professionals to anno-
tate the EHR with all the ICDs found. On average, each of
these EHRs was assigned 11.5 different ICDs (also referred
to as label cardinality) and, altogether, the set shows 6, 527
different ICDs (also known as the size of the label-set). Given
that manually encoding is time-consuming and requires spe-
cialised professionals, several health systems took the deci-
sion to restrict coding to just the main cause of admission,
leading to a relevant loss of valuable information. It is well-
known that EHRs show much variety in terms of (often
non-standard) linguistic forms, semantics and syntax, and a
linguistic style prone to the economy of language [14], [15].

There is evidence that NLP can aid human coders in a
decision support system with the human in the loop [16].
The task of automatically assigning multiple codes to a given
document is referred to as multi-label classification. Auto-
matic multi-label classification of EHRs is, however, far from
the scope of current machine learning approaches given that
high accuracy is a must. There are numerous challenges
inherent in this task, not only from the inference perspective
but also due to the assessment of the quality of the predicted
label-set. The size of the output label-set (e.g. 6, 527 in
MIMIC-III) is extremely high for the input evidence
(e.g. 55, 000 EHRs in MIMIC-III). While automatic infer-
ence can find patterns, pattern repetition in selecting an
unknown number (11.6 labels on average in MIMIC-III, with
9.0 as the median value and a standard deviation of 6.3)
of ICD codes from a set of 6, 527 lead to 51,980 unique
label-sets. Note that there are few pieces of evidence for the
output on top of the variability in the input. This highly-
variable classification task with thousands of possible labels
is referred to as extreme multi-label classification (XMC)
[17]. Quantitative assessment of multi-label models is still
one of the stumbling blocks in the inference since model
optimisation (fine-tuning) rests on evaluation approaches and
this is not a trivial issue. (We shall discuss issues that might
emerge in the assessment in Section III-B).

In this work, we assess a multi-label classification
approach in the task of EHR multi-class classification in
documents written in Spanish. The set of EHRs is comparable
in many aspects to those in MIMIC-III (as we will present
in Section IV-A). Often, [18], [19] related work bound the
size of the label-set in such a way that the data-set ensures

a minimum number of documents per label (in an attempt
to ensure minimum repetition per pattern). In this work we
assessed the system exhaustively.

First, to assess the resiliency of the learning approach
proposed, i.e. Bidirectional Recurrent Neural Network [20]
with GRU units [21] and ELMo embeddings [22] (BiGru
ELMo), the label-set was not restricted and all the labels
available in the data (i.e. 2, 554 labels) were considered and
next, the system was assessed with the top 110 and top 16.
Second, we assessed the robustness of the system across time.
Needless to say, as time goes by, personnel in a hospital might
have changed their EHR writing or encoding style: in these
circumstances, the system should be adapted. The question
also arises here of how often should we re-train the model and
also whether previous EHRs are either beneficial or harmful
for current EHR coding. The motivation is to assess whether
a predictive model inferred with data from a given year can
help to predict EHRs from future years. Also, we want to
evaluate if non-overlapping data from two consecutive years
help to predict EHRs from the later year of the two. In other
words, we wish to assess/evaluate if training with data from
successive years can generate synergies or, whether the best
option is to re-train the system frequently to keep it updated.
Third, we did not only assess the system across time but also
across use-cases in different hospital services. One of our
concerns had to do with data scarcity. We wondered if a gen-
eral system trained with EHRs from discharge reports from
several hospital services (e.g. cardiology, psychiatry etc.)
is able to cooperate and make the system capture accurate
syntax and semantic nuances, or if, by contrast, accurately
encoding EHRs from a given service was bound to train the
system with EHRs from that service, while EHRs from other
services could lead to lexical explosion and maybe distort the
outcome. Through these experiments we tried to shed light
on the following three research questions: 1) the ability of
BiGru ELMo to cope with infrequent and frequent labels,
2) the robustness of the model across time and, 3) across
hospital services. Briefly, the novelty of the work resides in
the aforementioned research questions. To this end, we apply
a state-of-the-art multi-label classificationmodel to a Spanish
EHR dataset that can be segmented by year and medical
service. The segmentation of data allows checking the robust-
ness of the models against lexical variation due to variations
among medical specialties and across-time. We also assessed
the model in both coarse-grained (the ability of the model to
situate the EHRwithin a chapter of the ICD) and fine-grained
code assessment (referring to the granularity mentioned on
page 183534). The finer the granularity, the bigger the size of
the label-set.

II. RELATED WORK
Since 2000 CLEF has organised different laboratories in the
field of multilingual access evaluation, in particular since
2016 in the automatic assign of ICD codes. In 2016 [23] the
task consisted of extracting causes of death from French nar-
ratives as coded in the International Classification of Diseases

VOLUME 8, 2020 183535



A. Blanco et al.: Extreme Multi-Label ICD Classification: Sensitivity to Hospital Service and Time

ICD-10. In 2017 [24] the task goal was to automatically
assign ICD-10 codes to English and French death certificates.
In 2018 [18] the task focused on French, Hungarian and
Italian texts. In 2019 [25] the task explored the automatic
assignment of ICD-10 codes to non-technical summaries of
animal experimentation in German. The tasks carried out
from 2016 - 2018 are focused on the codification of lines
(diagnosis) instead of on the codification of whole EHRs.
On average, each diagnosis has between 2.06 to 12.38 tokens
and between 1.20 to 1.37 codes.
Approaches based on regular expressions or transducers

either manually created [26], [27] or automatically inferred
from data [28] were used in previous works when it comes
to mapping Diagnostic Terms (DT) expressed in natural lan-
guage into standard DTswithin the ICD and, hence, assigning
the corresponding ICD. The difference between translating
non-standard expressions to a standard form and assigning
ICDs to a given full EHR is substantial. The entire EHR in
our task has on average ∼1,000 words per document, while
the input non-standard DT tends to have around 5 words.
In the EHR, the language is likewise, non-standard, although,
the DTs are not explicitly informed. Moreover, implicit evi-
dence, such as analytics and current treatment, might yield
an ICD. Besides, while the correspondence between the non-
standard DT and the ICD codes is 1 to 1, in the EHRs, 1 short
phrase could trigger n ICD codes being the correspondences
m to n.
The so-called binary relevance approach [29] is a simple

approach to tackle multi-label classification that comprises
as many binary classifiers as classes involved. Each classifier
would determine the absence or presence of one class. The
drawback of this simplistic approach is that the classes are
assumed to be independent, hence, dependencies among ICD
codes would be disregarded. Nevertheless, some diagnostics
are incompatible (and should not be predicted together),
while others tend to co-occur. Accordingly, we opted for a
model that considers the label-dependencies.

Rios and Kavuluru [30] explored the use of Convolutional
Neural Networks (CNNs) for automatic ICD coding. They
stated that when many codes occur infrequently, the Deep
Learning (DL) models’ performance is inhibited. They pro-
posed a neural transfer learning strategy, supplementing EHR
data with PubMed indexed biomedical research abstracts.
For the source task, they trained a CNN to predict 1.6M
Medical Subject Headings (MeSH) using PubMed indexed
biomedical abstracts, whereas, for the target task, they trained
a CNN on 71,463 EHRs to predict ICD diagnosis codes.
Our approach is also based on the idea of transfer learn-
ing, as the ELMo embeddings are derived from a bidirec-
tional LSTM trained with a coupled language model (LM)
objective on a large text corpus, including, but not restricted
to biomedical texts (i.e. pharmaceutical or medical articles
fromWikipedia). They got, respectively, a micro- and macro-
F-Score of 56.8 and 28.6, considering 1, 231 truncated
ICD-9 labels with 5, 303 average words per instance from
71, 463 instances.

Gangavarapu et al. [19] employed the MIMIC data-set.
It is usual to exploit the discharge summaries (i.e. the clinical
report prepared by the physician after a hospital stay), but
in this case, they leverage the nursing notes. One draw-
back is that the nursing notes present excessive redundant
information, due to the anomalous and evolutive data of the
patient. This issue was addressed with a fuzzy similarity-
based data cleansing approach; The authors applied vector
space and topic modelling to extract the rich patient-specific
information available in unstructured clinical data. This can
be crucial in countries where structured EHR adoption is not
widespread [31], [32]. The authors worked with 223, 556
nursing notes of 357.8 words on average, predicting 19
ICD-9 code group labels, and achieved a maximum F1-score
(weighted-) of 69.81 across all the tested models.

Most ICD codes appear only in a few samples, that is,
the ICD distribution presents a long-tail, which is, precisely,
a feature of extreme multi-label classification. Babbar and
Schölkopf [33] posed the tail-label detection task in XMC
as a robust learning problem, taking into account the worst-
case perturbation scenarios. This viewpoint is motivated by
a key observation: from the training set to test set, there
is a significant change in the distribution of the features of
instances belonging to the tail-labels. This is a typical case
when classifying EHRs with ICD codes, especially, across
time or clinical services [34] since physicians from different
medical specialties refer to the same medical concepts in
diverse forms. The converse also happens: the same string is
employed to refer to different concepts (this happens often
with abbreviations) across clinical services.

In an attempt to tackle the scalability issue of state-of-
the-art Deep Learning-based methods to extremely large
label-sets [35], a hierarchical structure based on Probability
Label Trees generated with balanced k-means recursively,
and multi-label attention was proposed by You et al. [36].
Similarly, Gargiulo et al. [37] presented a methodology
named Hierarchical Label-Set Expansion (HLSE), used to
regularise the data labels, based on the hierarchical structure
of the MeSH label-set. Data scarceness and large lexical
variability and vocabularies are major concerns in the ICD
multi-label classification tasks. Deng et al. [38] presented a
processing pipeline built uponCNNs and an autoencoderwith
logistic regression. They applied the combination of embed-
dings from different sources and proved the positive influence
of semantic enrichment to counter the aforementioned strains.
The contextual ELMo embeddings can overcome these lim-
itations of the standard embeddings [39]. Cheng et al. [40]
recognised that some complex semantic problems in the real
world require the association of more objects with related
labels but also that as data complexity increases, the class
imbalance issues become increasingly prominent. A well-
known strategy to deal with imbalance between classes is to
use label correlations, but their work proposed an alternative
approach. They first introduced the classification margin and
expanded the original label-space among labels, taking into
account the label-density. The BiGru model can handle all

183536 VOLUME 8, 2020



A. Blanco et al.: Extreme Multi-Label ICD Classification: Sensitivity to Hospital Service and Time

the labels at once thanks to the final dense layer with the
Sigmoid activation function, and thus, is able to capture and
model the label dependencies. Chalkidis et al. [41] com-
pared various neural methods on the EURLEX57K data-
set (with 4,271 labels) and concluded that the best results
rely on the Recurrent Neural Network with GRU units, but
also that it is the most computationally expensive method.
Chang et al. [42] leveraged the pre-trained language represen-
tation model BERT, extending it to the XMC problem to deal
with the difficulty of capturing dependencies or correlations
among labels and the tractability to scale to the extreme label
setting because of the Softmax bottleneck scaling linearly
with the output space. Their so-called X-BERT utilises both
the label and input text to build label representations. This
induces semantic label clusters to better model label depen-
dencies, which can also be applied to the ICD classification
task, as all the labels have an associated text, the standard-
term description.

Themotivation and novelty of this work resides in explor-
ing the behaviour of the classifiers under novel circumstances
through the characteristics of our task. It conveys a multi-
label text classification problem with great lexical variability,
especially in the set of EHRs in Spanish, as the dataset can
be segmented by year and medical service. To that end, and
following the insights of the related works, we developed a
model based on Recurrent Neural Networks with Bidirec-
tional Recurrent layers and GRU units leveraging the ELMo
contextual embeddings. These models were proven robust
and capable of learning from scarce samples, as is the case
of ICD coding. The gaps found in previous works, and which
we do cover in this article, are related to the capability of
such state-of-the-art models to keep a strong performance fac-
ing lexical variation inherent to the biomedical domain, but
extended to variations over time (i.e. attempting to make pre-
dictions across years) and different sub-domains (i.e. across
various clinical services). This way, we assess the sensitivity
of these models to different factors (time and health services)
and, thus, pay attention to their usability.

III. METHODS
A. MULTI-LABEL CLASSIFICATION APPROACH
Having explored previous works, for our task we opted for
a Recurrent Neural Network with a Bidirectional layer with
GRU units (referred to as BiGru from now onward). The
architecture of the model is shown in Figure 1, and formally,
is explained in (1), with the bidirectional layer processing
the sequences of text in both directions, forward and reverse.

Accordingly, it generates forward (
−→
h(t)) and backward (

←−
h(t))

hidden states, which are later combined into h(t). Here t is the
time-step and T the total number of time-steps (1 ≤ t ≤ T ).
The parameters to be determined in the inference stage given
the EHRs are, on the one hand, the weight matrices,W and V ,
and, on the other hand, the bias term b. A non-linear activation
function, the Sigmoid (σ ), is chosen to compute the current
hidden-states taking, as input, the weighted sum of previous

FIGURE 1. Architecture of the BiGru ELMo model: a Bidirectional
Recurrent Layer with GRU units powered by ELMo embeddings with
Pooling and a final multi-label dense layer.

hidden-states (h(t−1)) and current input (x(t)) with the weights
given by W and V . Finally, both hidden states are combined
as a mere concatenation of each matrix.

−→

h(t) = σ (
−→
W x(t) +

−→
V
−→
h (t−1)

+
−→
b )

←−

h(t) = σ (
←−
W x(t) +

←−
V
←−
h (t−1)

+
←−
b )

h(t) = [
−→
h (t)
‖
←−
h (t)] (1)

The output of the bidirectional layer, h(t), is fed to several
Pooling [43] layers. To be precise, in our work, an average
and a max-pooling layer were used, as in (2).

hmax = max
1≤t≤T

h(t) and havg =

∑T
t=1 h

(t)∥∥h(t)∥∥ (2)

The output of both pooling layers (hmax and havg) is again
concatenated into h = [hmax‖havg] ∈ R2T and passed into
a final dense layer, which is responsible of computing the
probability estimation of the labels i.e. ICD codes.

The strength of RNN with GRU unit and ELMo is clear
in this extreme multi-label scenario as described in what fol-
lows. This BiGru model can cope with the multi-label prob-
lem since the final dense layer is able to capture and model
the label dependencies in contrast with the binary-relevance
approach. In fact, by virtue of the Sigmoid activation func-
tion, it produces a probability estimation for each label that
is not mutually exclusive [17]. Thus, this BiGru model is
suitable to cope with the multi-label classification of EHRs
through ICDs and address dependencies between diagnoses.
Moreover, bearing in mind that EHRs are long documents,
with even thousands of words per document, the ability to
capture long-term dependencies in the text, as an RNN with
GRU does, becomes imperative. Furthermore, in an attempt
to cope with lexical variability in the input EHRs, we turned
to ELMo embeddings. In general, the word embedding is a
technique to transform a word, and therefore a document,
into a dense vector and, by extension, into a matrix. The
text from a clinical record is fed into an embedding layer,
and the output is a matrix representing the document, with
one row-vector per word. Each word is referred to as time-
step in the formulation of the model. ELMo embeddings [22]
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capture contextual information and, according to the authors,
these word representations model i) complex characteristics
of word use (i.e. syntax and semantics) and ii) how these
uses vary across linguistic contexts (i.e. to model polysemy).
As a result, in our task, ELMo embeddings can help towards
i) the detection of some essential nuances of medical records
such as the negation of symptoms and, ii) robustness to
variations of the author (i.e. each physician expresses in a
particular way) and sub-domain (i.e. a reference to the same
medical concepts across several clinical services). We also
need embeddings, as they can cope with different linguistic
contexts, to deal with the various clinical services, time-
frames, and their lexical subtleties. These are the principal
reasons why we opted for BiGru ELMo as an appropriate
choice to deal with high lexical variability within EHRs and
multi-label classification with respect to the ICD.

B. MULTI-LABEL ASSESSMENT CRITERIA
We have resorted to well-known metrics such as Preci-
sion, Recall and F-Score, but to adapt them correctly to
the multi-label scenario it is necessary to compute aver-
ages since these metrics are well suited to mono-label tasks.
There are several common averages, i.e. micro-, macro- and
weighted-average-, each of them penalising certain aspects
more severely than other [44], [45]. For example, a macro-
average will compute the metric independently for each class
(i.e. a confusion matrix for each ICD) and then compute
each metric and take the average of the metric (hence it will
treat all classes equally). By contrast, a micro-average will
aggregate the contributions of all classes in a single confusion
matrix and then compute the average (hence, the performance
over more populated classes dominate). Thus, in a situation
with imbalanced classes is easier to get higher metric values
with the micro-average provided that the dominant class is
accurately predicted (with the micro-avg result being almost
insensitive to the hits or fails over less populated classes).
The weighted-average is a balanced solution which takes
into account the support (i.e. frequency) of each label to
weight their contribution to the final metric value. For that
reason, in this work, we give the weighted-average version
of the Precision, Recall and F-Score metrics. Nevertheless,
all these approximations and variations come with benefits
and disadvantages: there is not a general optimum approach,
and the best-suited evaluation will depend on the task and
objectives of the work. Note, however, that averages are taken
per code and not, strictly, per document. A challenge in ML
classification is to on decide the number of codes to assign to
each document, as this is variable (on average, EHRs within
MIMIC receive 11.6 codes but the deviation is 6.3, quite
high).

IV. EXPERIMENTAL FRAMEWORK
A. CORPORA
Here we describe the corpora and provide two perspectives:
the input (text from EHRs) and the output (ICDs). The data

TABLE 1. Quantitative description of the input (EHRs).

we had available for this work comprised two separate but
analogous data-sets with EHRs, written in Spanish, from the
Basque public health system (Osakidetza). Specifically, both
sets, denoted as Osa1 and Osa2, comprise discharge sum-
maries from hospitals. Table 1 provides quantitative details of
each data-set and the union of both sets (denoted as Osa1+2)
leading to a total of 27, 040 unique EHRs.
Regarding the input (EHRs), both Osa1 and Osa2 data-

sets are significantly smaller than MIMIC; indeed, there are
nearly twice as many samples in MIMIC as in Osa1+2.
However, the size of the vocabulary (the number of unique
words) of Osa1+2 (379, 477) is approximately three times
larger than the vocabulary of MIMIC (137, 207). This means
that the lexical variability is notably higher in the Spanish
set, even though there are more documents and, besides,
the length of the documents is much higher in MIMIC.
To enable the drawing of conclusions from the following
experiments, we must acknowledge the distributions of the
features of the different sets from the experimental setup.
To that end, as the classifiers are only fed with the text
from the clinical records, we explore the vocabulary and Out-
of-Vocabulary (OOV) words. The number of unique words
in Osa1 is 89,840, the number of unique words in Osa2 is
94,764, and the number of OOV words in Osa2 with respect
to Osa1 is 42,249, which is the 44.6% of the vocabulary.
The vocabulary we are dealing with is large, but what is
more, we can observe that the amount of disjoint vocabulary
between sets is also quite high, leading to the demand for
robust classifiers.

Regarding the output, i.e. the label-sets, the aim is to
predict the set of ICDs in their fully-specified form. However,
failing non-essential modifiersmight be considered not as bad
as failing the chapter of the ICD. Accordingly, we assessed
the performance taking into account three different granular-
ities of the ICD codes, from fine- to coarse-grained:
• ‘‘Full-code’’ level preserves the original code e.g.
‘‘I13.10’’ (this stands for Hypertensive heart and
chronic kidney disease without heart failure, with stage
1 through stage 4 chronic kidney disease, or unspecified
chronic kidney disease);

• ‘‘Main’’ level drops non-essential modifiers, keeping
just the first three characters e.g. ‘‘I13’’ (Hypertensive
heart and chronic kidney disease )

• ‘‘Chapter’’ level keeps only the first character, that is,
the chapter of the ICD e.g. ‘‘I’’ (Diseases of the circu-
latory system).

Trying to predict rare codes is really challenging for
inferred systems and often previous works pruned the
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TABLE 2. Size of label-set (|C|) taking different granularity of labels for
each corpus. Three levels of granularity were assessed: ‘‘Full’’ stands for
‘‘fully specified ICD code’’, ‘‘Main’’ for the essential modifiers, ‘‘Chapter’’
for the ICD chapter. ‘‘Fullfi%’’ is the subset of Full in which the ICD codes
were seen in at least fi% documents (∼1% and ∼5% of the documents
respectively).

label-set according to a minimum frequency threshold
[46], [47]. In an attempt to make comparisons with respect to
previous works, we created a sub-set of instances restricted
by frequency. |Ctrainr | denotes the size of the label-set
restricted to most prevalent ICDs following repetition bound-
aries shown in previous works. Note that, |Ctrainr | = |Ctrain|
means that no restriction was applied. We experimented with
a subset from the full label-set in which the occurrences of the
codes were above a threshold f . In our case, we considered
two thresholds leading to two label-sets, denoted as Full1%
and Full5%, which incorporated a code whenever it appeared
in at least ∼1% and ∼5% of the documents respectively.
Quantitative details of the label-set in our data-sets are given
in Table 2. The table reveals substantial sparsity: just 110 out
of 2, 554 ICDs appear at least in 1% of the EHRs (i.e. dis-
eases diagnosed around a hundred times in a set of around
10, 000 EHRs). Note that for all the experiments carried out,
the train and test partitions are obtained with the iterative
stratification algorithm, with a 70/30 split.

B. PERFORMANCE BY LABEL GRANULARITY
Table 3 shows the experimental results of the model on each
corpus (Osa1, Osa2, Osa1+2, and MIMIC). Regarding the
label-set reduction, the assessment was made on each of the
aforementioned label sub-sets (Full, Full1%, and Full5% pre-
sented in Table 2). Additionally, Table 3 shows the assessment
of the computer-aided coding system to various levels of
granularity.

Note that increasing the size of the label-set from
110 to 2, 500 (an increment of 1 to 22), as we could expect,
was detrimental to the F-Score (from 37.87 to 20.43). Never-
theless, the decrease was not as dramatic as 22 to 1 and the
same applies to the results of just 16 prevalent labels. This
insight suggests that the model is able to learn from rare cases
in EHRs (as one-shot learning strategy aims to) and is able to
make predictions of ICDs with little prevalence.

Experiments carried out with the entire label-set (with
above 2, 550 different ICDs) show reasonable performance
in terms of averaged scores. Although it is difficult to make
a fair comparison because no standardised set of experi-
ments has been popularised on any ICD code-based multi-
label classification data set, there are some reference works
with which we can validate the performance of our models.

TABLE 3. Performance of the system over different ICD
code-lengths or granularity (F: Full, M: Main, C: Chap) for all specialties
together. P denotes Precision, R Recall and F the F-Score.

Dermouche et al. [48] obtained 75.0 micro F-Score and
35.0 macro F-Score with a Support Vector Machine (SVM)
model, and 74.0 micro F-Score and 38.0 macro F-Score with
a Latent Dirichlet Allocation (LDA) model, but taking into
account just 252 codes from theMIMIC dataset, and comput-
ing the F-Score retrieving the correct class among the 10most
probable classes returned by the model. Duarte et al. [47]
achieved 27.04 macro F-Score with their best model based
on Hierarchical GRUs considering the Full codes, 40.50 con-
sidering main codes and 62.91 considering chapter codes.
The number of labels was 1,418, 611 and 19 respectively.
In brief, taking as the baseline the aforementioned state of
the art approaches, our approach is ahead in several aspects.
In light of the results attained with MIMIC-III, the model
was proven competitive with respect to previous works
in a fully automatic classification scenario entailing fully-
specified ICD codes. Having validated the results on a well-
known corpus, we have extended the study to the corpus from
Osakidetza (a set of EHRs in Spanish).

Our system was assessed with two non-overlapping
sets of EHRs from two different years from Osakidetza,
named Osa1 and Osa2. As shown in Tables 1 and 2, both
Osa1 and Osa2 have a similar number of input EHR texts
(about 13, 500 documents). The size of the label-set is the
same (2, 550 in round figures), as is the label cardinality
(on average, 5.8 labels per document). However, the F-Score
differs 2 absolute points in the most extreme case with all the
labels (from 20.43 to 18.56). Nevertheless, as expected due to
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TABLE 4. Behaviour of current model on unseen current and future EHRs, for all the specialties together, and with granularity Full. P denotes Precision, R
Recall and F the F-score.

TABLE 5. Osa1+2 generalist model trained on the Full1% label-set but re-evaluated per specialty and also applying the ‘specialty labels’ label-set
modification.

the higher number of available samples, the best performance
is attained with the union of both data-sets, even though the
union conveys ∼500 labels more on the test set. With the
union, the results from Osa1 are improved by another two
points, leading to an F-Score of 22.48 on the full label-set.

Bearing a computer-aided ICD classification system in
mind, we assessed the model in three scenarios with increas-
ing details in the predicted label, ranging from the ability of
the model to predict the fully-specified ICD code (denoted
as F (Full) in Table 3), the main class without non-essential
modifiers (denoted asM (Main) in Table 3) or the ICD chapter
(denoted as C (Chap) in Table 3). Given an EHR, the model
is shown to be effective in the assignment of the chapters of
the ICD, restricting the use to just those chapters, which can
be useful, as discussed in Section V. As the label gets more
andmore specific, the task gets more complex. Restricting the
granularity of the model impacts upon the size of the label-
set: while there are thousands of fully-specified ICDs, there
are just 24 chapters and 870 main labels. Note that with the
Osa1+2 data-set, the F-Score with the Full granularity and
the label-set reduced from 2,554 to 110 labels is 39.89, almost
the same as the 39.55 F-Score obtained with the non-reduced
870 Main labels.

C. SENSITIVITY OF THE MODEL TO LEXICAL
VARIANTS ACROSS TIME
Would a system learn consistently from EHRs issued in one
year how to classify EHRs in the future? Howmuch does data
addition boost the performance of the system? These exper-
iments would suggest that the lexical features within EHRs
(possibly clinical personal, clinical specialisations, etc.)

changed over time. Also, note that the number of samples
can influence the results, especially when the concatenation
of both data-sets are used for the training of the model.

Table 4 shows the ability of each model to classify current
and forthcoming EHRs. To this end, the model was trained
with current and past EHRs and assessed with either cur-
rent events or events from subsequent years unclassified at
that moment. The aim is to test the sensitivity to different
time-frames. As we could expect, training the models with
EHRs issued in the same year as those in the evaluation
is beneficial, and even more so, if the training set is com-
pleted with EHRs even from previous years. As we can see
in the rows with Test = Osa2 when the training data is
from both years, the F-Score raises from 18.56 to 22.48,
increasing the performance by ∼4 points, and it is ∼2 times
higher than when training only with EHRs from a previous
year (11.61 to 22.48).

D. SENSITIVITY OF THE MODEL TO LEXICAL
VARIANTS BY HOSPITAL SERVICE
The full data-set comprises discharge reports issued by dif-
ferent hospital services: e.g. Cardiology, Digestive, Neurol-
ogy, etc. While decreasing the amount of EHRs tends to
be detrimental to the effectiveness of the inference process,
restricting the service may also reduce the lexical variability
in the input and, eventually, might benefit the predictive
ability. In other words, we aim to respond to the following
question: how sensitive are the generalist model and the Spe-
cialty Models are to relevant codes belonging to the specialty
in which the patient was admitted?. These results are shown
in Tables 5 and 6.
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TABLE 6. Specialty Models trained on subsets of EHRs from the Osa1+2 data-set by specialty, with the same Full1% label-set and also applying the
‘specialty labels’ label-set modifications as in Table 5 to enable comparison.

To deal with this question, we begin with Table 5, where we
present the performance of a generalist model (from Table 3,
trained with EHRs from all the medical services) evalu-
ated over the different subsets of EHRs by medical service.
On the other hand, we also trained a model specifically for
each service (namely, Specialty Models) limiting the training
data to the EHRs issued in that service. The results are shown
in Table 6.

Individual models were created, one per clinical service.
Eachmodel was trained receiving only discharge reports from
a single service. While this reduces the documents accessed
by each model, if the language boundaries are subject to
lexical nuances particular to individual services, the models
might show good performance, particularly in predicting ICD
codes from the service with which they were trained. Note,
however, that even though the EHRs were restricted to a
single service, they convey both codes from the specialty
(associated with the cause of admission in that service) as
well as other codes regarding the general status of the patient
and other findings (e.g. ex-smoker and type-2 diabetes).

For that reason, we consider two alternative evaluations
based on different label-set modifications (as shown in
the ‘‘Cmodif ’’ column of the Tables 5 and 6). These are
i) All: Keep all the labels that appear across the EHRs from
the subset of the given specialty. ii) Spec: Consists in taking
into account only the ‘‘specialty labels’’, that is, keep the
labels of the given specialty. For example, for Cardiology,
you will keep only those labels that appear in Chapter IX -
Diseases of the circulatory system of the ICD, due to it being
the most-related chapter to Cardiology.

To help the reader interpret the results, note that while the
records within Pneumology service convey 2, 057 different
ICDs (see |Ctrain| column from Table 5), the sub-set of ICDs
within the ICD chapters related to Pneumology are 126, and
those among the 110 most frequent codes are only 17 (see
|Ctest | column with the ‘Spec’ |Cmodif | from Table 5).
First of all, in most clinical services, when evaluating

with the ‘‘specialty labels’’, performance improves. In some
specialties, such as Nephrology, the increase is considerable
(26.3 F-Score points). One reason is that the difference in

the number of labels between both label-set modifications
is notorious in every medical service (i.e. from 107 to 17 in
Pneumology, or from 105 to 23 in Cardiology. . . ). Despite
this fact, in some specialties, better performance is achieved
with all the labels than only with the specialty labels, such
as in the Digestive case (i.e. 32.39 F-Score with all the
108 labels, and 23.02 with only the 6 digestive-related
labels). However, the most remarkable aspect is that, regard-
ing all the labels, (the ‘All’ rows on the Cmodif column from
Tables 5 and 6) for all medical services, the generalist model
achieves a better performance in comparison with the Spe-
cialtyModels. Nonetheless, what behaviour takes place when
considering only the ‘specialty labels’?

It can be observed (in Tables 5 and 6) that when the aim is
to classify the EHRs of a given specialty according to the ICD
codes of that specialty, it is worth training the Specialty Mod-
els. In four of the six specialties, the results improve in terms
of F-Score. Besides, note that for the medical services which
perform better with the generalist model (Pneumology and
Nephrology) the gain is only around 3 and 6 points respec-
tively. However, the mean improvement obtained with the
Specialty Models for the other specialties is about 14 points,
presenting some notable increases, such as the ∼30 points
improvement (from 21.28 to 52.38) in the Digestive specialty.
Figure 2 combines the experiments with the generalist model
evaluated per specialty and each of the Specialty Models
(i.e. the results from Tables 5 and 6). The picture shows
that assessing all the labels, the generalist model is more
suitable, without modification, while when considering only
the ‘‘specialty labels’’, the Specialty Models line (in light
blue), is, in most medical services, superior to the generalist
model.

V. DISCUSSION
The experimental setup consists of a popular clinical multi-
label dataset, namely, MIMIC-III, used to validate our
approximation and compare with previous works, along with
some in-house datasets (Osa1 and Osa2), that presents the
advantage that has the data segmented by year and medical
specialty.
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FIGURE 2. F-Scores of models trained with the Osa1+2 data-set on the Full1% label-set, but re-evaluated per specialty (i.e. generalist model, dark
blue) and trained on subsets of EHRs (i.e. Specialty Models, light blue).

Compared to the related works, the input EHR is not
restricted to a diagnostic phrase of few words as in [49] or a
short note as in [48]. Our EHRs comprise full notes with
864±415 words on average it is close to a full clinical history
ofMIMIC-III, entailing several notes for a given patient, with
1, 399±721words per history on average. Due to the complex
ICD system in conjunction with long medical texts, nowa-
days, numerous healthcare professionals specially trained are
devoted to manual EHR coding. Emerging techniques in NLP
are bridging the gap between manual and automatic ICD
coding through clinical decision support systems.

In an attempt to assess the usability of the models in prac-
tice, we should bear in mind whether the errors produced by
the system are minor, due to confusion between non-essential
modifiers (i.e. the last characters from the Full codes) yet
correctly guessing the main class, or major, failing even the
chapter of the ICD. While confusion between non-essential
modifiers is counted as a failure, in practice, the system can
help the human-coder position in the right branch of the ICD;
by contrast, confusion between chapters would require an
extra effort on the part of the human expert. In this scenario,
the model would guide the expert to a Chapter (branch) of the
ICD in which to select the Full code.

The assessment was carried out enabling the model dis-
pense with the non-essential modifiers (and focusing on the
main ICD and the chapter). Results showed that the potential
of the model increased substantially from the fully- auto-
mated scenario to that of the computer-aided classification.
A computer-aided ICD classification system can help the
human expert to access the chapters of the ICD involved in
each record very accurately (with a Precision of 80.88 and a
coverage-recall of 67.46) as shown in Table 3. If we turn to a
finer-grained classification in a situation in which the system
would act automatically and would code the fully-specified
label, the system would attain Precision of 27.64 and the
Recall decays to 20.52. Depending on the Recall required,

the system would demand a more active role from the human,
while a significant percentage of the labels would have been
correctly assigned. Although we have explored several levels
of granularity, namely, Chapter, Main and Full granularity,
we have focused on the complete ICD, as it is of great
importance for applications such as insurance billing or other
clinical information extraction tasks.

Often, previous works discarded learning ICDs that had
little prevalence in the set or which only focused on a set
of nearly a hundred labels [34], [48], [50]. In our case,
we assessed them all, but as we could expect, prevalent ICDs
are predicted more accurately than the average prediction
quality. Table 3 disclosed that increasing training instances
significantly benefitted the predictive ability of the model.
The restriction to 110 and 16 most prevalent labels was
selected in an attempt to make fair comparisons with previous
works. Nevertheless, increasing the number of labels and
decreasing the performance does not show a linear relation-
ship, but rather the performance drop is less than expected.
This implies that the model can learn from infrequent occur-
rences and can predict uncommon ICDs.

An analysis of the results shows that a generalist model
trained overall services achieves, on average, an F-Score of
22.48 for the full set of 2,554 labels (see Table 3). Regarding
the experiments to assess the robustness across-time, adding
more years (i.e. more EHRs) to the training set benefits per-
formance, as expected. Nevertheless, it is interesting to note
that although the models are robust enough to correctly clas-
sify some EHRs from future years trained solely on data from
past years, there is a negative effect on performance. There-
fore, our recommendation is, whenever possible, to continue
retraining the models with the new data as it becomes avail-
able since the improvement is not negligible.

In what concerns the experiments with the different medi-
cal services, one conclusion is that when evaluating the labels
without modification by service (that is, all the labels that
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appear in the EHRs), the best results are obtained with the
generalist model, meaning that the lexical reduction did not
overcome the label-set variability. Nevertheless, the most
significant insight gained is derived from Table 6, which
shows that it is when the Specialty Models are trained on
the specialty label-sets that they do better than the generalist
model. It is true that this comes with the extra cost of training
several models, one for each medical service, and is limited to
more restricted specialty-related label-sets. However, we feel
that for certain applications, such as intra-specialty pharma-
covigilance services in hospitals, these costs could be offset
by the associated advantages.

Regarding the evaluation, we believe that there are aspects
that do not get reflected in the most widely used metrics
(such as Precision, Recall, F-Score, MAP, MRR. . . ). Specif-
ically, the number of codes associated with a document is
relevant: therefore, if the prediction yields either a much
lower, similar or much higher number of codes than the actual
number of codes, this should be penalised/acknowledged
accordingly. We feel that further multifaceted metrics should
be developed to gain a deeper insight into extrememulti-label
classification.

There is room for improvement by exploring other neural
approaches e.g. models based on the Transformer architecture
(BERT, BioBert, . . . ). Nevertheless, transformers pose chal-
lenges in the training process [51] due to the high computa-
tional burden and data needed. To remedy this, and inspired
by the fine-tuning strategy, we feel that an initial generalist
model could be trained; this could be further fine-tuned with
new data from subsequent years or new medical services.

VI. CONCLUSION
This work deals with an extreme multi-label classification
task on clinical texts. The aim is to assign, to each EHR,
the corresponding diagnoses as in the ICD. Each EHR tends
to convey 5.8 ± 3.4 ICDs (out of about 2, 500 distinct diag-
noses in our study).

Having demonstrated the ability of the approach to be
both a fully-automatic and computer-aided multi-label clas-
sification, we assessed the resilience of the model to natural
variations in order to address omission in previous works. The
concern is about the behaviour of a model trained with some
EHRs when it comes to classifying EHRs later on (e.g. texts
possibly written by different experts). We put our focus on
variations in two aspects: across-time and through hospital
services.

Regarding the resilience of the system to time-related vari-
ations, the results showed that the datasets from different
(non-overlapping and consecutive) years are similar in diffi-
culty, as the results with Osa1 and Osa2 are reasonably com-
parable, with 20.43 and 18.56 F-Score, respectively. Also,
adding more samples is always useful, as this gives best
results, as previously seen when the train set is the union
Osa1+2 (i.e. 22.48 F-Score when training and testing with
Osa1+2). A key insight is that although the datasets are
similarly difficult when trying to predict future EHRs with

data from previous years, the performance decline signifi-
cantly (i.e. from 20.43 when training and testing with Osa to
11.61 when training with Osa1 but testing with Osa2 future
samples).

With respect to the ability of the system to classify EHRs
acrossmedical specialties, our experiments showed that when
the predictions are made over non-modified label-sets by spe-
cialty, the best option is the generalist model, which benefits
from the greater number of EHRs in the training set. However,
the approach which achieves the most favourable results on
specialty labels is to train Specialty Models with the specialty
label sub-sets. Although this carries an extra cost, it can be
useful for the development of tools for application in specific
medical services in hospitals.

We feel that there is still a gap in the literature that could
be exploited for future work: namely, knowledge-driven
reinforcement learning exploiting the hierarchical structure
of the ICD to gain accuracy in different granularity levels.
Previous works tried to incorporate the hierarchy [52], [53].
Clinical entity recognition could help to recognise relevant
information such as disorders or findings, laterality, sever-
ity or body-part. This information is, somehow, included in
the hierarchical representation of the ICD and could drive
the code generation. Within our framework, the hierarchical
boundaries could be modelled as embedded graphs. This
approach, however, is outside of the scope of this work.
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