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ABSTRACT The current researches have been shown high prevalence and incidence of children’s teeth
caries, especially for the first permanent molar, which might do a lot of harm to their general health.
Fortunately, early detection and protection can reduce the difficulty of treatment and protect children’s
oral health. However, traditional diagnostic methods such as dentist’s visual inspection and radiographic
imaging diagnosis are non-automatic and time-consuming. Given the COVID-19 epidemic, these methods
should not be taken into consideration, since they fail to practice social distancing and further increase the
risk of infection. To address these issues, in this paper we propose a novel caries detection and assessment
(UCDA) framework to achieve a new technique for fully-automated diagnosis of dental caries on the
children’s first permanent molar. Inspired by an efficient in-network feature pyramid and anchor boxes,
the proposed UCDA framework mainly contains a backbone network that is initialized with ResNet-FPN,
and two parallel task-specific subnetworks for region regression and region classification. Due to the lack
of the image database, we also present a novel children’s oral image database, namely ‘‘Child-OID’’, which
comprises 1, 368 primary school children’s oral images with standard diagnostic annotations and labels,
to evaluate the effectiveness of our UCDA method. Experiments on the Child-OID database demonstrate
that commonly occurring caries on the first permanent molar can be more accurately detected via the
proposed UCDA framework. Database and code are available at https://github.com/GipinLinn/
UCDA-and-Child-OID.git.

INDEX TERMS Caries detection and assessment, first permanent molar, child-OID, oral images.

I. INTRODUCTION
As one of the most highly prevalent chronic diseases in
children, dental caries can seriously affect the physical and
mental health of children. In recent years, research shows
that dental caries are generated by the long-term sophisticated
interaction between many host factors and acid-producing
bacteria that live in the plaque. Especially for the children’s
first permanent molar, it suffers from a high morbidity rate
of dental caries. For the children, the first permanent molar
is generally rooted in the deep part of the oral. Due to poor
dental hygiene, food debris, saliva, and minerals will build
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upon the ravines of the first permanent molar, leading to the
development of plaque. Typically, the bacteria mix with car-
bohydrates from foods and create acids, which would break
down areas of enamel cause dental caries, as shown in Fig. 1.
To provide timely treatment and prevent further deteriora-
tion, early detection for dental caries on the children’s first
permanent molar are necessary. However, identifying and
distinguishing dental caries on the first permanent molar still
relies heavily on the availability of an expert dentist’s visual
inspection and radiographic imaging diagnosis, which are
very labor-intensive and time-consuming. Moreover, in the
current situation of the COVID-19 [1] epidemic, some child
patients with dental caries need to practice social distancing
to avoid escalation of infection, resulting in missing the
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FIGURE 1. Different types of the first permanent molars, including left mandible (a), right mandible (b), left palate (c), and right palate
(d). Compared with normal teeth, the cavities in the tooth may be various colors from yellow to black.

optimal treatment opportunities. Therefore, there are huge
demands on developing fully-automated and high-precision
caries detection and assessment system to assist the diagnosis
of dental caries on children’s first permanent molar.

Unlike general computer vision tasks, medical image
annotation requires extensive clinical expertise. With the
development of deep learning technologies and large-scale
annotated image datasets, rapid and tremendous progress
has been evidenced in a range of computer-aided detec-
tion/diagnosis (CADe/CADx) systems [2]–[4]. For example,
Wang et al. [2] proposed a hospital–scale chest X-ray dataset,
i.e., ChestX-ray14, and utilized Convolutional Neural Net-
works (CNN) [5]–[7] to boost the performance of multi-label
chest X-ray image classification. Rajpurkar et al. [4] trained a
169-layer DenseNet [8] baseline model to detect and localize
abnormalities based on their proposed large-scale dataset
of musculoskeletal radiographs. Yan et al. [3] introduced a
CT images dataset named DeepLesion, and further develop
an automatic lesion detection algorithm to find all types of
lesions with a unified CNN-based framework. Unlike the
aforementioned CADe/CADx tasks in the medical image
domain, to the best of our knowledge, automated caries diag-
nosis currently lacks an available annotated image dataset,
which leads towards the failure of establishing a universal
caries detection and assessment system.

As the fundamental topics in CADe/CADx, lesions detec-
tion and characterization such as skin lesions [9], lung nod-
ules [10], and liver lesions [11] have attracted much interest
to the application of deep learning approaches. However, vast
infrequent types such as dental caries detection are ignored
by most CADe programs. Moreover, dental caries on the first
permanent molar is typically small and its characterization is
easily affected by the light, background, and other conditions,
which further increases the difficulty of detection and assess-
ment. Therefore, it remains challenging to develop a universal

caries detection and assessment system, capable of detecting
dental caries on the first permanent molars.

To address these challenges, in this paper we only focus
on the first permanent molar and introduce a unified caries
detection and assessment (UCDA) framework to perform the
automated diagnosis of dental caries on the children’s first
permanent molar. Specifically, the proposed UCDA frame-
work benefits from an efficient in-network feature pyramid
and use of anchor boxes, and it is composed of a ResNet-FPN
[12] based backbone network and two parallel task-specific
subnetworks, i.e., region regression and region classification
subnetworks. The region regression subnetwork is designed
to perform convolutional bounding box regression, while the
region classification subnetwork aims to classify the object
from the output of the backbone. Importantly, a novel chil-
dren’s oral image database, namely ‘‘Child-OID’’, is pro-
posed to evaluate the effectiveness of the proposed UCDA
method. Our Child-OID, supported by Shenzhen Chronic
Disease Prevention and Treatment Center, is composed of
1, 368 primary school children’s oral images with standard
diagnostic annotations and labels. Note that, all the annota-
tions and labels are marked by two expert dentists according
to the WHO’s basic methods and the diagnostic standards.
To mitigate the class imbalance problem, we introduce a
novel weighted Cross-Entropy (W-CE) loss to further opti-
mize our UCDA framework in the training phase. The main
contributions of this paper are summarized as follows:
• We propose a unified caries detection and assess-
ment (UCDA) framework for dental caries diagnosis
on the children’s first permanent molar, which is cru-
cial for building an automatic dental caries diagnosis
system.

• We also propose a novel children’s oral image database
(i.e., Child-OID) with standard diagnostic annotations
and labels. To the best of our knowledge, this is the
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first benchmark image dataset that is appropriate for
children’s dental caries diagnosis.

• Experimental results on the proposed benchmark image
datasets demonstrate that our UCDA framework can
achieve a diagnostic accuracy of over 95%, which fully
meets the clinical demand for dental caries detection and
assessment.

The rest of the article is arranged as follows. Section II
mainly discusses the related work including existing caries
detection methods and common object detection algorithms.
Section III explores the proposed UCDA framework, while
Section IV covers the proposed Child-OID dataset. Next,
the comprehensive experiments are conducted in Section V.
Finally, Section VI briefly concludes the whole work.

II. RELATED WORK
In this part, we first make a brief review of existing diagnostic
methods for dental caries diagnosis. In addition, we also
discuss the topic of existing object detection algorithms in
detail.

A. CARIES DIAGNOSIS METHODS
1) DENTIST’S VISUAL INSPECTION APPROACHES
With the aid of the artificial light, air drying, mouth mirror,
and probe, dental caries diagnosis in daily dental practice is
prevailingly performed by the expert dentist’s visual inspec-
tion. For example, Lino et al. [13] utilized visual examination
to investigate the characteristics of the margins of restoration
in 88 permanent molars and premolars from 18 patients. To
provide flexibility for clinicians and researchers to choose the
stage of caries process and other features that fit the needs of
their research or practice, Ismail et al. [14] proposed a new
system which was named the International Caries Detection
and assessment system (ICDAS), which makes up of the
lack of consistency among the contemporary criteria systems.
Moreover, Jan et al. [15] leveraged aUniversal Visual Scoring
System (UniViSS) to address the problem of occlusal and
smooth surface lesions. Besides, some population-based oral
health researchers utilize the DMFT method [16], [17] such
as Significant Caries Index (SiC Index) [18], [19] to calculate
and present the caries prevalence for a specific area. However,
these operations rely heavily on dentists’ subjective percep-
tions and clinical experiences. Especially in the current situa-
tion of the COVID-19 epidemic, visual inspection approaches
may cause cross-infection and would be prohibited. There-
fore, it is urgent to develop an automated caries detection and
assessment system, avoiding delay children’s caries diagnosis
opportunities.

2) RADIOGRAPHIC IMAGING AND OPTICAL-BASED
APPROACHES
Radiographic imaging is one of the common means used
in diagnosis of occlusion, periapical, and panoramic [20].
Some researches [20]–[22] utilized the bitewing radiographic
images to give dentists precise areas affected by dental caries.

Bhan et al. [23] have proposed a method including the
preprocessing of bitewing radiographic images, edge recog-
nition, thresholding, and connected component labeling.
Lee et al. [24] trained a periapical radiographic diagnosis
model with 3, 000 periapical radiographic images based on
the pre-trained Inception v3 [25] network. However, radio-
graphy imaging approaches might suffer from the overlap-
ping occlusion of teeth, bones, and surrounding soft tissues.
Moreover, such operations might cause harmful radiation in
the human body. To avoid the disadvantages of radiography,
other optical-based approaches have received much attention
for dental caries diagnosis. For instance, near-infrared light
transillumination [26]–[28]was often used to assist dentist
diagnosis.

B. COMMON OBJECT DETECTION ALGORITHMS
1) TWO-STAGE APPROACHES
Recently, the dominant paradigm in modern object detection
is based on a two-stage approach. For example, Girshick et al.
[29] introduced the Selective Search algorithm to propose
a new region-based framework named R-CNN, which has
achieved breakthrough performance in the field of object
detection. He et al. [30] presented SPP-Net to solve the
disadvantages of R-CNN, which allowed input images of any
size to feed into feature extractor by adding a spatial pyramid
pooling layer before the fully-connected layer. Inspired by
the strength of SPP-Net, Girshick et al. [31] proposed the
Fast R-CNN that replaced the initial spatial pyramid pooling
layer with the RoI Pooling Layer and utilized multi-task
loss for the end-to-end training, which has further enriched
the detection information and improved the detection speed.
Then Ren et al. [32] presented the classical Faster R-CNN,
which was extended from Fast R-CNN and has achieved
excellent progress in many tasks of object detection chal-
lenges. Although the existing highest accuracy object detec-
tors are based on the two-stage approaches, they only focus
on accuracy while ignoring the detection efficiency.

2) ONE-STAGE APPROACHES
By contrast, the one-stage algorithms can reduce the time lost
due to global regression instead of two-stages partial regres-
sion, which generates the bounding box coordinates and
class probabilities directly from input image pixels. Recently,
YOLO [33] and SSD [34] have renewed interest in one-stage
methods. For instance, Redmon et al. [33], [35] presented
a series of one-stage detectors, i.e., YOLO and YOLOv2,
to focus on an even more extreme speed/accuracy trade-
off. Though YOLO and YOLOv2 have gained impressive
performance on efficiency and detection accuracy, it still has
some limitations. For example, YOLO is hard to detect small
objects and generates relatively coarse features. Liu et al. [34]
presented the SSD that efficiently integrates the advantages of
anchors and multi-scale representation.

Unlike the above works, the proposed UCDA framework
is initialized with a ResNet-FPN based backbone and two
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FIGURE 2. Illustration of the proposed caries detection and assessment (UCDA) framework. The proposed UCDA framework is composed of a ResNet-FPN
based backbone network and two task-specific subnetworks, i.e., region regression and region classification subnetworks.

task-specific subnetworks for region regression and region
classification, in order to make full use of the advantages of
the efficient in-network feature pyramid and an-chor boxes.

III. THE PROPOSED UCDA FRAMEWORK
Firstly, we introduce an overview of the proposed UCDA
framework. Then, a detailed description of each component
in the proposed UCDA framework is given. Finally, we make
a definition of W-CE loss used in this work.

A. OVERVIEW
Inspired by the idea of the efficient in-network feature pyra-
mid and use of anchor boxes, we construct a novel uni-
fied caries detection and assessment (UCDA) framework for
automated diagnosis of dental caries on the children’s first
permanent molar. The architecture of the proposed UCDA
framework is illustrated in Fig. 2. Given an oral image, our
ResNet-FPN backbone first utilizes a feature extractor to
generate coarse feature maps of the first permanent molar.
To reduce the noise regions of the initial feature map, it also
adopts a feature enhancement module, which will select the
fine-grained feature maps from the last few convolutional
layers of the feature extractor. Then these fine-grained feature
maps will be fed into a region regression and region clas-
sification subnetworks, respectively. Finally, the predicted
box coordinates of the first permanent molar and its cor-
responding category can be acquired and merged to output
the final results. In addition, for the class-imbalance of our
Child-OID dataset, we utilize the W-CE loss to optimize our
UCDA framework. We will explain these components in the
following subsections.

B. ResNet-FPN BACKBONE
As mentioned above, the task of caries diagnosis on the first
permanent can be converted into a small target detection
problem, which might suffer from noisy regions. To increase

the precision of caries detection, the main core of our
ResNet-FPN backbone is designed to generate a multi-scale
feature pyramid from a single resolution oral image. Specif-
ically, it is constructed with a feature extractor and a feature
enhancement module, which are initialized with the pre-
trained ResNet module and Feature Pyramid Network (FPN),
respectively. That is, we build the FPN on top of the ResNet
architecture. In general, low-level feature maps have rich
detailed information while high-level feature maps present
stronger semantic information. Each level of the pyramid
leverages the feature maps from different convolution layers
to detect multi-scale objects. In this way, we can aggregate
these proposal results from the pyramid and apply them to
the region regression and region classification subnetworks.

In our work, the output feature maps of the last three resid-
ual blocks of ResNet {C3,C4,C5} are consider to generate the
proposed feature pyramid. Firstly, we attach a 1 ∗ 1 convolu-
tional layer on {C3,C4,C5} to obtain feature maps with same
number of dimensions, which are denoted as {D3,D4,D5}.
Since the low-level feature map (D3) has higher resolution,
we upsample the resolution of the high-level feature maps of
{D4, D5}. Then we utilize the nearest neighbor upsampling
on {D4, D5} to obtain upsampled feature maps {E4, E5}.
After that, the upsampled feature maps are integrated with the
corresponding low-level feature maps by element-wise addi-
tion. In this way, we obtain the fused feature maps denoted
as {F3,F4,F5}. Finally, in order to alleviate the overlapping
interference of fused feature maps, we apply a 3 ∗ 3 convolu-
tional layer on each merged map to obtain final feature maps
{P3,P4,P5}.

C. REGION CLASSIFICATION SUBNETWORK
The region classification subnetwork predicts the probability
of caries presence at each oral image. By taking an input
feature maps from a given pyramid level, our region regres-
sion module is built on a fully convolutional network (FCN),
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TABLE 1. Data statistics of the proposed Child-OID dataset.

which consists of four 3 ∗ 3 convolutional layers, each fol-
lowed by ReLU activation function. Finally, a softmax layer
is attached to output the corresponding confidence scores.
Noted that, our region classification subnetwork does not
share parameters with the region regression subnet.

D. REGION REGRESSION SUBNETWORK
Our region regression subnetwork leverages another parallel
FCN to connect each layer of the pyramid for regressing the
offset from each anchor box to a nearby ground-truth object.
To meet the needs of multi-scale of input image, we assign
the training labels to anchors based on their Intersection-over-
Union(IoU) ratios with ground-truth, and the areas of anchors
are defined as {642,1282,2562}, respectively. In our work,
an anchor is assigned as a positive label if it has an IoU over
0.7 with any ground-truth box, or has the highest IoU for a
specific ground-truth box. And a negative label is allocated
to the anchor if all IoUs with all ground-truth boxes are lower
than 0.3. It is noted that only the positive anchors would be
considered to the loss of region regression, since the negative
anchors have serious deviation with all ground-truth boxes.

E. WEIGHTED CROSS ENTROPY LOSS
In the training phase, vast easily-classified negatives can
comprise the majority of loss and dominate the gradient, both
of which result in performance degradation [36]. To reduce
the overload of vast easily-classified negatives, our proposed
UCDA framework requires to focus on the hard-classified
samples. Therefore, we introduce a pair of modulating factors
pγ and (1 − p)γ into our W-CE loss function to balance the
influence between the hard-classified and easily-classified
samples in the training phase. Here, the objective function of
the proposed W-CE loss takes the following form:

L(p, l) = −α
∑
y=1

(1− p)γ log(p)

−(1− α)
∑
y=0

pγ log(1− p) (1)

where α and (1 − α) are weights of abnormal and normal
samples, l represents the ground truth label and p is the
corresponding confidence score. When the proposal region
is difficult to distinguish, pwould close 0 and (1−p)γ is near

1.0, thus its loss contribution would be strengthened, and vice
versa.

IV. THE PROPOSED CHILD-OID DATABASE
In this section, the proposed Child-OID database will be
introduced in detail from the following aspects: data collec-
tion, statistics, and augmentation, as well as the challenges of
Child-OID.

A. DATA COLLECTION AND STATISTICS
Shenzhen Chronic Disease Prevention and Treatment Center
approved the study collected children’s oral images from 4
public primary schools for caries diagnosis on the first per-
manent molar. We assemble a children’s oral images database
consisting of a total of 1,368multi-view oral images from 342
children. Each belongs to one of four standard image types:
left mandible, right mandible, left palate, and right palate,
as shown in Fig. 1. Note that, some images might contain
multiple first permanent molars. To facilitate applications
such as caries detection and assessment system, we converted
the diameters of the first permanent molars into bounding-
boxes. Based on theWHO’s basic methods and the diagnostic
standards, each first permanent molar was manually labeled
as normal or abnormal by board-certified dentists from our
institution. To investigate the types of observations present
in the dataset, we reviewed the collected image to manually
label 1,451 normal findings and 187 abnormal findings. The
collected images vary in resolution and aspect ratios. We split
the dataset into training set (242 children, 1,052 images) and
test set (100 children, 316 images). There is no overlap in
children between any of the sets. Table 1 summarizes the
distribution of normal and abnormal findings in the proposed
Child-OID database.

B. DATA AUGMENTATION
CNN-based models have performed remarkably well on
many computer vision tasks. However, they are heavily
reliant on large amounts of data to avoid overfitting, espe-
cially for the small sample size of data. In our work, we also
perform data augmentation, a data-space solution to the prob-
lem of limited data. Specifically, we consider some simple
strategies such as up-down and left-right flip operations to
triple the size of training set such that a better diagnostic
model can be built using them.
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C. THE CHALLENGES OF CHILD-OID
As shown in Fig. 3, our Child-OID database inevitably suffers
from the problem of shadow and occlusion, which further
increases the difficulty of detection. In detail, about 8 percent
of first permanent molars are covered by shadow since they
completely located deep within oral. Besides, about 5 percent
of first permanent molars occluded-with the tongue or the
saliva. The sample images of shadow and occlusion in our
Child-OID database are shown in Fig. 4.

FIGURE 3. The proportion of normal, shadow, and occlusion in the
proposed Child-OID database.

FIGURE 4. Illustration of examples of shadow (a) and occlusion
(b) images the proposed Child-OID database.

V. EXPERIMENTS
In this section, we first describe the implementation details
and evaluation metrics used in our experiments. Then we
evaluate the performance of the proposed UCDA frame-
work on our Child-OID database compared to current

state-of-the-art object detection algorithms. Finally, some
qualitative results are presented.

A. IMPLEMENT DETIAILS
In our experiments, the feature extractor is initialized as the
pretrained ResNet-50 model. The proposed UCDA frame-
work is conducted by using the deep learning toolbox
PyTorch and runs on one Nvidia Titan XP GPU with 12 GB
memory. The biases and weights of region regression sub-
network are initialed with 0. And the biases of region clas-
sification sub-network are the same as the region regression
module. In the training phase, we set the min-batch size to 1
and the initial learning rate is set to 1e-6, which is decreased
10 times every 10 epochs. And we use Adaptive Moment
Estimation (Adam) as our parameter optimizer. In reference,
we empirically set the non-maximum suppression threshold
to 0.05 and our framework mainly outputs predicted bound-
ing boxes and corresponding scores.

B. EVALUATION METRICS
Follow the evaluation indicators in the medical image
domain, in this paper we consider the detection accuracy, sen-
sitivity, and specificity as our evaluation metrics to verify the
performance of the proposed UCDA framework. These met-
rics are associated with four values, i.e., true-positive (TP),
true-negative (TN), false-positive (FP), and false-negative
(FN), which are defined as below:

Accuracy =
TP+ TN

TP+ FP+ FN + TN

Sensitivity =
TP

TP+ FN

Specificity =
TN

FP+ TN
(2)

C. PARAMETER ANALYSIS
In this section, we mainly analyze the impact of parameters
on our framework’s performance. We perform evaluations of
parameter analysis from three aspects, including the influence
of the depth of ResNet, and the sensitivity parameters α and γ
in the loss function.

1) EVALUTAION ON THE DEPTH OF ResNet
The depth of ResNet is the key to feature extractor in our
proposed UCDA framework and it determines the qual-
ity of the feature map. The deeper network will generally
obtain higher quality feature map but might suffer from the
problem of under-fitting. In our experiments, we conduct
comparisons between different ResNet layers for teeth fea-
ture extraction, including ResNet-18, ResNet-34, ResNet-
50, ResNet-101 and ResNet-152. As shown in Fig. 5, our
proposed UCDA framework achieves the best performance
on Child-OID when we adopt the ResNet-50 as the feature
extractor.
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TABLE 2. The comparison results of different caries detection methods in the proposed Child-OID database. All results were analysed in percentage (%)
terms.

FIGURE 5. Comparison of detection accuracy with different depths of
feature extractor.

2) EVALUATION ON PARAMETER α
The value α in (1) aims to control the weights of abnormal and
normal samples. By fixing other parameters, we conduct our
loss function with a range of different value α, i.e., α ∈ {0.1,
0.15, 0.2, 0.25, 0.3, 0.35}. It is clear that the performance
of the proposed UCDA framework is limited by the weights
of abnormal samples when the threshold α is too small.
As shown in Fig. 6, the experimental results evaluated on
Child-OID show the best setting of α for our framework is
0.25.

FIGURE 6. Comparison of detection accuracy with different values α.

3) EVALUATION ON PARAMETER γ
The value γ in (1) is designed to balance the influence
between the hard-classified and easily-classified samples.

FIGURE 7. Comparison of detection accuracy with different values γ .

To determine the optimal value of γ , we first fix other param-
eters and then study how the accuracy score of the proposed
UCDA framework changes with a range of different values
of γ , i.e., γ ∈ { 0.5, 1, 1.5, 2, 2.5, 3.0}. As shown in Fig. 7,
we can see that the proposed UCDA framework achieves the
best performance when the value of γ is set to be 2.5.

D. COMPARISON WITH STATE-OF-THE-ART BASELINES
To evaluate the performance of our UCDA method on the
diagnosis of dental caries task, we further perform the exper-
iments on our newly introduced Child-OID dataset. In the
experiments, we compared the proposed UCDAmethod with
some state-of-the-art baselines, including YOLO [33], [35]
and SSD [34], [37]. The comparative results are presented
in Table 2.
From Table 2, we have the following observations. 1) The

proposed UCDA framework comprehensively improves the
caries detection performance on the first permanent molar
of children in terms of accuracy, sensitivity, and specificity.
In particular, it can achieve the highest accuracy of 95.25% on
our Child-OID dataset, which demonstrates the effectiveness
of our method. 2) Moreover, the proposed UCDA framework
is obviously superiors to the YOLO networks, improving
the accuracy score from 90.35% to 95.25%. 3) Benefitting
from the advantages of one-stage object detection algo-
rithms, DSSD can achieve reliable performance, surpassing
the SSD by 1.56% in terms of accuracy. Although mak-
ing some progress, our method consistently outperforms
these aggregated results, especially for detection accuracy
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FIGURE 8. The diagnostic results of the proposed UCDA framework for dental caries detection on the children’s first permanent molar. In this figure,
the red boxes denote the predicted bounding boxes and the green boxes indicate the ground-truth boxes/labels.

(95.25% vs. 93.12%), the sensitivity (89.83% vs. 87.39%),
and specificity (96.10% vs. 94.34%) with improvements of
over 2.0 percent. Given the above comparative results, we can
conclude that the proposed UCDA framework contributes
a new technique to the diagnosis of dental caries on the
Children’s first permanent molar.

E. QUALITATIVE RESULTS
Fig. 8 illustrates the intuitive presentations of the first perma-
nent molar caries detection. As shown, the proposed UCDA
framework shows a satisfactory diagnosis effect in the diag-
nosis of dental caries on the children’s first permanent molar.
In particular, our method can effectively distinguish the dif-
ferent types of first permanent molars from the global oral
image and correctly judge dental caries, which again verifies
the feasibility of our method.

VI. CONCLUSION AND FURTHER WORK
In this paper, we propose a unified caries detection and assess-
ment (UCDA) framework that is of the advantages of low
cost and high performance for the diagnosis of dental caries
on the children’s first permanent molar. Moreover, we also
present a novel children’s oral image database with standard
diagnostic annotations and labels, which we term the ‘‘Child-
OID’’. Our Child-OID is the first benchmark image dataset
for children’s dental caries diagnosis. Extensive experiments
on Child-OID demonstrate the effectiveness of the proposed
UCDA framework in comparison with some state-of-the-
art baselines. In the current epidemic of COVID-19, our
work undoubtedly facilitates the application of automated
caries diagnosis system and improves the physical andmental

health of children. In our future work, we would expand the
proposed UCDA method toward the caries detection for all
the teeth, which can further boost the development of the
automated caries diagnosis system.
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