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ABSTRACT We report Lobachevsky University Database (LUDB) of ECG signals, an open tool for
validating ECG delineation algorithms, that is superior to the existing publicly available data bases in several
aspects. LUDB contains 200 recordings of 10-second 12-lead electrocardiograms (ECG) from different
subjects, representative of a variety of signal morfologies. The boundaries and peaks of QRS complexes and
P and T waves are manually annotated by cardiologists for all recordings and independently for each lead,
and all records received an expert classification by abnormalities. We present a case study for the recently
proposed wavelet-based algorithm and the broadly used ecg-kit tool, and demonstrate the advantage of multi-
lead ECG data analysis. LUDB contributes to the diversity of public databases employed in developing
and validating novel ECG analysis algorithms, including the most advanced based on deep learning neural
networks.

INDEX TERMS Database, delineation algorithm, electrocardiogram.

I. INTRODUCTION
Recording the electrical activity of heart, or electrocardio-
graphy, is one of the basic medical diagnostic means for
assessing cardiac activity, in particular, determining the heart
rate and rhythm disturbances. The voltage graphs – elec-
trocardiograms (ECGs) manifest repeated activity with the
commonly identified structural elements of each heart beat
image: QRS complex, P and T waves (Fig. 1). Analysis
of their amplitudes, shapes (morphologies) and durations
allows for identifying cardiac rhythm disorders and cardio-
vascular diseases, such as ischemia and myocardial infarc-
tion [1]. A rich variety of signal morphology, accompanied
by their non-stationary nature, potential defects in record-
ings and noise, makes an automated search for these waves
and complexes, also known as ECG delineation (also known
as ECG segmentation or ECG annotation), a challenging
task.

This problem has been tackled for quite a while, resulting
in a number of algorithms that solve it at different level
of detail. The first ones were designed to detect the QRS
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FIGURE 1. ECG signal. Schematic representation of the QRS complex and
P, T, U waves. U wave may not always be observed due to its small size.
Its exact source remains unclear.

complex only, referring on the amplitude of the ECG signal
and its first derivative [2]. Detecting boundaries and peaks of
P and T waves required more sophisticated methods based
on wavelet transform [3], [4], Hilbert transform [5], phasor
transform [6], hidden Markov models [7], gradient based
algorithms [8] and morphological transforms [9].
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Validating delineation algorithms requires standardized
datasets with complexes and waves that are manually anno-
tated by specialists. Increasing their number and variety is
crucial itself, for both better training and testing robustness
of developed methods. Moreover, several collections that are
currently available in the public domain: MIT-BIH Arrhyth-
mia Database [10], European ST-T Database [11], and QT
Database [12], have certain limitations. That is, MIT-BIH
Arrhythmia Database and European ST-T Database have a
markup only for QRS complexes. In turn, the QT Database
contains annotations for P, QRS and T waves, but has only
2-lead Holter recordings, and is, therefore, not suitable for
validating multilead delineators, which are currently the most
common approach.

ECG database assembled at Lobachevsky University
(LUDB) is free from these issues. The reported database
consists of 200 recordings of standard 10-second 12-lead
recordings [13] from different subjects, representing a variety
of signal morphologies. The boundaries of P, QRS and T
complexes at each lead are manually annotated by cardiol-
ogists for all 200 records, and each subject is supplemented
with noticed abnormalities (same as in the other studies,
we skip U-wave due to its small amplitude and noise issues).
The overall number of annotated complexes in LUDB con-
siderably exceeds that in QTDB. Altogether, these features
make LUDB a valuable contribution to the current publicly
available sources.

As the case study, wemade use of this dataset for validating
our recent algorithm [14], that implements wavelet transform
for multi-lead multi-morphology analysis with error correc-
tion, and make a comparison to the popular ecg-kit tool [15],
which employs one of its predecessors, a single-lead delin-
eator [4]. Expectedly, the results demonstrate a comparable
performance of both for QTDB and a noticeable improvement
of delinearing P and T waves for LUDB achieved by the
former algorithm.

We note that there are many recent studies related to
the ECG processing including disease detection, delineation,
sleep staging, biometric human identification, denoising, and
others (see recent overview [16]). In this article, we only
focus on the task of ECG delineation. The solution to this task
can be used to solve other problems, in particular, the disease
detection. On the other hand, using standard annotations and
expert features not always be the best choice. Automatically
generated features (such as deep learning features) can be
more informative than the expert features. In particular, there
have been noticeable successes in the problem of automatic
recognition of cardiac diseases using sparse representation of
ECG [17], using deep learning generated features [18], [19],
combination of artificial intelligence methods and linear and
non-linear decomposition [20], different feature extraction
methods with machine learning algorithms [21], different
end-to-end ECG deep learning classifiers, e.g. [23], [24], etc.

The paper is organized as follows. In Section II,
we describe the LUDB database. Section III contains an
outline of the delineation algorithm [14]. A case study of its

TABLE 1. Comparative numbers of annotated waves in QTDB and LUDB.

validation with LUDB and QTDB is reported in Section IV.
Section V summarizes the results and perspectives.

II. LOBACHEVSKY UNIVERSITY DATABASE
A publicly available Lobachevsky University Database [25]
contains 200 records from 200 subjects in wfdf format [26].

The ECGs were collected from healthy participants and
patients of the Nizhny Novgorod City Hospital No.5 in the
period 2017–2018with various cardiovascular diseases, some
of them had pacemakers. The records were made by special-
ized medical staff (functional diagnostics nurses). All partici-
pants provided informed written consent before participating
in the experiment. The age of subjects varied from 11 to
90 years, with the average 52 years, the distribution by gender
was 85 women and 115 men. Table 2 reports the breakdown
by the type of rhythm and Table 3 by the type of heart
electrical axis. These parameters are specified for all records
in the database.

TABLE 2. Breakdown in heart rhythm types, represented in the database.

TABLE 3. Breakdown in types of electrical axis, represented in the
database.

ECG recordings were obtained by the Schiller Cardiovit
AT-101 cardiograph [27], with conventional 12 leads (I, II, III,
aVR, aVL, aVF, V1, V2, V3, V4, V5, V6), the duration is
10 seconds, the signals are digitized at 500 Hz, complying
with the international standard [13].

The boundaries and peaks of QRS complexes, and
P and T waves were determined by two certified and practic-
ing cardiologists (A.V.N. and K.A.K.) by an eye inspection
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TABLE 4. Breakdown in cardiovascular disorders, represented in the
database (conduction abnormalities, extrasystole, hypertrophy, cardiac
pacing).

of each ECG signal and independently for each of 12 leads.
The markup of all ECG forms was joint, relying on standard
criteria [28] and based on consensus opinion, as well as
classification of abnormalities. This approach was chosen as
to decrease subjective influence and provide the end user with
a definite annotation. The recordings and markup files in the
database come separately, and are open for download and
further independent exploration, in particular, with regard to
assessing variability in expert opinion. In total, the dataset
contains 58429 annotated waves, that is almost six times
greater than in the widely referred QT database (Table 1),
which is the only publicly available database with all the
waves annotated, to the best of our knowledge.

Tables 4, 5 summarize the content of the database by main
ECG abnormalities and their count. Note that some patients
would have several issues at the same time.

Examples of ECG with manual annotations are on
Figures 2–6.

TABLE 5. Breakdown in cardiovascular disorders, represented in the
database (ischemia, repolarisation abnormalities).

III. DELINEATION ALGORITHMS
Testbed delineation tools [14], [15] belong to the family
of methods based on discrete wavelet transform (DWT)
[4], [29]–[31], that stems from the pioneering work by
Li et al. [3]. Commonly, a single-lead ECG signal x[n] is
decomposed into different frequency components by means
of standard filters, Daubechies, Coiflet or biorthogonal
wavelets, to name a few, as follows:

A [k] =
∑
n

x [n] · h [2k − n] , (1)

D [k] =
∑
n

x [n] · g [2k − n] , (2)

where h [n] is the low-pass filter, g [n] is the high-pass fil-
ter, D [k] and A [k] are the resulting approximation coeffi-
cients, respectively. A more detailed representation of the
frequency content of ECG signals is obtained by repeated
DWT, applied to approximation coefficients, calculated at
the previous round, according the general scheme shown in
the Fig. 7.

The popular ecg-kit tool [15] is based on a single-lead
delineation scheme [4]. In the following we discuss the solu-
tions of [14] that allow for improving delineation accuracy
of all waves and complexes, in particular, P and T waves.
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FIGURE 2. Example of ECG from LUDB, id = 1, age: 51, sex: F. Yellow color corresponds to P waves, red to QRS complexes, green to T waves. The symbol
B means the onset of a wave, ◦ means the wave peak, C corresponds to the offset of a wave. Sinus rhythm. Sinus bradycardia. Electric axis of the heart:
left axis deviation. Left ventricular hypertrophy. Left ventricular overload. Non-specific repolarization abnormalities: posterior wall.

FIGURE 3. id = 7, age: 50, sex: M. Sinus rhythm. Electric axis of the heart: horizontal. Atrial extrasystole: SA-nodal extrasystole. Atrial extrasystole, type:
single PAC. Left atrial hypertrophy. Right atrial overload. Left ventricular hypertrophy. STEMI: anterior wall. STEMI: lateral wall. STEMI: septal.
STEMI: apical.

A comprehensive analysis of multi-lead recordings and error
correction procedures stand central here.

The developed delineation method consists of several
stages. Delineation of each type of waves is first implemented
for all ECG leads independently, and in particular order.
Then, the results are refined by aggregating and comparative

processing of signals from all leads. The general scheme of
the algorithm is outlined in the Fig.8.

The algorithm receives a raw ECG signal as an input, that
is first preprocessed. Bandpass filtering removes the baseline
drift and the high-frequency noise that can be caused by the
muscle tone, interference from electrical appliances, poor
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FIGURE 4. id = 8, age: 57, sex: F. Atrial fibrillation. Electric axis of the heart: left axis deviation. Undefined ischemia/scar/supp.NSTEMI: anterior wall.
Undefined ischemia/scar/supp.NSTEMI: lateral wall. Undefined ischemia/scar/supp.NSTEMI: septal. Undefined ischemia/scar/supp.NSTEMI: apical.
Pacemaker presence, undefined. UNIpolar ventricular pacing.

FIGURE 5. id = 103, age: 69, sex: M. Atrial flutter, typical. Electric axis of the heart: horizontal. Non-specific intravintricular conduction delay. Left
ventricular hypertrophy.

contact between electrodes and skin, etc. Next, a discrete
wavelet transform is applied to the filtered signal, yielding a
set of detailed coefficients at different frequency scales. The
following analysis relies on these sets obtained for ECG from
each lead.

Identifying waves and complexes of the ECG signal
takes place in a specific order: QRS complex, T-wave, and

then P-wave. QRS complex is detected first, since it typically
has the largest amplitude, which simplifies the task. Then,
T-wave is located, as its amplitude is usually greater than
that of P-wave. Delineation of P-wave is viewed as the most
complex task by both the cardiologists and mathematicians
[4], [30]. The amplitude of this wave often compares to
noise or flutter, so that a quality detection procedure has to
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FIGURE 6. id = 106, age: 64, sex: M. Sinus rhythm. Electric axis of the heart: left axis deviation. Ventricular extrasystole, localisation: RVOT, antero-septal
part. Ventricular extrasystole, type: single PVC. Left atrial hypertrophy. Left ventricular hypertrophy. Scar formation: posterior wall. Non-specific
repolarization abnormalities: lateral wall.

FIGURE 7. Filter bank for a discrete wavelet transform. General scheme
for DWT decomposition.

rely on restricting the temporal interval of interest from both
sides, by QRS complex and T-wave.

Processing each type of wave has a similar pipeline. First,
the algorithm explores ECG signal from each lead separately.
It selects the best candidates for the corresponding wave,
then determines its peak and boundaries. The algorithm by
Kalyakulina et al. [14] implements yet another feature, clas-
sifying the morphology of the detected wave by determining
reference points (onsets, peaks, ends). Matching them to
model cases gives a much more advanced diagnostic infor-
mation than duration and amplitude values would offer. The
particular morphologies of the QRS complex, recognized by
the algorithm, are shown in the Fig. 9. Orientation of the
complex, its extremal points, the number of additional peaks
or, conversely, the lack of some, are key to the diagnostic
process, detecting cardiac arrhythmias or the presence of
cardiovascular diseases.

FIGURE 8. General scheme of the ECG delineation algorithm. (left) Main
pipeline of the delineation algorithm consists of four stages, starting
from the raw ECG signal. (right) Description of delineation steps, used for
QRS, T and P waves.

After all waves of a certain type are found for the outputs
from all leads, the algorithm performs a comparative analysis,
aimed at correcting omissions or spurious waves, appearing
in recordings for certain leads. As a formal validity threshold
for a complex occurrence, we require its presence in at least
8 out of 12 leads. That is, if for some heartbeat the T-wave
is detected for 10 leads out of 12, then it is taken that this
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TABLE 6. Quality of delineation algorithms validated on LUDB and QTDB. Best values of Se and PPV for each key point on QTDB are in bold.

FIGURE 9. Examples of QRS complex morphologies present in LUDB.
There are many different morphologies of the QRS complex, which can
indicate the presence of various cardiovascular diseases. Their
classification constitutes a challenge for automatic delineation.

wave is also present for the other two leads. Conversely, if the
complex is found in at most one third of the total number
of leads, then it is retracted from delineation. We don’t use

the multilead correction if the complex was detected on
5. . . 8 leads. Additionally, averaging the times of the corre-
sponding reference points for the matching complexes across
the leads reduces the effect of noise and other disturbances.
After this multi-lead correction, delineation steps down to the
subsequent wave, taking an advantage of adjusted locations
of preceding waves.

Instructively, some failures in the single-lead signal pro-
cessing are apparently due to alternating morphologies of
a complex in the ECG signal, which the adaptive detection
threshold does not follow efficiently enough [14]. However,
when the complexes are missed in less than one third of leads,
their delineation is also restored by the multi-lead analysis,
as exemplified in Fig. 10, and a corresponding morphological
anomaly is noted down.

IV. ALGORITHM VALIDATION
We validate the described tools [14], [15] with two open
access datasets, the newly introduced LUDB and QTDB [12],
both manually annotated by cardiologists, but distinct in the
number of leads (12 and 2, respectively), number of subjects
(200 and 105) and duration of recordings (10 and 15 seconds).
The reference points of complexes found by an automated
delineation are checked against the manually marked ones,
the chosen tolerance window interval of 150 ms complies
with ANSI/AAMI-EC57:1998 standard [32].

When an algorithm determines a point correctly (i.e. within
the 150 ms interval of a manual point), it is counted as
true positive (TP). Likewise, when a point suggested by
the algorithm is absent in the manual markup, the case is
counted as false positive (FP). If the algorithm fails to iden-
tify the point, which is present in the database, the case is
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FIGURE 10. Multi-lead refinement of delineation. Gray frames show the complexes, which fall short of the single lead
analysis, but are recovered by the multi-lead refinement. For each missed complex the averaged value for the start and the
averaged value for the end of the complex were found. The averaging is performed over those leads, where the complex is
found. The global extremum in this interval (from the average start to the average end) is considered as the peak of the
complex.

false negative (FN). For TP cases one also calculates a time
mismatch between the automated and manually assigned
locations, and this quantity is referred to as ‘‘error’’. The
quality of the algorithm is characterized by the following
four metrics, implemented in [4], [30], [31], [33]: aver-
age error m, its standard deviation σ , sensitivity Se(%) =
TP/(TP + FN ), and positive predictive value (precision)
PPV (%) = TP/(TP + FP). For Kalyakulina et al. method,
all these quantities are computed based on the set that is
pooled from the point-to-point match analysis in each single
lead.

Table 6 summarizes the assessment of the two tools
[14], [15] against LUDB an QTDB, and gives validation data
for the other methods against QTDB, borrowed from the
literature [4], [30], [31], [33], and against LUDB [34].

In result, for both LUDB and QTDB, the sensitivity values
for the onsets and peaks of the P, QRS and T waves are
above 97%, and the standard deviation σ is almost within the
limits set by the standard [35]: it must be at most 2σCSE. The
exceptions are the P wave onset for QTDB, where σ is 3 ms
larger, and QRS onset for both databases, where σ is 1.2 ms

larger for LUDB and 0.1 ms larger for QTDB. The maximal
error is observed for the T-wave offset, whose delineation is
a well-known hard problem, both from the mathematical and
for the cardiological perspectives [36]. For the QRS com-
plex, a relatively simple task, the performance of all meth-
ods is next to perfect, with occasionally slightly worse rate
for the method by Kalyakulina at al. The more challenging
task of detecting P and T waves is performed also almost
equally well by all methods on QTDB, but the method by
Kalyakulina et al. substantially outperforms ecg-kit for
LUDB. This is an anticipated result, since the former method
takes the full advantage of LUDB 12-lead format, that allows
to reduce detection failures and appearance of spurious com-
plexes, and to improve an accuracy of timing the key points
by the multi-lead refinement of delineation.

QTDB can be used to validate different methods for ECG
delineation, as well as to train new deep learning algorithms
for delineation. We believe that architectures like U-net [37]
will allow achieving better results than known algorithms. For
some preliminary results from using QTDB to train U-net-
like network, see [38].
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V. CONCLUSION
Despite an urgent need in thoroughly annotated and open
datasets of human ECGs to serve testbeds for delineation
algorithms, the offer remains quite limited [10]–[12]. More-
over, each case comes short of having multi-lead recordings,
a standard output for modern hospital cardiographs, and a
manual expert markup of all kinds of waves (P, QRS, and T).
Ideally, the recordings would be supplied with diagnosis or a
note on abnormalities in ECG, that additionally enables train-
ing and validating the algorithms for an automated identifica-
tion of possible pathology.

The presented Lobachevsky University Database is a step
to fill the existing gap. Openly accessible at Lobachevsky
University website and available on PhysioNet [25], it con-
tains 12-lead ECG recordings for 200 subjects (hospital
patients and participants without a history of complaints)
in wfdb (PhysioNet) format, manually annotated (except for
U-waves) and suppliedwith noticed abnormalities.Moreover,
it offers a variety of complex morphologies to chal-
lenge delineation algorithms. A case study that employed
ecg-kit [15] and our recently developed delineation algo-
rithm [14] demonstrates how one can take a full advantage
of multi-lead recordings to implement error corrections in
signals from separate leads, and improve recognition of
complex wave morphologies, as well as precision of timing
for delineation points, as compared to the performance on the
2-lead dataset. The further extension of LUDB, that would
not simply enrich the base, but will make it suitable for
exploring machine learning and neural network algorithms
for an automated diagnosis, is to follow. It would be also
important to receive independent manual delineations by the
other experts.

Our results confirm that some delineation tools can have
a considerably different performance on different datasets.
Different instrumental origin of ECG is only one, and prob-
ably a minor reason for that. The inevitable variability in
individual expert opinion on delineation and diagnosis could
give a much greater impact, both at the validation stage and
for the end use. However, one still lacks enough data to
evaluate and accommodate this issue. Admittedly, the future
quality assurance of delineation algorithms will emphasize
the robust albeit next to perfect performance over a wealth of
datasets, rather than maximizing it against a given example.
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