
Received September 12, 2020, accepted October 4, 2020, date of publication October 6, 2020, date of current version October 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029190

Automatic Mobile App Identification From Encrypted
Traffic With Hybrid Neural Networks
XIN WANG 1, SHUHUI CHEN1, AND JINSHU SU 1,2, (Senior Member, IEEE)
1College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
2National Key Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China

Corresponding author: Xin Wang (wangxin09@nudt.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2018YFB0204301.

ABSTRACT The proliferation of handheld devices has led to an explosive growth of mobile traffic
volumes on the Internet. Identifying mobile apps from network traffic has become a crucial task for mobile
network management and security. Traditionally, the design of accurate identifiers relies on the deep packet
inspection (DPI) techniques. However, such approaches have become less effective with the raising adoption
of encrypted protocols in mobile applications (mostly TLS). To address the problem, various machine
learning methods have been studied and used. Most of them use linear classifiers on top of hand-engineered
features, which are unreliable due to the complexity of mobile traffic. In this article we propose App-Net,
an end-to-end hybrid neural network for mobile app identification from encrypted TLS traffic. App-Net is
designed by combining RNN and CNN in a parallel way and can automatically learn effective features from
raw TLS flows. With coordinated fusion and optimized training, the hybrid and multimodal architecture
is able to characterize both flow sequence patterns and app signatures to learn a joint flow-app embedding.
We evaluate App-Net on a real-world dataset covering 80 apps. The results show that our method can achieve
an excellent performance and outperform the state-of-the-art methods.

INDEX TERMS Mobile app identification, encrypted traffic classification, neural network, deep learning.

I. INTRODUCTION
In order to gain visibility and control over applications
traversing the network, network operators need to identify
an application by the traffic it generates. The problem of
associating traffic flows with the applications that generated
them is called traffic classification [1]. It is instrumental to a
number of activities that are of extreme interest to carriers
or enterprises, from service differentiation (e.g., policing,
QoS, etc.) to security operations (e.g., firewalling, filtering,
anomaly detection, etc.). With the massive adoption of hand-
held devices, the nature of traffic on the network has greatly
changed. Traffic classification is frequently considered in
mobile settings which includes identification of mobile apps
from their communication traffic (APP-ID). Since the appli-
cations and services that an individual uses on a mobile
device can provide valuable profiling information, APP-ID
also brings about privacy implications [2]. The technique
can be exploited by an adversary for malicious purposes

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Khalil Afzal .

like recognizing potentially sensitive or vulnerable apps.
With the problem of APP-ID receiving increasingly atten-
tion, there has emerged considerable related works in recent
years [2]–[18].

Traditionally, accurate traffic classification is performed
by payload-based classifiers developed on Deep Packet
Inspection (DPI) techniques [19]. The classifier is embedded
in a rule-based matching algorithm deployed in a DPI engine,
which associates each flow with a classification label by
matching it against a database of characteristic signatures.
Such DPI-based methods are popular and widely used in
practice. They can apply to APP-ID as well, since most
mobile apps are web applications and can leave invari-
able signatures in payloads that allow app identification.
Numerous studies have attempted to find reliable identifiers
of mobile apps [4]–[8], [20]. However, the effectiveness
of their findings is weakened by the increasingly compli-
cated mobile app features like the use of content deliv-
ery networks (CDN), the prevalence of sharing behaviors,
and most importantly, the massive adoption of encrypted
protocols [14].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 182065

https://orcid.org/0000-0002-2208-1433
https://orcid.org/0000-0001-9273-616X
https://orcid.org/0000-0002-6161-1310


X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

With the public awareness of the need for encryp-
tion heightened, there has been a push for deployment of
encrypted protocols on mobile devices to secure sensitive
information. BothAndroid andApple platforms have adopted
policies that encourage encryption (TLS especially) and pre-
vent insecure network connections [21], [22]. Hence we
can find that encryption has been used by more and more
mobile services and applications: recent estimates suggest
80% of Android apps are encrypting traffic with TLS by
default, a proportion expected to increase to 90% for apps
targeting Android 9 and higher [21]. The increasing preva-
lence of encryption on the mobile network has necessitated
a paradigm shift in the way we analyze mobile traffic. DPI-
based methods, on which the prevailing traffic classification
systems heavily rely, are of little use when payloads are
encrypted.

For a long time, machine learning (ML) methods have
become the mainstream technique for encrypted traffic clas-
sification in academia [23]. Such methods exploit a variety
of flow-level measurements [24] to characterize the traffic
of different applications in particular ML algorithms, which
usually involves feature engineering and model training. Fea-
ture engineering is the process of transforming raw data into
features that better represent the underlying problem to the
predictive models. While vital to the performance of the
models, it is costly with the requirements of careful engineer-
ing and considerable domain expertise. Feature engineering
is even more important in the context of mobile networks,
as mobile traffic is usually fast-evolving, noise-prone and
exhibits non-trivial spatial/temporal patterns [25]. Although
there have been several successful ML-based methods for
APP-ID [9]–[11], [26], they are inseparable from refined
hand-engineered features which are hard to obtain, unstable
and prone to obsolescence.

In recent years, deep artificial neural networks (ANNs),
also known as deep learning (DL), have shown remarkable
power in a wide spectrum of domains [27]. Networking
researchers are also beginning to explore its potential to
solve the traffic classification problem. The key advantage of
DL over traditional ML is the ability to learn good features
automatically from raw data without feature engineering.
Given a lot of labeled data, DL models can be designed
end-to-end (E2E) for better performance, which replaces
the hand-engineered pipeline with a single learning algo-
rithm so that it goes directly from the input to the desired
output. Two mainstream architectures in DL, convolutional
neural network (CNN) and recurrent neural network (RNN),
have been exploited in the task of traffic classification [12],
[13], [28]–[32]. RNN, particularly the long short-term mem-
ory (LSTM) network, works well on time series data with
long-term dependencies, while CNN excels at extracting
location-independent spatial structure from raw data.

In this article, we focus on mobile app identification from
encrypted TLS traffic with DL approaches. Due to the rich
characteristics of TLS protocol, multiple statistical or pay-
load fingerprints that allowing APP-ID can be derived from

TLS sessions. For example, the packet length from a TLS
session naturally forms sequences which hold distinctive
information of a mobile app, such as message types and
certificate length. Besides, the payload data during the initial
TLS handshake usually contains plaintext fields like cipher
suites and extensions, which can also help to fingerprint an
app service. Previously proposed methods mainly center on
designing different models to take advantage of TLS data
from one side [32]–[36]. Therefore, it is highly desired to
develop a systematic way to model more aspects of TLS data
from raw traffic, which we believe advanced multimodal and
hybrid DL architectures would be suitable.

To this end, we propose an end-to-end hybrid neural net-
work, referred to as App-Net. By combining recurrent and
convolutional neural networks together, it can learn different
aspects of the TLS data in a multimodal way and identify
mobile app from raw traffic more effectively. In particular,
App-Net consists of an LSTM recurrent neural network to
learn effective features from raw flow sequences, a convo-
lutional neural network to extract byte signatures from the
initial TLS packet payload, and a feature fusion stage to learn
coordinated and joint representations to take advantage of
both features drawn from RNN and CNN. Such represen-
tations are used for APP-ID in the end. The experimental
analysis on real world dataset demonstrates that App-Net
outperforms separate RNN or CNN as well as a variety of
state-of-the-art methods in term of classification accuracy and
F1 score.

The rest of the paper is organized as follows. Section II
reviews the related literature from two aspects. Section III
presents the preliminaries of this work and Section IV
describes the proposed App-Net framework in detail. The
experimental results are reported in Section V and the paper
is concluded in Section VI.

II. RELATED WORK
There has been a plethora of work in the field of traffic classi-
fication. Here, we first give a review of recent achievements
focused on APP-ID. Furthermore, those efforts proposing
DL-based methods for traffic classification are discussed in
particular.

A. TRAFFIC CLASSIFICATION FOR APP-ID
The research on APP-ID mainly falls into two cate-
gories under different assumptions: (1) unencrypted traffic,
(2) encrypted traffic. For the first case, researchers don’t take
encrypted traffic into consideration by default and basically
focus on how to extract or generate reliable identifiers of
mobile apps.With such identifiers, APP-ID can be performed
using DPI-based methods. Most of the identifier discovery
techniques are based upon direct analysis of app traffic,
assuming that the mobile traces are already given or gener-
ated from automatic UI exploration techniques [4]–[6], [20].
Some others collect app packages for static analysis to guide
the identifier discovery, enabling APP-ID in a massive scale
[7], [8]. However, all above cases do not deal with encrypted

182066 VOLUME 8, 2020



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

traffic about which the second category of research cares
most. Our work falls into this category.

Previous works dealing with encrypted mobile traffic
mostly adopt ML techniques. Wang et al. [9] propose a sys-
tem to identify mobile apps from encrypted wireless traffic.
They collect data from 13 arbitrarily chosen apps by running
them dynamically and training a Random Forest (RF) classi-
fier with features extracted from the 802.11 frames. Similar
to this work, Taylor et al. propose AppScanner to fingerprint
and identify smartphone apps from their encrypted network
traffic [2]. They further attempt to improve the framework
by introducing an approach to separate ambiguous traffic
ahead at the cost of reducing classified flows [10]. For eval-
uation, they build datasets from a much larger app set that
covers 110 apps and use a demultiplexing technique to obtain
accurate ground truth. With 54 refined statistical features,
the trained RF classifier can have a best accuracy of 73.7%,
which still exhibits non-negligible performance degradation
compared to the average in traditional traffic classification.
Alan and Kaur [17] investigate whether Android apps can
be identified from their launch time network traffic using
only TCP/IP headers. They find that popular Android apps
can be identified with 88% accuracy by using the packet
sizes of the first 64 packets generated on the same device.
Aceto et al. [11] propose a multi-classification approach of
intelligently combining outputs from state-of-the-art classi-
fiers to improve the performance of APP-ID. The perfor-
mance can be improved according to all considered met-
rics, up to +9.5% recall score with respect to the best base
classifier. Recently, Aceto et al. [12] investigate a variety of
DL-based traffic classification architectures and try to apply
them for APP-ID. They believe DL may be the steppingstone
toward high-performing traffic classification in the dynamic
and challenging mobile context. They further propose and
validate a general framework for DL-based APP-ID [16]
and introduce a novel multimodal DL framework which is
able to capitalize traffic data heterogeneity [15]. This new
framework provides an implementation of combining CNN
and RNN together which is like our work. However, it pays
little attention to the modality fusion strategy and the
two-stage training process is costly.

On the whole, the state-of-the-art solutions on APP-ID
considering encrypted traffic have changed from traditional
ML techniques with various handcrafted features to the appli-
cations of DL methods. As an app’s real and comprehen-
sive network traces are hard to come by, simulators with
user interface (UI) fuzzing is often used for traffic collec-
tion [2], [10]–[12], [17], [26]. Even if real world dataset of
mobile apps can be achieved [4], acquisition of the ground
truth remains a difficult problem. Except for only a few
works [37], [38], the mobile traces are usually labeled by
approaches of unknown reliability.

B. DL-BASED METHODS IN TRAFFIC CLASSIFICATION
Recently, as much larger and much deeper neural networks
have shown impressive capability across a range of difficult

problem domains, researchers begin to apply deep learning
on traffic classification. The first successful attempt is intro-
duced in [28] by a security engineer. It focuses on Mul-
tilayer Perceptron (MLP) and Stacked Autoencoder (SAE)
with raw traffic as input. With the real world dataset collected
from enterprise network he shows that the deep learning
approach works well on the applications of feature learn-
ing, protocol classification and anomalous protocol detection.
Wang et al. [29] propose an end-to-end method of encrypted
traffic classificationwith one-dimensional convolution neural
networks (1D-CNN). They evaluate the model on the public
ISCX VPN-nonVPN traffic dataset and show that it can
achieve outstanding performance on both non-VPN and VPN
traffic, about 10% higher than the state-of-the-art method of
C4.5 decision tree in precision and recall. The same dataset
is also used in [31] where a framework embedding SAE
and CNN is proposed to classify network traffic. Differently,
it keeps the IP header and the first 1480 bytes of each IP
packet as input and perform classification at packet level. The
framework achieves F1 score of 0.95 in application identifica-
tion task and 0.97 in traffic characterization task. In addition
to CNN, RNN is also introduced for traffic classification
in [30]. It presents a technique based on both CNN and
RNN that can be used for Internet of Things (IoT) traffic.
In order to get better results, the authors try different set
of features which include header and statistic information
other than payloads. It is shown that port numbers play an
important role in IoT traffic classification which is intuitive
asmany services keep their assigned ports. In Liu’s work [32],
an encrypted traffic classifier with RNN is proposed and
further improved by a multi-layer encoder-decoder struc-
ture which can enhance the effectiveness of features. It out-
performs those state-of-the-art Markov models [33]–[35] in
experiments on a real world TLS dataset covering 18 applica-
tions. The DL practices in traffic classification mainly focus
on private or public datasets which rarely include mobile
traffic. Only recently did researchers design mobile traffic
classifiers via the adoption of DL methods [12]. Using self-
collected mobile datasets, Aceto et al. thoroughly evaluate
all previously proposed DL architectures (SAE, CNN, RNN,
etc.) with various inputs and find there is no ‘‘killer’’ archi-
tecture for APP-ID.

III. PRELIMINARIES
In this section we elaborate on some preliminary knowledge
of our framework. First we discuss the the traffic classifica-
tion object we used and give the problem definition of APP-
ID. Then we introduce our way of labeling data with ground
truth. Lastly, we briefly describe the constituent components
used in development of App-Net, namely LSTM and CNN,
respectively.

A. FLOW AND PROBLEM DEFINITION
A flow is a set of packets transmitted between two host
addresses using a particular protocol, and where appropriate
a particular pair of ports. The packets in a flow all share

VOLUME 8, 2020 182067



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

common characteristics which are known as the conventional
network five-tuple: the source and destination addresses,
the source and destination ports (for TCP and UDP traffic)
and the protocol number.While a flow is unidirectional, inter-
active network sessions usually involve bidirectional flows
which are either half- or full-duplex. A bidirectional flow,
also called a biflow, consists of a pair of unidirectional
flows whose source and destination addresses and ports are
reversed, and whose time spans overlap. In the context of
APP-ID, a biflow is the largest discrete traffic unit we can use
for classification, which requires the least effort to classify
the most traffic. Thus, we take it as our traffic classification
object.

In mobile network monitoring, it is undesirable to wait for
a long duration flow to finish. To avoid this indefinite wait for
flow data, we extract flows with a timeout approach: a flow is
created whenever it is inactive for an inactive_timeout period,
or whenever it is active for longer than an active_timeout
period. Here we use 10 seconds for inactive_timeout and
30 seconds for active_timeout.

With the flow definition we come to the problem definition
in this work. We follow the majority of prior works and for-
mulate encrypted traffic classification for APP-ID as a mul-
ticlass classification problem which only considers mobile
TLS traffic. The task is to perform a supervised multiclass
classification to find a function that maps a TLS biflow to a
mobile app that generated it. More formally, suppose a biflow
f that was created by an app a is an instance of the form
(f , a). Given a set of observed biflows from the network:
S = {(fi, aj) : fi ∈ F, aj ∈ A} where F is the set of unlabeled
biflows andA is the set of all possible apps that generate them,
the problem is to find a function g : F → A, such that each
unlabeled biflow fs ∈ F can be mapped to an app at ∈ A,
satisfying as much as possible that (fs, at ) ∈ S.

B. GROUND TRUTH ACQUISITION
Most previously proposed APP-ID solutions report perfor-
mance with results based on private datasets which are
labeled by approaches of unknown reliability
[4]–[6], [10]–[12], [20]. In order to obtain the ground truth
for real network traffic, the most common way is running
apps one by one separately and manually label the trace [11].
It is, however, not trusted due to the noise traffic generated by
system or background apps. Though some public tools may
aid the process of labeling, they are hard to use with the need
for root access [10]. Recently, two frameworks have been
proposed to tackle the problem of mobile traffic collecting
and labeling. Mobilegt [37] collects traffic trace and builds
ground truth with a remote VPN server which is connected to
all monitored devices, while MIRAGE [38] builds its capture
system on top of wire-connected and rooted devices. With
the drawbacks of VPN server as well as rooted phones,
however, the scalability of these solutions are restricted.
As their accurately labeled datasets are shared without raw
traffic trace, we did not take them into consideration.

FIGURE 1. The structure of NetLog.

In comparison with the mentioned solutions, we have also
overcome the obstacle of ground truth acquisition by only
developing and leveraging an Android app. This tool named
NetLog can help to collect smartphone’s traffic with accurate
app labels. It works by leveraging the Android VPN per-
mission to capture and analyze network flows locally on the
device and in user-space. Functioning as a local VPN server
on the phone, it becomes a middleware between all apps and
the network interface, as shown in Fig. 1. NetLog can create
logs for each app’s TCP/UDP communications from internal
app-UID mappings and export all raw traffic that generated
within a period into pcap files. The exported files and the
corresponding logs will be uploaded to a cloud server where
further analysis can be performed, including automatically
associating each flow with its generating app.

C. LONG SHORT-TERM MEMORY NETWORK
A recurrent neural network (RNN) is different from the
standard feedforward neural network architecture that it has
feedback connections, which makes it particularly suited for
modeling sequential phenomena. In practice however, learn-
ing long-range dependencies with a vanilla RNN is difficult
due to vanishing/exploding gradients [39]. Long short-term
memory networks (LSTMs) are explicitly designed to avoid
the long-term dependency problem. This is achieved by intro-
ducing a memory state and multiple gating functions, that
provide a memory-based architecture to control the write,
read, and removal (forget) of the information written on the
memory state [40]. LSTMs allow deep networks with multi-
ple layers to be created, which is often crucial for obtaining
competitive performance on various tasks.

Considering that the standard LSTM is a biased model,
where later inputs are more dominant than earlier inputs,
we use bidirectional LSTMs for robustness in this article.
A bidirectional model simply put two independent LSTMs
together: one reading the input from left to right and one
reading it from right to left. The outputs of the two networks
are usually concatenated, allowing the networks to have
both backward and forward information about the sequence
at every time step, thus mitigating the bias. In App-Net,
the bi-LSTM model takes sequences of packet length in TLS
biflows as the input and learns how to model the sequences
with respect to the target app. The sequences are considered
to be of fixed length and the structure of the incorporated
bi-LSTM is sequence-to-vector as shown in Fig. 2.

182068 VOLUME 8, 2020



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

FIGURE 2. Sequence-to-vector bi-LSTM network: Input sequences are in
red, output vector is in blue.

D. CONVOLUTIONAL NEURAL NETWORK
AConvolutional Neural Network (CNN) is quite similar to an
ordinary neural network. It is specifically designed to process
data that come in the form of multiple arrays. There are four
key ideas behind CNN that take advantage of the properties
of natural signals: local connections, shared weights, pooling
and the use of many layers [27]. The most important building
block of a CNN is the convolutional layer. Each neuron in
the convolutional layer is connected only to neurons located
within a small rectangle in the preceding layer. This allows
the network to concentrate on low-level features and assemble
them into higher-level features in the next layer. The pooling
layer is used by a CNN to subsample the input in order to
reduce the computational load and the number of parame-
ters, thereby limiting the risk of overfitting. Typical CNN
architectures stack a whole series of convolution and pooling
layers, and the resulting outputs need to be flattened and
concluded by at least one regular fully connected layer prior
to classification. Since many data modalities are in the form
of multiple arrays: 1D for signals and sequences including
language, 2D for images or audio spectrograms, and 3D for
video or volumetric images, CNNs have been applied in a
variety of tasks and achieve superhuman performance. Taking
network traffic as byte sequences, it is intuitive to fit a 1D
CNN model to it for classification.

The signatures of an app, which appear in uncertain posi-
tions within the packet payloads, are generally meaningful
plaintext or codes made up of certain byte sequences. This
makes 1D CNN, whose default behavior includes learning
location-independent spatial structure of the input, an ideal
model to extract effective features from the traffic byte
sequences. Unlike the densely-connected neural network
layer that needs 1D data as input, a 1DCNNaccepts 2Dmatri-
ces. Therefore, each byte in our input data can be encoded
into vectors of fixed size to feed the model. The 1D CNN
architecture in App-Net is illustrated in Fig. 3.

IV. THE APP-NET FRAMEWORK
The idea of App-Net is to combine LSTM and CNN to utilize
their representation abilities on different aspects of the TLS
data and to learn a joint feature used for APP-ID. In general,
App-Net consists of two parallel paths followed by a fully
connected multilayer fusion neural network as illustrated
in Fig. 4.

FIGURE 3. 1D CNN: Input bytes are in red, output vector is in blue. (The
number of squares does not represent the actual number).

FIGURE 4. The proposed App-Net framework. ‘‘Predict’’ layers are
fully-connected layers followed by softmax activation and

⊕
is the

weighted element-wise addition.

To formulate the problem, we define the input of LSTM
as a sequence of packet lengths L = {l1, . . . , lT }, where
the integer-valued lt represents the length of a packet in
bytes and T represents the total number of packets taken
into account. We define the input of CNN as a sequence
of bytes B = {b1, . . . , bM }, where each byte bm is repre-
sented in decimal and M represents the maximum number
of bytes fit into the CNN model. Technically, App-Net is
designed to learn a predictive function g = f (R(L),C(B)).
R(L) is derived by training the LSTM over the sequence L
to learn useful statistical features, while C(B) corresponds to

VOLUME 8, 2020 182069



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

high-level features extracted by CNN from sets of payload
bytes in B. The features respectively learned by LSTM and
CNN (i.e., R(L) and C(B)) convey complementary informa-
tion pertaining to the traffic varying. Then, the feature fusion
layer merges them to classify the traffic into different apps.
Finally, the app prediction is realized by the function f , which
corresponds to the feature fusion and output layers.

A. THE LSTM PATH
Neural networks generally work with real numbers from the
compact interval [−1, 1] due to the nature of the mathemat-
ical operations they perform. Thus, we need to map each
integer-valued element of sequence L to a corresponding
vector of real numbers first. So that the LSTM network can
ingest and process them. The transformation can be per-
formed by adding an embedding layer at the very beginning.
After embedding, each input sequence L can be viewed as a
matrixML ∈ RT×d , where d represents the dimension of the
embedding vectors.

During the training phase, for a given timestep t , the mini-
batch input is Lt ∈ Rn×d , where n is the number of sequence
examples. In the bi-LSTM architecture, we assume that the
forward and backward hidden states for this timestep are
−→
H t ∈ Rn×h and

←−
H t ∈ Rn×h respectively. Here, h indicates

the number of hidden units. We compute the forward and
backward hidden state updates as follows:

−→
H t = φ(Lt

−→
W lh +

−→
H t−1

−→
W hh +

−→
b h) (1)

←−
H t = φ(Lt

←−
W lh +

←−
H t+1

←−
W hh +

←−
b h) (2)

Here, φ is the hidden layer activation function. The weight
parameters

−→
W lh,

−→
W hh,

←−
W lh and

←−
W hh, and bias parameters

−→
b h and

←−
b h are all model parameters. Then, the forward and

backward hidden states
−→
H t and

←−
H t are concatenated to form

the hidden state H t ∈ Rn×2d .
To further improve the learning capability of the LSTM

network, we stack two layers of bi-LSTM in App-Net. The
hidden state H t of the first bidirectional layer is passed on
as input to the second bidirectional layer. Finally, the output
layer computes the output Ot with H t of the second layer:

Ot = H tWhq + bq (3)

where the weight parameter Whq and the bias parameter bq
are themodel parameters of the output layer, and q is the num-
ber of outputs. As our bi-LSTM architecture is a sequence-to-
vector RNN model, we use the final output vector OT as the
output of the LSTM path.

B. THE CNN PATH
While L, the sequence of packet length in a TLS biflow,
is passed to the LSTM network as input, the payload bytes
of the initial data packet in the same TLS biflow, B, will
be fed into the CNN to process at the same time. To feed
the sequence of bytes into 1D CNN, we also need to add
an embedding layer to transform the bytes into vectors of

numbers. The embedding is done by prescribing a vocab-
ulary of size 256 for the input sequence, corresponding to
all possible bytes, and then quantize each byte using one-
hot encoding. In this way, the sequence of bytes is trans-
formed into a sequence of such 256 sized vectors with fixed
length M . Any byte exceeding length M is ignored, and any
vacancy within length M are quantized as all-zero vectors.
After embedding, each input sequence B is encoded into a
matrixMB ∈ RM×256.

In a convolutional layer, an input array and a correlation
kernel array are combined to produce an output array through
a cross-correlation operation usually, which is the same as
convolution but without flipping the kernel [41]. Suppose
we have a discrete input function I : N → R for one of the
convolutional layers in 1D CNN. Then the multiple one-
dimensional cross-correlation operations Conv1D(x) using a
given discrete kernel function K can be defined as:

Conv1D(x) = (K ∗ I )(x)

=

LC∑
m=1

K (m) · I (SC · x + m− SC ) (4)

where the count of operations x is equivalent to the count of
steps when sliding the 1D convolution window (i.e., kernel
or filter) through the input data, and LC and SC represent the
length and stride of the window respectively. The convolu-
tional layer is typically parameterized with weights by a set
of such kernel functions Ki and each corresponding output
Hi(x) is referred to as a feature map.
Let M be a matrix and let M[i] denote the vector corre-

sponding to the i-th row ofM . Specifically in our case, we can
rewrite equation-(4) for the first convolutional layer which is
right after the embedding layer:

Conv1D(x) =
LC∑
m=1

K[m]MB[SC · x + m− SC ]> (5)

where K ∈ RLC×256 is the weight matrix of one kernel and
MB is the encoded input matrix.
A pooling layer is often used after a convolutional layer

in order to reduce the complexity of the output and prevent
overfitting of the data. The 1-D spatial maxpooling used in
our case is defined as:

MaxPool1D(x) =
LPmax
m=1

I (LP · x + m− LP) (6)

where LP represents the length of the maxpooling window.
The 1D CNN in App-Net consists of two stacked layers

of 1-D convolutional, activation and pooling operations. Each
layer has a specified number of kernels of a specified kernel
size. Each kernel on a layer sweeps through the entire input
to extract local features. The final output of the CNN path in
App-Net is the flattened maxpooling outputs on the last layer.

C. THE FUSION AND TRAINING
Because the LSTM and CNN representations are from two
different modalities, merging them together is a crucial task.

182070 VOLUME 8, 2020



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

To capture the correlation across modalities for APP-ID,
an intuitive way is to directly concatenate the different fea-
tures of them, then employ a few shared representation layers
to generate the high-level joint representations [15]. While
such fusion is simple to implement, it increases the dimen-
sionality and lacks the ability in capturing more complex
correlation across modalities [42]. To maximize the correla-
tion between different representations, coordinated represen-
tations [43] can be learned with some constraints to force the
representations to be more complementary.

In the fusion stage of App-Net, the fusion operation for
representations of LSTM and CNN, i.e., R(L) and C(B),
is done using a learned weighted element-wise addition. It is
defined as follows:

Fusion = wrR(L)+ wcC(B) (7)

where wr ,wc ∈ (0, 1) are trainable weights and wr +wt = 1.
R(L) and C(B) are projected with zero padding to have the
same size. Such fusion features are processed by a FC layer
with softmax activation for the final prediction.

In the ‘‘Predict’’ layer of the App-Net framework, the soft-
max activation returns a vector which can be interpreted as
estimated conditional probabilities of each class given the
input. Comparing the estimates with reality by checking how
probable the actual classes are, we can get the softmax loss
function which is called the cross-entropy loss:

L(y, ŷi) = −
N∑
j=1

(yj log ŷij) (8)

where y are the target ground truth and ŷi are the predicted
probabilities inferred by network i for each class in N . The
network gives a high probability for each predicted class
which results into a minimized entropy.

When training the whole hybrid network, it is important
to maintain the performance or the representation quality of
the unimodal network. Thus the global loss of App-Net is
a combination of the unimodal LSTM and CNN network
losses, which is defined as follows:

L = L1,2 + α1L1 + α2L2 (9)

where L1,2 is the loss computed from the fusion layer, L1
and L2 are the unimodal losses from the LSTM and CNN
network respectively. The weight parameters α1 and α2 are
set to 1 here by cross validation.

As we can see, the loss function is differentiable, and the
architecture of App-Net allows the gradient to be backpropa-
gated to both LSTM and CNN parts. In the training phase, all
trainable parameters of App-Net including the fusion weights
wr ,wc are optimized together by applying a stochastic
gradient descent.

V. EVALUATION
In this section, we describe our dataset and experiment set-
tings and evaluate the performance of the proposed App-Net

framework to demonstrate its advantage by comparing with a
variety of state-of-the-art methods.

A. EXPERIMENT SETTINGS
1) DATASET
The dataset in this work has been constructed from real
mobile traffic which is collected using NetLog by human
users. Different from other labeled datasets whose ground
truth is not always trustworthy, our dataset is accurately
labeled with NetLog capable of retrieving the reliable ground
truth, as described in Section III.

The original Android traces have been captured during
May.2019 - Jul.2019, generated by 3 off-campus users in
daily lives with different devices. The three smartphones
(Xiaomi Note 3, Honor 9 and Huawei P20) are all running
systems based on Android 9. After biflow segmentation and
TLSfiltering, we accumulate about 189k labeled TLS biflows
for the top 80 apps with each app having more than 1000 TLS
biflows. Table 1 reveals more details. The set of 80 apps,
which covers a variety of categories, have exhibited non-
negligible class imbalance due to different app service and
usage. To feed into the evaluation models, we further extract
some basic statistical and sequential information from each
TLS biflow and also have the payload information of the
initial data packet. These data together have made up our
dataset in this article.

To look deep into our dataset, we plot summary statistics
for the two inputs of App-Net using empirical cumulative dis-
tribution functions (ECDF). The two plots in Fig. 5 indicate
two feature distributions across the dataset. From the left one
we can see, almost all biflows in the dataset have an initial
TLS data packet (i.e., ClientHello message) with payload
length no larger than 517. The length of exact 517 bytes
has constituted a great proportion because of the ClientHello
padding extension [44]. On the other hand, a majority of TLS
biflows have no more than 20 messages, which suggests the
boundary of the input sequence length.

2) EVALUATION METRICS
Previous work mainly uses accuracy (defined as the number
of correctly labeled examples divided by the total number
of examples) as the metric for classification performance.
However, when classes are unbalanced, accuracy is not so
valid and the use of more sophisticated metrics becomes
necessary. This would be the case in practice, since relatively
few apps are responsible for the majority of mobile traffic.
In this article, for the sake of comparison, we follow the same
philosophy and use the Top-K accuracy in our multiclass
experiments. It allows the classifier to consider the top K
predicted apps which evaluates the soft-output of the model.

For imbalanced classification here, we turn to the metric
group of precision-recall which focuses on per class. The
precision and recall for a class can be calculated as follows:

Precision = TP/(TP+ FP) (10)

Recall = TP/(TP+ FN ) (11)

VOLUME 8, 2020 182071



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

TABLE 1. Details of our dataset.

FIGURE 5. ECDF for two features of the input data.

where TP refers to the number of true positives (those exam-
ples correctly identified as belonging to the class), FP refers
to the number of false positives (those examples incorrectly
identified as belonging to the class), FN refers to the number
of false negatives (those examples incorrectly identified as
not belonging to the class) and TN refers to the number of true
negatives (those examples correctly identified as not belong-
ing to the class). The precision is intuitively the ability of the
classifier not to label as positive example that is negative. The
recall (also called sensitivity or true positive rate) quantifies
the ability of the classifier to find all the positive samples or to
avoid false negatives. For different backgrounds of APP-ID
in practice, the effects of false positives and false negatives
can be both important. Thus we calculate both the metrics
as well as the popular combined score - F1 score. F1 score
(also called F-score or F-measure) is the harmonic mean of
the precision and recall, which conveys the balance between
them.

For simplicity in evaluation, we calculate metrics for
each class and only report the macro-averaged values over
all classes. We prefer macro average in unbalanced set-
tings because it calculate the unweighted mean and has
equal emphasis on all classes [45]. When only one met-
ric is considered for evaluation, we use F1 score by
default.

3) MODEL SETTINGS AND TRAINING
The tuning of hyperparameters is fundamental in super-
vised classification. For deep learning architectures, however,
the large amount of training data and the large number of
hyperparameters have rendered an exhaustive search pro-
hibitive in terms of computational resources. We thus aim at
a good-enough classifier and make App-Net to perform well
with selected tuning.

For the model settings, the bi-LSTM network has two
stacked layers of LSTM cells with the hidden state size set

182072 VOLUME 8, 2020



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

FIGURE 6. Results of App-Net with different size of input for LSTM (left) and CNN (right).

to 128. The 1D CNN has two stacked convolutional and
max pooling layers with 128 filters of size 15 and a pool
size of 3. Each of the dimensional parameters is selected
from the set {32, 64, 128, 256, 512, 768, 1024} to achieve the
best performance. The algorithm used in training App-Net is
stochastic gradient descent (SGD) with a minibatch of size
128, using momentum 0.9 and initial learning rate 0.1 which
is halved every 3 epochs.

During the training of App-Net, a dropout rate of 0.5 have
been used in the ‘‘Dropout’’ layer to reduce overfitting. With
dropout regularization [46], at each training iteration a ran-
dom subset of all neurons in the layer are ‘‘dropped out’’
and output 0, which can loosen the model and allow for
greater generalization. With the number of epochs set to 20,
an early stopping with patience 3 is also employed to prevent
overfitting. It is a simple and efficient regularization tech-
nique that works by stopping the training after the validation
error reaches the minimum. Considering the imbalance of the
dataset, our model is also trained with class weights. We want
to have the classifier heavily weight the minority classes so
that App-Net can pay more attention to traffic from an under-
represented app.

4) INPUT ANALYSIS
As only informative data is required to train a goodDLmodel,
it is common to limit the size of input data to reduce the
training complexity. To analyze App-Net’s requirements of
the input data, we run a series of tests and give the results
in Fig. 6.

From the dataset summary statistics in Fig. 5 we conclude
that the inputs of App-Net are within a certain range. Then the
optimal length of input can be found exactly by varying the
input of either LSTM or CNN. For the LSTM part, the input
sequence length is required to be at least 12 to support the
best result. For the CNN part on the other hand, the top
200 payload bytes are well enough to offer the best feature
representation. After all, this range covers most of the valu-
able TLS extensions in the ClientHello message. Therefore,
we have set the shapes of the two inputs of App-Net to 12 and
200 respectively, which can achieve the best performance
with the least effort.

TABLE 2. Experiment results of comparison methods on the dataset
of 80 apps.

B. EXPERIMENT RESULTS AND ANALYSIS
1) COMPARATIVE EVALUATION
We compare App-Net with the following five different meth-
ods for evaluation:
• RF. This method represents the state-of-art mobile traf-
fic classifier using traditional machine learning tech-
nique of random forest [2]. The statistical features it uses
are derived from three packet length sequences (incom-
ing, outgoing and bidirectional) within a biflow. For each
of the sequences, 18 statistical values are computed.
Then a feature selection is performed to have the top
40 values as the input.

• CNN-784. This method is evaluated to be the best-
performing unimodal DL architecture for APP-ID in
recent work [12], where 784 bytes from the applica-
tion layer are chosen to be the input. The input data
is treated as traffic images of size of 28 ∗ 28 ∗ 1 and
converted to IDX files before feeding into the model
of 2D-CNN [47].

• FS-Net. This method represents a flow sequence net-
work that combines stacked bidirectional GRUs with
autoencoders to learn features from packet sequences in
raw TLS flows [32]. It achieves the best results in terms
of TLS traffic classification comparing to other state-of-
the-art methods.

• MIMETIC. This method is represented as the first mul-
timodal DL framework for APP-ID which includes a 1D
CNN and a GRU network [15]. The inputs for the CNN
and GRU network are first 576 bytes of L7 payload and
multiple protocol fields of first 12 packets respectively.
Regardless of the implementation details, the overall

VOLUME 8, 2020 182073



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

architecture is similar to App-Net except that it uses
concatenation for feature fusion which is quite simple
and two-stage training phase which is costly. Besides,
it is not optimized for TLS traffic and consumes much
more input data than App-Net.

• App-CNN. This is a variant of App-Net which abandons
the LSTM path. It only uses the 1D CNN to learn from
payload bytes of the initial data packet for APP-ID.

• App-LSTM. This is another variant of App-Net which
abandons the CNN path. It only uses the bi-LSTM net-
work to learn the sequences of packet length for APP-ID.

In Table 2, we report the comparative evaluation results of
App-Net on our dataset, which includes the Top-K accuracy
(K ∈ {1, 5}) and the macro average metrics of Precision,
Recall andF-measure. Each evaluation is based on a stratified
ten-fold cross-validation for amore stable performance. From
the results we can see that all the DLmodels significantly out-
perform the baseline RF model. This suggests that DL meth-
ods which automatically learn features from raw traffic data
are superior to traditional ML approaches which rely heavily
on good designed features. Among the DL models, CNNs
(CNN-784 and App-CNN) show better performance than
RNNs (FS-Net and App-LSTM), especially on the precision-
recall metrics. This reveals an interesting fact that a majority
of mobile TLS traffic, though encrypted in the data field, can
still be identified and associated to a certain app by the initial
data packet, i.e., the client hellomessage during a handshake.
The models of MIMETIC and App-Net are all multimodal
architectures with hybrid networks. They show better per-
formance than other unimodal networks which demonstrates
the advantages of hybrid DL architectures given the hetero-
geneous information available from traffic data. However,
with more advanced implementation and training logic, our
proposed App-Net outperforms MIMETIC as well as other
models, achieving a best F1 score of 91.2%.

To have a better view of the different DL implementations,
we have analyzed the training complexity of App-Net as well
as other baseline models in terms of trainable parameters and
run time per epoch. The results are shown in Fig. 7. For the
record, our experiments are all completed under the same
hardware and software environment (8× Inter Core i7-9700K
CPU@3.60GHz, Nvidia GeForce RTX 2070 with Ubuntu
18.04 and TensorFlow 1.12). In practice, a raw measurement
of training time could be misleading, as it depends heavily
on the hardware platform (i.e. CPU, GPU, RAM), software
libraries used (i.e. optimized or not), etc. Thus compara-
tive analysis should be performed. As we can see, CNN-
784 has the most trainable parameters whereas the fewest
training time. It is mainly because training a CNN tends to
be much faster than training an RNN on Nvidia GPUs from
which CNNs benefit more. MIMETIC has the fewest train-
able parameters due to its simple implementation. However,
the overall training time of it would surpass all others under
the two-stage of training. As App-Net has applied larger
hyperparameters (e.g., more filters) compared to MIMETIC
to boost performance, it has much more trainable parameters.

FIGURE 7. Training complexity analysis.

TABLE 3. 20 Apps most likely to be misclassified (Clustered into
5 app sets according to their owners).

FIGURE 8. Performance comparison based on two datasets.

Despite that, the training complexity of App-Net is compara-
ble to others.

2) IMPROVING PERFORMANCE BY APP CLUSTERING
To further understand the performance of App-Net, we create
a confusion matrix for all the prediction results which is
depicted as a heatmap in Fig. 9. From this map we can dis-
cover the misclassification patterns by finding dark squares
off the diagonal. For instance, the dark ones adjacent to the
center indicate that a number of TLS biflows from app-39
(or app-40) are incorrectly classified as app-40 (or app-39).
As we refer to the app name, we find that app-39 (Tmall)
and app-40 (Taobao) are two highly related apps. They are
both popular online shopping platforms in China belong-
ing to Alibaba Group. For further details, we analyze
the pcap trace files of the two apps with Wireshark and
discover considerable information in common. For exam-
ple, a certain TLS certificate with length 2390 bytes has
been used in 284 TLS sessions of Tmall as well as
279 TLS sessions of Taobao. There are also dozens of
TLS sessions between them sharing the same Server Name

182074 VOLUME 8, 2020



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

FIGURE 9. The confusion matrix of App-Net based on dataset-80. All the labels corresponding to the app IDs are listed on the right.

FIGURE 10. The confusion matrix of App-Net based on dataset-65. All the labels corresponding to the app IDs are listed on the right.

Indication (SNI) such as ‘‘h5.m.taobao.com’’,
‘‘618.tmall.com’’, ‘‘gjusp.alicdn.com’’, etc.
Through completely searching, we find 20 apps from the

total 80 apps that are most likely to be misclassified, which
is reported in Table 3. As we can see, those 20 apps can be
further organized as 5 app sets. The apps in each set all share a
same owner, thus are closely related with each other. Regard-
less of the results, products from one corporation are prone to
have similar traffic patterns due to the shared resources and
services, and hence are difficult to distinguish. In practice,

when our task is not targeting every single app, it is intuitive
to turn those naturally confusing apps into a whole to train a
more robust classifier.

For a demo, suppose we treat each of the app set
in Table 3 as one new app, the original dataset (Dataset-80)
can be reorganized from 80 apps to 65 apps. We reeval-
uate App-Net as well as the baselines on the new dataset
(Dataset-65), and the performance results are shown
in Figure 8. It is obvious that with those 20 apps clus-
tered into 5, the classification performance is improved

VOLUME 8, 2020 182075



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

significantly over all six models. In Figure 10, we also
create a similar confusion matrix on the new dataset for
App-Net. It directly shows that the misclassified exam-
ples have been greatly reduced compared with Figure 9.
The experiment demonstrates how we can improve the per-
formance of APP-ID with a strategy of app clustering.
In analysis of Figure 10 we can still find a few misclassifica-
tions between apps, e.g., Wechat and JD, Wechat and Zhihu.
Although Wechat does not associate with the other two apps
directly, they are connected by some other ways. As one of
the JD’s major shareholders, Tencent (owner of Wechat) has
reserved a shopping portal for JD on Wechat which allows
Wechat users to shop on JD directly. On the other hand, it pro-
vides cloud service not only to its own business but also to a
large group of other companies like Zhihu, which is why the
sessions from Zhihu include communications with Tencent
cloud servers. This has revealed the intricate relationships
among themodern apps and explains to a certain extent why it
is hard to enable accurate mobile app identification via traffic
classification.

VI. CONCLUSION
In this article we propose App-Net, a novel hybrid neural
network which combines bi-LSTM and 1D-CNN in a mul-
timodal way to identify mobile apps from encrypted TLS
traffic. Through the planned RNN and CNN paths, App-Net
can extract important features from the length sequence as
well as the initial packet payloads in a TLS biflow at the same
time. The end-to-end framework finally learns coordinated
and joint representations which can identify mobile apps
more effectively. The experiment results on the real-world
dataset show that App-Net can achieve 93.2% accuracy and
91.2% F1 score for 80-class classification which outperforms
many other state-of-the-art methods. We also find out that
the classification performance can be directly improved by
clustering the traffic of those naturally confusing apps in the
dataset (i.e., apps owned by the same parent corporation).

In this work we focus on the problem of APP-ID from
encrypted TLS traffic and use a deep hybrid neural network
along with raw TLS data to tackle it. In the real-world sce-
nario with highly-dynamic mobile traffic, periodic retraining
is compelling to perform. Thus, simpler and faster architec-
ture (e.g., with fewer filters) with a cost of little accuracy loss
can be considered for reduced need of training time. On the
other hand, as more secure protocols are being deployed, such
as TLS 1.3 which carries fewer cleartext fields and QUIC
which is always encrypted and with no cleartext, the pro-
posed method may become less effective. We believe more
advanced DL architectures are needed for the upcoming new
challenges.

REFERENCES
[1] A. Dainotti, A. Pescape, and K. Claffy, ‘‘Issues and future directions in

traffic classification,’’ IEEE Netw., vol. 26, no. 1, pp. 35–40, Jan. 2012.
[2] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, ‘‘AppScanner:

Automatic fingerprinting of smartphone apps from encrypted network
traffic,’’ in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 439–454.

[3] A. Tongaonkar, ‘‘A look at the mobile app identification landscape,’’ IEEE
Internet Comput., vol. 20, no. 4, pp. 9–15, Jul. 2016.

[4] S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi, ‘‘Appprint: Automatic
fingerprinting of mobile applications in network traffic,’’ in Proc. Int.
Conf. Passive Act. Netw. Meas. Cham, Switzerland: Springer, 2015,
pp. 57–69.

[5] Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and
T. Andrews, ‘‘Automatic generation of mobile app signatures from traf-
fic observations,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2015, pp. 1481–1489.

[6] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M. Mao, ‘‘Samples:
Self adaptive mining of persistent lexical snippets for classifying mobile
application traffic,’’ in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw.,
2015, pp. 439–451.

[7] G. Ranjan, A. Tongaonkar, and R. Torres, ‘‘Approximate matching of per-
sistent LExicon using search-engines for classifying mobile app traffic,’’
in Proc. IEEE INFOCOM 35th Annu. IEEE Int. Conf. Comput. Commun.,
Apr. 2016, pp. 1–9.

[8] Y. Chen, W. You, Y. Lee, K. Chen, X. Wang, andW. Zou, ‘‘Mass discovery
of Android traffic imprints through instantiated partial execution,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 815–828.

[9] Q. Wang, A. Yahyavi, B. Kemme, and W. He, ‘‘I know what you
did on your smartphone: Inferring app usage over encrypted data traf-
fic,’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Sep. 2015,
pp. 433–441.

[10] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, ‘‘Robust smartphone
app identification via encrypted network traffic analysis,’’ IEEE Trans. Inf.
Forensics Security, vol. 13, no. 1, pp. 63–78, Jan. 2018.

[11] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘Multi-classification
approaches for classifying mobile app traffic,’’ J. Netw. Comput. Appl.,
vol. 103, pp. 131–145, Feb. 2018.

[12] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, ‘‘Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,’’ IEEE Trans. Netw. Service Manage., vol. 16,
no. 2, pp. 445–458, Jun. 2019.

[13] X. Wang, S. Chen, and J. Su, ‘‘Real network traffic collection and deep
learning for mobile app identification,’’ Wireless Commun. Mobile Com-
put., vol. 2020, pp. 1–14, Feb. 2020.

[14] H. Tang, Y. Cui, J. Wu, X. Yang, and Z. Yang, ‘‘Trigger relationship aware
mobile traffic classification,’’ in Proc. Int. Symp. Quality Service, 2019,
pp. 1–10.

[15] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, ‘‘MIMETIC: Mobile
encrypted traffic classification using multimodal deep learning,’’ Comput.
Netw., vol. 165, Dec. 2019, Art. no. 106944.

[16] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘Toward effective
mobile encrypted traffic classification through deep learning,’’ Neurocom-
puting, vol. 409, pp. 306–315, Oct. 2020.

[17] H. F. Alan and J. Kaur, ‘‘Can Android applications be identified using
only TCP/IP headers of their launch time traffic?’’ in Proc. 9th ACM Conf.
Secur. Privacy Wireless Mobile Netw., 2016, pp. 61–66.

[18] S. Rezaei, B. Kroencke, and X. Liu, ‘‘Large-scale mobile app identification
using deep learning,’’ IEEE Access, vol. 8, pp. 348–362, 2020.

[19] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, ‘‘Independent comparison
of popular DPI tools for traffic classification,’’ Comput. Netw., vol. 76,
pp. 75–89, Jan. 2015.

[20] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, ‘‘NetworkPro-
filer: Towards automatic fingerprinting of Android apps,’’ in Proc. IEEE
INFOCOM, Apr. 2013, pp. 809–817.

[21] B. Bram and C. Brubaker. (2019). An Update Android TLS Adoption.
[Online]. Available: https://android-developers.googleblog.com/2019/
12/an-update-on-android-tls-adoption.html

[22] Preventing Insecure Network Connections. Accessed: Mar. 20, 2020.
[Online]. Available: https://developer.apple.com/documentation/security/
preventing_insecure_network_connections

[23] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, ‘‘A survey of methods
for encrypted traffic classification and analysis,’’ Int. J. Netw. Manage.,
vol. 25, no. 5, pp. 355–374, 2015.

[24] A. Moore, D. Zuev, and M. Crogan, ‘‘Discriminators for use in flow-based
classification,’’ Dept. Comput. Sci., Queen Mary Univ. London, London,
U.K., Tech. Rep., 2013.

[25] C. Zhang, P. Patras, andH. Haddadi, ‘‘Deep learning inmobile andwireless
networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2224–2287, 3rd Quart., 2019.

182076 VOLUME 8, 2020



X. Wang et al.: Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks

[26] K. Al-Naami, S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen,
and B. Thuraisingham, ‘‘Adaptive encrypted traffic fingerprinting with bi-
directional dependence,’’ in Proc. 32nd Annu. Conf. Comput. Secur. Appl.,
2016, pp. 177–188.

[27] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[28] Z. Wang, ‘‘The applications of deep learning on traffic identification,’’
BlackHat USA, vol. 24, no. 11, pp. 1–10, 2015.

[29] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, ‘‘End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,’’
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Jul. 2017, pp. 43–48.

[30] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, ‘‘Net-
work traffic classifier with convolutional and recurrent neural networks for
Internet of Things,’’ IEEE Access, vol. 5, pp. 18042–18050, 2017.

[31] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, ‘‘Deep
packet: A novel approach for encrypted traffic classification using deep
learning,’’ Soft Comput., vol. 24, no. 3, pp. 1999–2012, Feb. 2020.

[32] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, ‘‘FS-Net: A flow sequence
network for encrypted traffic classification,’’ in Proc. INFOCOM IEEE
Conf. Comput. Commun., May 2019, pp. 1171–1179.

[33] M. Korczyński and A. Duda, ‘‘Markov chain fingerprinting to classify
encrypted traffic,’’ in Proc. INFOCOM IEEE Conf. Comput. Commun.,
Apr. 2014, pp. 781–789.

[34] M. Shen, M. Wei, L. Zhu, and M. Wang, ‘‘Classification of encrypted traf-
fic with second-order Markov chains and application attribute bigrams,’’
IEEE Trans. Inf. Forensics Security, vol. 12, no. 8, pp. 1830–1843,
Aug. 2017.

[35] C. Liu, Z. Cao, G. Xiong, G. Gou, S.-M. Yiu, and L. He, ‘‘MaMPF:
Encrypted traffic classification based on multi-attribute Markov proba-
bility fingerprints,’’ in Proc. IEEE/ACM 26th Int. Symp. Quality Service
(IWQoS), Jun. 2018, pp. 1–10.

[36] B. Anderson and D. McGrew, ‘‘Machine learning for encrypted malware
traffic classification: Accounting for noisy labels and non-stationarity,’’ in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery DataMining, 2017,
pp. 1723–1732.

[37] R. Wang, Z. Liu, Y. Cai, D. Tang, J. Yang, and Z. Yang, ‘‘Benchmark
data for mobile app traffic research,’’ in Proc. 15th EAI Int. Conf. Mobile
Ubiquitous Syst. Comput., Netw. Services, Nov. 2018, pp. 402–411.

[38] G.Aceto, D. Ciuonzo, A.Montieri, V. Persico, andA. Pescapé, ‘‘MIRAGE:
Mobile-app traffic capture and ground-truth creation,’’ in Proc. 4th Int.
Conf. Comput., Commun. Secur. (ICCCS), Oct. 2019, pp. 1–8.

[39] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[40] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[42] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, ‘‘Multimodal
deep learning,’’ in Proc. ICML, 2011, pp. 689–696.

[43] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, ‘‘Multimodal machine learn-
ing: A survey and taxonomy,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 2, pp. 423–443, Feb. 2019.

[44] A. Langley, A Transport Layer Security (TLS) Clienthello Padding Exten-
sion, document RFC 7685, Internet Requests for Comments, RFC Editor,
Oct. 2015. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7685.txt

[45] H. Narasimhan, W. Pan, P. Kar, P. Protopapas, and H. G. Ramaswamy,
‘‘Optimizing the multiclass F-measure via biconcave programming,’’
in Proc. IEEE 16th Int. Conf. Data Mining (ICDM), Dec. 2016,
pp. 1101–1106.

[46] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[47] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, ‘‘Malware traffic clas-
sification using convolutional neural network for representation learning,’’
in Proc. Int. Conf. Inf. Netw. (ICOIN), 2017, pp. 712–717.

XIN WANG received the B.S. and M.S. degrees
in networking engineering from the National Uni-
versity of Defense Technology, China, in 2013 and
2016, respectively, where he is currently pursuing
the Ph.D. degree. His research interests include
network security and traffic analysis.

SHUHUI CHEN received the Ph.D. degree from
the School of Computer, National University of
Defense Technology, China, in 2007. He is cur-
rently a Professor with the National University
of Defense Technology. His research interests
include network protocol and network security.

JINSHU SU (Senior Member, IEEE) received the
B.S. degree in mathematics from Nankai Uni-
versity, Tianjin, China, in 1985, and the M.S.
and Ph.D. degrees in computer science from
the National University of Defense Technology,
Changsha, China, in 1988 and 2000, respectively.

He is currently a Professor with the School of
Computer Science, National University of Defense
Technology. He leads the Distributed Computing
and High Performance Router Laboratory and the

Computer Networks and Information Security Laboratory, which are key
laboratories of National 211 and 985 projects, China. He also leads the High
Performance Computer Networks Laboratory, which is a key laboratory of
Hunan, China. His research interests include Internet architecture, Internet
routing, security, and wireless networks.

VOLUME 8, 2020 182077


