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ABSTRACT Diabetic retinopathy (DR) is a leading cause of visual blindness. However if DR can be diag-
nosed and treated early, 90% ofDR causing blindness can be prevented significantly.Microaneurysms (MAs)
and exudates (EXs), as signs of DR, can be used for early DR diagnosis. However, MAs and EXs
segmentation is a challenging task due to the low contrast of the lesions, the interference of noises, and the
imbalance between the lesion areas and the background. In this paper, an enhanced residual U-Net (ERU-
Net) for MAs and EXs segmentation is proposed. ERU-Net obtains three U-paths, which are composed by
three upsampling paths together with one downsampling path. With such three U-paths structure, ERU-Net
can enhance the corresponding features fusion and capture more details of fundus images. Also, a residual
block is constructed in ERU-Net to extract more representative features. In the experiments, we evaluate
the performance of ERU-Net for MAs and EXs segmentation on three public datasets, E-Ophtha, IDRiD,
and DDR. The ERU-Net obtains the AUC values of 0.9956, 0.9962, 0.9801, 0.9866, 0.9679, 0.9609 for
MAs and EXs segmentation on these three datasets, respectively, which are greater than that of the original
U-Net. Compared with some traditional methods, convolutional neural networks and other recent U-Nets,
ERU-Net also performs competitively. Besides, we have applied ERU-Net to segment optic disc (OD) on the
DRISHTI-GS1 dataset, achieving the highest Jaccard index of 0.994 compared with the existing methods.
The numerical results indicate that ERU-Net is a promising network for medical image segmentation.

INDEX TERMS U-Net, microaneurysms, exudates, medical image segmentation.

I. INTRODUCTION
Diabetes is a main chronic disease and one of the most
serious diseases facing the world’s population today. The
number of people with diabetes is increasing and is estimated
to become 640 million in 2040 [1]. Diabetes can damage
blood vessels, nerve cells, and further damage the brain, the
heart, and the eyes. In the eye damage caused by diabetes,
diabetic retinopathy (DR) is a significant cause of blindness,
especially in the working age people [2]. The patients may
not have any symptoms of vision problems when in the early
stage of DR. If DR can be diagnosed and treated early, 90%
of DR causing blindness can be prevented [3]. Thus the early
detection of DR is of great significance to human beings.

Fundus images are often used in DR detection to inspect
the early signs of DR: microaneurysms (MAs) and exudates
(EXs). MAs are the earliest clinical signs of DR caused by
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increased blood glucose concentration in diabetic patients.
They are small swellings in the retina’s tiny blood vessels,
which look like small, round red spots in the retinal image
(Figure 1(a)). MAs can cause blood vessels to leak in the
retina. With the disease developing, lipids and fluids leak
from the blood vessels and become EXs. EXs are yellow-
white dots in the retinal image and often appear in a ring
around the damaged blood vessel with different sizes and
sharp edges (Figure 1(b)).

To segment MAs and EXs automatically in fundus images
is of great significance for ophthalmologists in early detec-
tion of DR. In fact, a large number of people are requiring
fundus scans, whereas the number of ophthalmologists is
extremely limited. Furthermore, the fundus diagnosis results
are much more subjective according to the ophthalmologists’
experiences. Thus, an automated MAs and EXs segmenta-
tion method not only alleviates the workload of ophthal-
mologists, but also improves the efficiency and accuracy of
diagnosis.
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FIGURE 1. (a): Unhealthy retinal fundus images with MAs. (b): Unhealthy
retinal fundus images with exudates (EXs for short).

Recently, the deep learning methods have achieved good
performance in MA and EX segementation. But there are
still some challenges such as: the accurate fine-grained seg-
mentation, the interference of noises, and the poor general-
ization of the model. To overcome these challenges, in this
paper, we develop an enhanced residual U-Net (ERU-Net)
to segment MAs and EXs in retinal images with limited
ground truth samples. Deep convolution layer can extract
more semantic features and global features, but this does
not mean that the last layer is the best feature expression.
In particular, for MAs and EXs segmentation, the fine-
grained segmentation tasks, more local features are needed.
The features fusion can enhance the feature representation.
Inspired by this, we designed the structure of ERU-Net as
follows: Three upsampling paths combined with one down-
sampling path compose three U-paths in the network. At each
downsampling step, ERU-Net combines the high-resolution
features into the corresponding upsampling features in the
first U-path. Then the combined features are combined into
the corresponding upsampling features in the second U-path,
and so on in the third U-path. The fusion operation between
the U-paths is connection.With its unique structure, ERU-Net
can enrich the corresponding fusion feature maps in the
upsampling path. The experiment results show that the pro-
posed ERU-Net can capture more details and segment MAs
and EXs more accurately.

The remainder of this paper is organized as follows.
In Section 2, a brief review of different MAs and EXs seg-
mentation methods are presented. In Section 3, the proposed
ERU-Net is introduced in detail. The experiment results and
discussion are presented in Section 4 and 5, respectively.
We end the paper in Section 6 with a short conclusion.

II. RELATED WORK
Automatic MAs and EXs segmentation has been widely
studied. These segmentation methods mainly include two
categories: traditional image processing methods and recent
deep learning methods. The traditional image processing
methods mostly use morphological methods, threshold meth-
ods and classifier based methods. In the morphological
methods [4]–[8], in order to reduce the interference with EXs
and MAs, one often need to first identify and remove the
dominant structures of images, such as blood vessels, optic

dice from the images. The threshold methods are based on
global or local image gray-level and clustering according to
the image threshold. Most classifiers based methods apply
different classifiers to the candidate of the lesions, such as
[9]–[13]. For different segmentation tasks, the traditional
image processing methods are different.

ForMAs segmentation, traditional image processingmeth-
ods mainly include morphological processing methods,
wavelet transformation methods and hybrid classifier meth-
ods. For example, in fluorescein angiograms of the ocular
fundus, Spencer et al. [4] used morphological operations to
remove the vasculature, leaving the other small structures
including the MAs. Quellec et al. [14] proposed an adaptive
wavelet method which uses a local template matching in the
wavelet domain to detect MAs. Mizutani et al. [9] proposed
a double-loop filter first to extract MAs candidate regions.
Then, from such the MAs candidate regions, they used a
rule-based method and an artificial neural network to detect
MAs. Akram et al. [10] proposed a hybrid classifier which is
combined with the Gaussian mixture model, support vector
machine and an extension of multimodel mediod.

For EXs segmentation, traditional methods have been
developed, including threshold method, morphology method,
region growing, support vector machine (SVM) and Naive
Bayes classifier. Philips et al. [15] used the global threshold
techniques in fundus images. Walter et al. [5] applied the
morphological reconstruction techniques to locate candidates
of EXs. Other methods based on morphological operations
can be found in [6]–[8]. Li and Chutatape [16] combined
the region growing and the edge detection to segment EXs.
Giancardo et al. [11] applied a support vectormachine (SVM)
to detect EXs. Harangi et al. [12] proposed a Naive Bayes
classifier to candidate pixels, achieving a F-score of 0.72 on
the DIARETDB1 dataset. Zhang et al. [13] used a random
forest algorithm to detect EXs among the candidates, obtain-
ing an AUC value of 0.95 on the E-ophtha-EX dataset.

Different from traditional image processing methods, the
deep learning method, mainly uses a deep network to com-
plete the segmentation tasks. And such deep networks can
extract the useful image features automatically and then
be trained end to end. With the rapid development of
deep learning, neural networks are frequently seen in MAs
and EXs segmentation. For example, Mrinal [17] used a
deep neural network including three convolutional layers
and two fully connected layers to segment MAs automati-
cally. Chudzik et al. [18] applied a fully convolutional neural
network (FCNN) with the batch normalization (BN) lay-
ers and the Dice coefficient loss function to detect MAs.
Kou et al. [19] proposed a deep residual U-Net to segment
MAs, which combines a deep residual model and recurrent
convolutional operations into U-Net. For EXs segmentation,
Perdomo et al. [20] utilized LeNet [21], a convolutional
neural network, to classify EXs and non-EXs accurately.
Fujita et al. [22] used a single convolutional neural net-
work to detect EXs, hemorrhages, and MAs simultaneously.
Feng et al. [23] applied a fully convolutional neural network
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together with a residual operation to segment both optic disc
and EXs. Zheng et al. [24] proposed an ensemble convolu-
tional neural network (MU-Net) to detect EXs. They used
the conditional generative adversarial network (cGAN) to
implement the data augmentation, which aims to alleviate the
imbalanced data problem.

U-Net, as a fully convolutional neural network [25],
has become a popular medical image segmentation method
and has shown its excellent performance [26]–[28].
Alom et al. [29] applied a R2U-Net, an U-Net combining
with recurrent convolutional operations, on the blood vessel
segmentation, on the skin cancer segmentation and on the
lung lesion segmentation. Sevastopolsky [30] proposed a
modified U-Net to segment the optic disc and the cup in
fundus images, obtaining the Dice value of 0.95 and 0.82,
respectively, on the RIM-ONE v.3 dataset. Zeng et al. [26]
applied the residual blocks, the multi-scale, and the channel
attention mechanism on U-Net for the nuclei segmentation.
This method obtains an average F1-score of 0.83 on the
Cancer Genomic Atlas (TCGA) dataset and wins the third
place in the computational precision medicine nuclei seg-
mentation challenge. The U-Net-like models are also applied
to the salient object detection [31]–[33]. Wang et al. [31]
have used the RNN unit to form an iterative top-down
and bottom-up saliency inference model, which can make
better use of the high-level and the low-level information.
Wang et al. [32] proposed a Pyramid Attentive and salient
edGE-aware saliency model (PRET-Net) with pyramid atten-
tion structure and a salient edge detector. It efficiently
increases the receptive field of the convolution layer. In [33],
the authors designed an Attentive Saliency Network (ASNet)
by using the recurrent architecture of the convolutional
LSTM (convLSTM) and a fixation map.

III. PROPOSED METHODOLOGY
In this section, after a brief introduction of the U-Net and the
residual U-Net, we introduce our new network, an enhanced
residual U-Net (ERU-Net), which is obtained by adding a
residual block into the modified U-Net with one downpsam-
pling path and three upsampling paths. In order to achieve
high accuracy, a preprocessing of image segmentation is also
introduced in this section.

U-Net is originally proposed byRonneberger et al. [34] for
the biomedical image segmentation. It has a downsampling
(encoding) path and a symmetric upsampling (decoding)
path, as shown in Figure 2. The feature extration processes are
conducted in the downsampling path, and the image expan-
sion processes are conducted in the upsampling path. Each
upsampling output is fused with the corresponding layers
in the downsampling path, which can combine more feature
dimensions and supplement the information lost during the
downsampling process.

The residual network [35] is a type of specialized neural
network that helps to handle more sophisticated deep learning
models. Inspired by the residual network, a modified U-Net
with residual blocks has been widely applied to segmentation

FIGURE 2. The U-Net architecture.

FIGURE 3. (a) ResU-Net architecture. (b) Residual block.

tasks ( [23], [29], [36]). Experimental results show that using
residual blocks can improve the performances of the U-Net
type methods.

Inspired by this, we replace the regular convolutional lay-
ers of U-Net with residual blocks to obtain a ResU-Net. The
residual block as shown in Figure 3(b) includes a shortcut
and a few stacked layers: convolutional layers, rectified linear
unit (ReLU) layers, batch normalization (BN) layers [37].
Moreover, we add a dropout [38] layer between the two
convolutional layers to avoid overfitting. The residual block
is expressed as follows:

Xdrop (i) = D (F (A [B (X (i))])) , (1)

X (i+ 1) = F
(
A
[
B
(
Xdrop (i)

)])
+ I (X (i)) , (2)

where X (i), X (i+ 1) are the input and the output of the
i-th residual block. And Xdrop (i) is the output of the dropout
layer in the i-th residual block. B (·) denotes the BN function,
A (·) is the activation function, D (·) is the dropout operation,
and F (·) is the convolutional operation. I (·) is an identity
mapping function.

The proposed ResU-Net includes 10 above residual blocks
and a sigmoid activation function as its last layer which
is used to get a segmentation probability distribution map.
Compared with the ResU-Net proposed by Zhang et al. [36],
we use a dropout layer between the two convolutional layers
in the residual block which can effectively avoid overfitting.
In addition, we construct the ResU-Net with a 9-level archi-
tecture, a deeper network than the ResU-Net in [36].

185516 VOLUME 8, 2020



C. Kou et al.: ERU-Net for MAs and Exudates Segmentation in Fundus Images

FIGURE 4. An overview of the proposed ERU-Net architecture.

TABLE 1. Configuration of the ERU-Net.

During the training process, Cross Entropy was used as the
loss function, which is defined as:

L = −
1
N

N∑
1

yilogpi + (1− yi)log(1− pi), (3)

where N is the pixels number of the input image and yi
denotes the ground truth of the i-th pixel. And pi is the
predicted probability value obtained by the network.

Furthermore, in order to obtain more accurate segmen-
tation results, we propose an enhanced ResU-Net, called
ERU-Net, as shown in Figure 4. The detailed configura-
tion of the ERU-Net is listed in Table 1. Different from
the U-Net and ResU-Net, ERU-Net has following three fea-
tures: 1) Compared with the U-Net with one upsampling
path, ERU-Net includes one downsampling path but three
upsampling paths. Designing three upsampling paths aims
at reducing the semantic gap between the feature maps of

the downsampling paths and the upsampling paths. When
the output layer of the upsampling and downsampling pro-
cess shares similar feature maps, the network can achieve
better feature representation capability. In addition, when
high-resolution feature maps from the downsampling path
are gradually enriched before fusion with the corresponding
featuremaps, ERU-Netwith three upsampling paths canmore
effectively capture the details of foreground objects and better
entrich the above high-resolution feature maps. The three
upsampling operations start at the points when the number
feature maps of the downsampling path is 128, 256 and 512,
respectively. The outputs of three upsampling paths are fused
with the given weight values and then this fused result is input
into a residual block, a full connected layer and a sigmoid
function to get the result. The connection operation between
the different upsampling paths makes the downsampling path
feature maps be close to the concatenation layer on the third
upsampling path. 2) Instead of regular convolutional layers,
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a residual block shown in Figure 3(b), is embedded ERU-Net
to accumulate the features effectively. Each residual block
in the upsampling path is preceded by a concatenation layer
which fuses the feature channels. In more detail, this concate-
nation layer is the fusion between the output of the residual
block on the previous upsampling path and the output of
the previous step in the same upsampling path. Such feature
fusion in different upsampling paths can extract more local
features to help ERU-Net achieve a more accurate perfor-
mance. Formally, the output of the i-th residual block in the
last upsampling can be expressed as:

Xu3,i = H (Xd,i,Xu2,i, u(Xu3,i+1)), (4)

where the index i denotes the i-th layer, the index d and u rep-
resent the downsampling and upsampling path, respectively,
the index u1, u2, and u3 represent the three unsampling paths.
The function u(·) denotes an upsampling operation, H (·) is
a residual learning, and X denotes the output of a layer. 3)
In the downsampling path, we apply a convolution operation
with a stride of 2 to replace the max-pooling operation in
U-Net to preserve more details. After the downsampling, the
number of feature maps increases to 512.

Before the original fundus images are fed into the ERU-
Net, original images needs to be preprocessed to obtain
the most obvious images. The fundus images with different
resolutions which they are obtained from different types of
fundus cameras are resized to 1024 × 1024 pixels to reduce
image variation. The green channel of RGB fundus image is
used for further processing because the green channel has the
best contrast from the background. When the contrast of the
captured image is too low, it is difficult to detect and identify
the interest objects. Therefore, image enhancement is a very
important step before the learning process. We apply His-
togram Equalization and Contrast limited adaptive histogram
equalization (CLAHE) which are two classical approaches
for image enhancement, to achieve the most obvious contrast
images.

IV. EXPERIMENT RESULTS
In this section, we compare the proposed ERU-Net with
U-Net and ResU-Net on three public datasets: E-ophtha [13],
IDRiD [39], DDR [40]. Also, we compare ERU-Net with
other existing methods on the E-ophtha and IDRiD datasets.

A. DATASETS
The E-ophtha dataset [13] is a publicly accessible digital
retinal fundus image dataset and is used for lesion segmen-
tation. The dataset is divided into two parts, E-ophtha-EX
and E-ophtha-MA with four different image sizes ranging
from 1440 × 960 to 2544 × 1696 pixels. All the images
are carefully marked by two ophthalmologists on the pixel
level. On the E-ophtha-MA dataset, there are 381 images,
148 of which contain MAs. At random, 318 images (133 with
and 185withoutMAs) are used as the training images, and the
other images are as the testing images. On the E-ophtha-EX
dataset, there are 82 images in total, 47 of which contain EXs.

Also, at random, we use 60 images (35 with and 25 without
EXs) as the training images, and the other 22 images (12 with
and 10 without EXs) are used as the testing images.

The IDRiD dataset (Indian Diabetic Retinopathy Image
Dataset) [39] is a retinal fundus image dataset which is
available for the segmentation and grading challenge of DR,
organized by ISBI (International Symposium on Biomedical
Imaging) conference 2018. The fundus images with signs
of DR in IDRiD are captured by an ophthalmic technician
at an Eye Clinic using a Kowa VX-10 alpha digital fundus
camera with 50-degree field of view. IDRiD provides precise
pixel level annotation of abnormalities associated with DR
like microaneurysms (MAs), soft exudates (SE), hard exu-
dates (EX) and hemorrhages (HE). The pixel level annotation
is done by a master’s student and reviewed by two retinal
specialists. This dataset consists of 81 color fundus images
with their labeled ground truth which have a resolution of
4288×2848 pixels. The 81 color fundus images, correspond-
ing 81 labeled ground truth of MAs and 81 labeled ground
truth of EXs are applied to our experiment. For MAs and EXs
segmentation, 54 images are used for training and 27 images
are used for testing.

The DDR dataset [40] proposed in 2019 is a newly fundus
image dataset for DR screening. DDR is the largest dataset
that provides pixel level and bounding-box annotations for
MAs, soft exudates, EXs, and haemorrhages. The pixel-level
annotations for the four lesions are performed by six annota-
tors using special software. This dataset consists of 757 color
fundus images with their pixel level annotations. At random,
532 images are used for training and 225 images are used for
testing. All the images are resized to 1024× 1024 pixels.

B. EVALUATION METRICS
The segmentation task is evaluated on the pixel level by the
indexes of the sensitivity (Se), the specificity (Sp) and the
accuracy (Acc). These indexes are computed by the following
equations:

Se =
TP

TP+ FN
, (5)

Sp =
TN

TN + FP
, (6)

Acc =
TP+ TN

TP+ TN + FP+ FN
, (7)

where, TP (True positive) represents the number of positive
pixels correctly classified by the classifier. TN (True neg-
ative) is the number of negative pixels which are correctly
classified as negative. FP (False positive) and FN (False
negative) are the number of negative pixels and positive pixels
that are misclassified, respectively.

A threshold is defined by seeking the maximum value
of Se + Sp − 1 to convert the last probability map
into a binary image. Then this threshold is used to get
the final binary results. Furthermore, the receiver operat-
ing characteristics (ROC) curve and the value of the area
under curve (AUC) are used to evaluate the segmentation
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FIGURE 5. (a) and (b) show the segmentation results of ERU-Net on MAs and EXs of
E-ophtha, respectively. The first to fourth columns denote the retinal image, the ground
truth, the probability map of segmentation results, the binary map of segmentation results,
respectively. (Red circles: true positives; yellow circles: false negatives; blue circles: false
positives).

results. The AUC value is an important indicator for
evaluating segmentation results because it is indepen-
dent of the threshold, which is different from Se, Sp,
and Acc.

C. THE PERFORMANCE OF THE PROPOSED METHOD
All the experiments are implemented using the public
available Keras framework with TensorFlow on a sin-
gle GPU machine with 256 G of RAM and a NIVIDIA
GeForce GTX 1080Ti. For all the training, each model is
trained 150 epochs, with Cross Entropy as the loss function.

We use adamoptimizer as optimizer with a momentum of 0.9,
a weight decay of 0.0005, and an initial learning rate of 0.001.
Training process is carried out in mini batches with the size of
96. The images in the E-ophtha training datasets are divided
into 343,440 patches with 48 × 48 pixels for training, and
38,160 patches for validation in order to reduce the memory
shortage. And all the training images on the IDRiD dataset are
divided into 305,280 patches for training, and 38,160 patches
for validation. On the DDR dataset, the training images are
split to 340,906 patches for training, and 37,878 patches for
validation.
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FIGURE 6. The results of ERU-Net on the MAs segmentation. (a) Segmentation results under the
low contrast condition. (b) Segmentation results when there are noises around MAs.
(c) Segmentation results when the boundary of the MAs is blur.

1) VISUAL RESULTS
Figure 5(a) and (b) show the visual results of ERU-Net on
the E-ophtha-MA and E-ophtha-EX datasets, respectively.
In both Figure 5(a) and (b), the first column denotes the
retinal images, the second column is the ground truth, and
the third is the probability map of segmentation results of
ERU-Net. After converting this probability map into a binary
map, we get the final segmentation results of ERU-Net, which
is presented in the fourth column. Visually, the fourth column
is very close to the second column which means that the
segmentation results of ERU-Net are quite close to the ground
truth.

Figure 6 and Figure 7 show the segmentation results of
ERU-Net in some lesion regions with poor segmentation
results, such as the regions with the low contrast, blur edge,
illumination noises. In these two figures, the first column is
the fundus image withMAs or EXs. The second column is the
enlarged field of view images in the fundus images. The third
column is the segmentation results with ERU-Net. Figure 6(a)
shows the results by using ERU-Net to segment MAs in the
images with low contrast. From the third column, it can be
found that ERU-Net classifies the MAs and the background

correctly. Figure 6(b) presents the results by using ERU-Net
to segment MAs in the images with noises in which there
are some similar structures around MAs. The results of the
third column illustrate that ERU-Net can segment real MAs
with high accuracy even if MAs are around by some similar
structures. Figure 6(c) shows that ERU-Net can also segment
MAs effectively in the images where the boundary of MAs
is blur. Similar performance of ERU-Net can also be found
in Figure 7, which indicates that ERU-Net also segments
EXs effectively in some challenging regions. From the visual
results in Figure 6 and 7, ERU-Net can still achieve good
performance in MAs and EXs segmentation in the fundus
images with low contrast, or with blur edge, or with ilumation
noises. It is mainly due to concating one downsampling path
and three upsamling paths with ResU-Net, which can allow
ERU-Net to capture more local feature details and surpass the
noise interference.

2) COMPARISON WITH OTHER MODELS
Table 2-7 show the performance comparisons of ERU-Net,
ResU-Net with U-Net for MAs and EXs segmentation on
three datasets: the E-ophtha, the IDRiD, and the DDR dataset
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FIGURE 7. The results of ERU-Net on the EXs segmentation. (a) Segmentation results under the low
contrast conditon. (b) Segmentation results when there are noises around EXs. (c) Segmentation
results when the boundary of EXs is blur.

TABLE 2. Performance comparisons of U-Net, ResU-Net, and ERU-Net for
MAs segmentation on E-ophtha.

TABLE 3. Performance comparisons of U-Net, ResU-Net and ERU-Net for
EXs segmentation on E-ophtha.

in terms of four indexes: Se, Sp, Acc, and AUC. Table 2, 4, 6
are forMAs segmentation. Table 3, 5, 7 are for EXs segmenta-
tion. As shown in these six tables, the AUC value of ERU-Net
for MAs and EXs segmentations on three datasets are 0.9956,
0.9962, 0.9801, 0.9866, 0.9679, 0.9801, 0.9866, 0.9609,
respectively. It is clear that ERU-Net obtains the highest AUC
value among these three models, ResU-Net achieves the sec-
ond place, andU-Net has the lowest AUCvalue. In fact, on the
one hand, compared with U-Net, the ResU-Net is designed
by residual blocks replacing the regular convolutional layers

TABLE 4. Performance comparisons of U-Net, ResU-Net and ERU-Net for
MAs segmentation on IDRiD.

TABLE 5. Performance comparisons of U-Net, ResU-Net and ERU-Net for
EXs segmentation on IDRiD.

of U-Net. The comparison results indicate that adding resid-
ual blocks can improve U-Net’s performance. On the other
hand, compared with ResU-Net, ERU-Net mainly applies
three upsampling in the U-path. The comparison results show
such 3-upsampling-path structure in ERU-Net can capture
more detail features, which indeed contributes to enhance the
U-Net’s performance.

To illustrate why the number of upsampling paths in ERU-
Net is 3, we do an ablation experiment on such the number,
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TABLE 6. Performance comparisons of U-Net, ResU-Net and ERU-Net for
MAs segmentation on DDR.

TABLE 7. Performance comparisons of U-Net, ResU-Net and ERU-Net for
EXs segmentation on DDR.

TABLE 8. Performance of ERU-Net with different number (t = 2, 3, 4) of
upsampling paths on E-ophtha.

TABLE 9. The number of trainning parameters in U-Net, ResU-Net and
ERU-Net.

denoted as t in Table 8. We adapt ERU-Net with different
numbers of upsampling paths, as t = 2, 3 and 4. We eval-
uate the AUC values of ERU-Net with different number of
upsampling paths on the E-ophtha dataset to segmentMA and
EX, respectively. As shown in Table 8, for EXs segmentation,
ERU-Net with three upsampling paths (t = 3) achieves the
highest AUC value of 0.9962. For MAs segmentation, ERU-
Net with three upsampling paths achieves the second place
with the AUC value of 0.9956, which is a slightly lower than
the first place with the AUC value of 0.9960, corresponding
to t = 2. Therefore, taken together, ERU-Net with three
upsampling paths gets the best performance.

In Table 9, we calculate the number of the parameters
which need to be trained by different models. Generally,
the larger number of such training parameters, the longer
training time is needed for models. Therefore, the model with
as few training parameters as possible is significant to the
segmentation tasks. Table 9 shows that ERU-Net needs much
less training parameters than ResU-Net, which is considered
as a promising feature for ERU-Net. Table 10 shows the
runtime of different U-Net models. The runtime showed in
Table 10 is the time required by each model to segment
one image in the given dataset. It can be found that U-
Net takes the least runtime while ResU-Net and ERU-Net,
at the cost of some runtime, obtain higher AUC value than
U-Net. The AUC values of ERU-Net, ResU-Net, and U-Net
on E-ophtha and IDRiD datasets are 0.9956, 0.9938, 0.8323,
0.9801, 0.9674, 0.8153, respectively. The runtime on the
IDRiD dataset takes a long time because of its high resolution.

TABLE 10. The runtime for an image in U-Net, ResU-Net and ERU-Net.

But the ERU-Net takes less runtime and obtains higher AUC
value than ResU-Net on the E-ophtha and IDRiD datasets.

TABLE 11. Performance comparisons of ERU-Net with different models
for MAs and EXs segmentation on E-ophtha.

In Table 11, we compare ERU-Net with other published
methods, the convolutional neural networks [19], [41]–[43],
[45], [47], [48] and traditional image processing methods
[13], [44], [46]. From the table, it is found that on the
E-ophtha-MA dataset, the ERU-Net achieves the highest
AUC value of 0.9956 among all the compared methods in
[19], [41]–[43]. On the E-ophtha-EX dataset, ERU-Net has
the highest AUC value of 0.9962 among the ones in [13],
[44]–[48]. Such numerical results illustrate that ERU-Net
indeed achieves satisfactory performance. This achievement
mainly benefits from its unique three U-paths structure. Such
multiple U-paths obtained by one downsampling and three
upsampling, help the network to capture more details. For
such EXs and MAs, the fine-grained segmentation, capturing
more details is indeed helpful for improving segmentation
accuracy.

We also compare ERU-Net with other published deep
learningmethods on the IDRiD dataset for EXs segmentation.
The literature [49] uses a classical U-Net model to segment
EXs and optic disk, then the optic disk segmentation map is
used to refine EXs segmentation results. Gupta et al. [50]
apply the transfer learning method to segment EXs, which
uses a VGG net to extract the features and apply different
classifiers to obtain the segmentation results. Different from
them, we employ the U-type net with three U-path directly to
segment EXs, which can extract more detail features and has
advantages in fine-grained segmentation task.

In order to better demonstrate the performance of the ERU-
Net, many improvedU-Netmodels are used to compare in our
study. The ERU-Net can be viewed as an improved ResU-Net
architecure, in which main difference from the original U-Net
is that there are one downsampling path and three upsampling
paths. Meanwhile, the stacked hourglass networks [27] are
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TABLE 12. Performance comparisons of a single hourglass, SAT, and
ERU-Net for EXs segmentation.

TABLE 13. The 5-fold cross validation experiment results of ERU-Net on
the E-ophtha and IDRiD datasets for MAs and EXs segmentation.

made of several hourglass modules, in which the single hour-
glass module can be viewed as a modified U-Net. The stacked
dense U-Nets [28] consist of two scale aggregation topology
(SAT). One SAT also can be viewed as a modified U-Net.
Thus, for a fair comparison, we compared ERU-Net with the
single form of stacked hourglass networks and the single form
of stacked dense U-Nets, or hourglass network and SAT for
short, respectively.

These three networks are tested on three datasets. Because
of the large memory requirement of SAT, we divided the
training images into 127,200, 114,480, 126,084 patches on
three datasets, respectively, which is different from the num-
ber in our manuscript. From the results in Table 12, it can
be found that hourglass network failed in EXs segmentation.
It is reasonable because the hourglass network is designed
for human pose estimation, not for fine-grained segmentation
tasks like EXs segmentation. The AUC value of SAT is
similar to ERU-Net, but it consumes three times as much
training time as ERU-Net. Similar results also can be found
in the IDRiD and DDR datasets.

V. DISCUSSION
In order to test the reliability and stability of ERU-Net,
we conduct 5-fold cross-validation experiments. For a
given dataset, all the images are divided into 5 subsets
with equal size at random. For each experiment condi-
tion, we conduct 5 experiments and ensure that each sub-
set is used as a test set and the rest as the training set.
The Table 13 shows the performance results of ERU-Net
in 5-fold cross-validation experiments. The AUC expec-
tation value of ERU-Net for MAs and EXs segmenta-
tion on the E-ophtha and IDRiD datasets are 0.9878,
0.9923, 0.9780, 0.9713, respectively. It can be found that
in view of the average, ERU-Net also obtains a competitive
performance.

In order to further test the robustness of ERU-Net for the
segmentation tasks, we also apply ERU-Net to segment the
optic disc(OD) on the DRISHTI-GS1 dataset.

The DRISHTI-GS1 dataset [51], as a publicly avail-
able dataset, contains 101 retinal images with a resolu-
tion of 2045 × 1752 pixels. The 101 images are divided
into 50 images for training and 51 images for testing with
their corresponding binary mask as the ground truth, respec-
tively. All the images are resized to 256× 256.

TABLE 14. Performance comparison of OD segmentation methods on the
DRISHTI-GS1 dataset.

Table 14 presents the comparisons of U-Net, ResU-Net,
ERU-Net with other neural networks [52]–[54] on the
DRISHTI-GS1 dataset in terms of Acc, Se, Sp, AUC, and
Jaccard index (JACC). The JACC, calculated as TP/(TP +
FN + FP), is used to evaluate the similarity between the
prediction and the ground truth. From Table 14, we can know
that ERU-Net has the highest JACC value. It can illustrate that
compared with other methods, the OD segmentation in ERU-
Net is closest to the ground truth. The feature fusion between
different upsampling paths makes the ERU-Net segment the
edge of OD more accurately. It shows that ERU-Net is much
more competitive for fine-grained segmentation.

VI. CONCLUSION
In this paper, we propose an enhanced residual U-Net
(ERU-Net), which consists of one downsampling path and
three upsampling paths. Different from the original U-Net,
with such three upsampling paths structure, ERU-Net can
enhance the corresponding fusion feature maps and capture
more details of fundus images. Also, a residual block is
constructed in ERU-Net to extract more representative fea-
tures. The experiment results show that the performance of
ERU-Net for MAs and EXs segmentation is satisfactory.
Compared with other U-Net variants, ERU-Net has achieved
best performance in three open public fundus image segmen-
tation datasets. In the future work, we will apply ERU-Net
into other medical image segmentation tasks, and further
validate the generalization of segmentation performance.
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