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ABSTRACT Radar signals are emerging constantly for urgent task because of its complex patterns and
rich working modes. For some radar waveforms with known modulation methods, they can be identified by
correlation between radar prior knowledge and the received signals by the reconnaissance receiver. As for
the unknown radar signals, how to identify unknown radar waveforms under the condition of limited samples
and low signal-to-noise ratio is a challenging problem. Aiming at the learning ability of the deep features
of the image by the convolutional neural network (CNN), the reconstructed features of the time-frequency
image (TFI) of the known and unknown radar waveform signals have been excavated. A decision fusion
unknown radar signal identification model based on transfer deep learning and linear weight decision fusion
is designed in this paper. Firstly, the CNN is trained using the known radar signals; Then, based on the transfer
learning, the neurons obtained from the multiple underlying the CNN are used to represent the reconstruction
feature; Finally, the performance of the single random forest classifier of the original TFI and short- time
autocorrelation features images (SAFI)are fused, the identification decision of unknown signals is realized
by setting linear weight to the two databases. The recognition rate of unknown new classes for small samples
exceeds 80.31%, and the classification accuracy rate for known radar waveform reach more than 99.15%.

INDEX TERMS Unknown radar waveform recognition, convolutional neural network, decision fusion,
transfer learning, random forest.

I. INTRODUCTION
In modern electronic countermeasures, the analysis and pro-
cessing of radar waveform is one of the important links of
Electronic Intelligence Reconnaissance System (ELINT) and
Electronic Support system (ESM) [1]. The radar signal styles
are complicated and havemanyworkingmodes. Especially in
wartime, new radar signals continue to emerge for urgent task.
For some radar waveforms with known modulation methods,
they can be identified correlation between the prior knowl-
edge and the radar signal received from the reconnaissance
receiver. However, in the actual confrontation environment,
both sides will use complex advanced technologies such as
active phased array, frequency agility, multi-function and
three-coordinate radar to generate unknown or new radar
waveforms to circumvent the other’s identification system.
Because of its frequent update to follow the changing battle-
field dynamics, the inappropriate rejection or identification
of unknown radar emitter signals will cause an increase in
false alarm (or missed alarm) rate, which directly affects
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the performance of electronic reconnaissance equipment and
then affects predominating initiative in combat. In addition,
the collected misjudgment signal data will mislead the plat-
form in expanding the training database, decrease the relia-
bility of classification model and cause secondary misleading
to the battlefield personnel’s judgment of subsequent signals.
The challenging problem of how to identify unknown radar
waveforms in the conditions of small-capacity samples, unla-
beled samples and under low signal-to-noise ratio (SNR) has
attracted more and more attention [2].

The sorting of unknown signals is mainly considered from
two ways, the recognition mechanism and modeling. Simi-
lar to known radar waveform classifiers, feature extraction
and classifier design are two key factors when the model
is established. In the field of traditional radar waveform
recognition, the radar pulse parameter-sequence is obtained
by the frequency domain wide open receiving method. The
pulse descriptionword (PDW) can be gotten as the fingerprint
feature of the radar signal, which is mainly composed of
direction of arrival (DOA), carrier frequency (RF), pulse
width (PW), pulse repetition interval (PRI) and pulse ampli-
tude (PA). Literature [3] established two processing modes
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for the recognition and training of unknown radar waveforms,
and used expert knowledge and production rules to make
logical judgments on PDW of unknown radar waveform. The
average sorting rate of radar source signals for seven working
conditions is 88%. Literature [4] selected RF, DOA, PA and
pulse number as the multi-dimensional feature parameters,
then the clustering method based on the Kohonen network
model was used for the radar to pattern matching, and three
types of radar waveform were sorted at the recognition rates
of 94.1%, 100% and 94.2% respectively. Literature [5] opti-
mized the k-means clustering method based on the network
distance, the average sorting rate of five types of radar wave-
form reaches 92.3% under the interference of random noise.
However, radar signal recognition based on PDW needs
to separate independent pulses from randomly overlapping
pulse streams. There was an excessive manual intervention
in signal preprocessing. In addition, in a real electromag-
netic environment, due to the high density of electromagnetic
signals, in order to identify a large number of radar emitter
signals, it is necessary to seek high-precision and stable
parameter characteristic information of radar waveform.

For in-pulse feature, as the modulation method changes,
it can reflect the comprehensive characteristics of the ampli-
tude, frequency and phase of the signal. For the rich cov-
erage of feature parameters and less parameter overlap,
the in-pulse feature selected as the parameter has become
a trend of radar waveform sorting technology in recent
years [6]–[12].To get the in-pulse features, some extrac-
tion such as Short-Time Fourier transform (STFT) [6], [10]
Choi-Williams distribution (CWD) [7] andWigner-Ville Dis-
tribution (WVD) [8] can get the time-frequency feature of
radar emitter signals. For the extracted features in two-
dimensions or multi-dimensions, some classification algo-
rithm such as Support Vector Machine (SVM) [7], [12]
CNN [8], Long Short-term Memory (LSTM) [9] Proba-
bilistic Neural Network (PNN) [10] and Back Propagation
Neuron Network (BPNN) [11] have been used to sort the
radar waveform and achieved a high accuracy rate. How-
ever, for the classifiers in deep learning networks waveform
signals, the high classification accuracy has achieved with
cost of abundant of training data and training time. Deep
learning often requires that each category in the sample
database needs to be independent and identically distributed.
For the radar waveform received in the actual environment,
it is necessary research for us to identify whether it is a
known signal or an unknown new signal in a relatively short
time. In the field of transfer learning, the main goal is to
transfer the learned knowledge to unknown areas. Although
learning in the unknown domain is a bit difficult, it can
make full use of the knowledge of the known domain and
combine the hidden information between the two domains.
Transfer learning is involved in image classification, remote
sensing image analysis [15], [16], tongue image medical
diagnosis and treatment [19], power data mining [20], bear-
ing fault diagnosis [21], [22] and the applications provide
research directions for the identification of unknown signals.

Literature [14] adopted a scalable model update mechanism
based on transfer learning technology to adapt to the increas-
ing number of plant species. After the two transferring oper-
ations, The Alexnet which could recognize 15 plants images
recognize up to 206 species, and the accuracy rate of that
exceed 80% from 60%; Literature [15] uses the form of
shared autoencoder parameters for transfer learning, and con-
ducts disjoint training and testing on four data sets of AwA,
CUB, aPY and SUN. The knowledge acquired from the three
data sets is tested on the other data set. The recognition accu-
racy rates of the four data sets are 85.09%, 66.25%, 56.69%
and 86.94% respectively; Literature [16] which was based on
transferring knowledge and saving data structure solved the
problem that there is no intersection between known types
and unknown types in cross-domain image classification. The
average accuracy of the four types image databases is 79.1%.
In remote sensing image analysis, literature [17] aiming at
the problems of in recognition, ‘‘same object with different
spectrum’’ and ‘‘foreign object with same spectrum’’, trans-
ferred themodel and parameters of Inception-V3 network and
performed high-precision classification and stable process in
AID and NWPU-RESISC45. Literature [18] transferred the
priori information of ground object classification in historical
remote sensing samples to the target model. an improved
Bayesian neural network transfer learning was constructed
and achieved good results. Literature [19] used the trained
image classification network Inception_V3, ResNet18, and
ResNet50 to extract the feature value of the tongue image
on the preprocessed facial image. The average recognition
accuracy rates were 85.30%, 92.84%, and 94.88% respec-
tively. In terms of power data mining, the literature [20] used
the maximum mean difference (MMD) to make the source
field and the target field as close as possible, deep learning
networks such as the Stack Sparse Auto-Encoder (SSAE),
LSTM, Gate Recurrent Unit (GRU) were adjusted to obtain
data feature mining for fault detection, fault diagnosis and
load forecasting. In analysis of diagnosing bearing, litera-
ture [21], [22] introduced an auxiliary bearing data set which
is similar to the target data set to obtain the target bearing
vibration indirectly, the generalization ability of faults were
improved under different working conditions; Literature [22]
used vibration signals when using vibration signals. The
feature data set of bearing detection composed of domain
and frequency domain adopts semi-supervised transferring
component analysis based on the maximum mean difference
embedding method to solve the problem of rolling bearing
fault diagnosis under different working conditions.

In the above transfer learning applications, whether net-
work based on freezing and fine-tuning [13]–[19] or trans-
ferring component analysis based on the maximum mean
difference [20], [22], the learning is transferred from the
source domain to the target domain, and the learning and
generalization capabilities of the recognition model can be
improved. The transferred knowledge from the classification
of known waveform signals to the classification of unknown
waveform signals provides a direction.
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The classification method of radar emitter based on deep
learning has strong capacity of resisting disturbance and
high identification accuracy [23]–[25]. However, for most
of the deep learning, the radar emitter classifiers need to
meet the requirements that training data set and the test
data set come from the same sample collection and are dis-
tributed uniformly [26]. When the source domain and tar-
get domain are different or the classification task changes,
the transfer learning method is introduced and can trans-
fer the acquired knowledge to other domains [27], [28].
While, in the field of image classification, the bottom deep
learning network can generalize common colors and fea-
tures in natural images [29]. A variety of classical CNN are
transferred to different classification tasks, and the training
efficiency and classification accuracy of network models
are greatly improved [30]–[32]. Various typical CNN such
as Alexnet [30], [31] and ResNet [32] have been enough
trained maturely to be used in the classification of TFI of
radar emitters. In the literature [30], a mixture of pre-trained
Encoder (SAE) and AlexNet structures have been used to
extract TFI features for the situation where the radar signal
sample is small. It can identify 12 radar signals (Costas,
LFM, NLFM, BPSK, P1-P4 and T1-T4) with an average
recognition rate of 95.5 % when the SNR is greater than
−6dB. The GoogleNet network transferred in the litera-
ture [31] had realized offline training and online recognition,
and could recognize 9 radar signals (CW, LFM, NLFM,
BPSK,MPSK, Costas, LFM/BPSK, LFM/FSK, BPSK/FSK).
When the SNR was −6dB, the overall average recognition
rate could reach 95.5%. These researches are only about
the identification of known radar emitters, but there are
no relevant researches to solve the identification problem
of unknown radar waveform by using the idea of transfer
learning.

In this paper, combined with the idea of transfer learning
and deep learning network, the obtained neuron units at the
full connection layer are used as the reconstruction features
of radar emitter signals. One side, the reconstructed feature
extractor can convert the initial image into a suitable charac-
teristic of low dimension. The dimensionless neurons unit go
randomly through the dropout layer, which can alleviate the
fitting degree and are more suitable for the classification of
the subsequent tasks. On the other side, by transferring the
CNN and keeping the bottom parameters unchanged, we can
obtain a group of random neurons to demonstrate special fea-
ture difference between known signals and unknown signals.

Among the complex algorithms of deep learning, random
forest is an algorithm that integrates the outputs of multiple
decision trees for learning after randomly assigning sample
size and feature dimensions to all decision trees [33], [34]. For
medium high number of dimensions, the random forest can
avoid overfitting phenomenon effectively, and its algorithm
recognition rate does not change much with the number of
feature dimensions [35].

For an image of radar emitter, the original TFI database
reflects the distribution of signal energy in time-frequency

plane. And for an image-classifier of radar emitter, it reflects
signal characteristics through extracting the shape feature
of images [32]. The short-time autocorrelation characteristic
image database can through the study of the autocorrela-
tion of signal processing of deterministic signal intercept the
signal feature, eliminate noise interference [36]–[38], [42].
Fusion of different datasets is a potential solution to improve
signal classification accuracy and anti-noise performance.
For dual-image database fusion, decision fusion is the highest
level of information processing. To determine the appropriate
fusion strategy can fuse the advantages of image database
and improve the automatic discrimination effect of unknown
signals.

The main purpose of this paper is to realize the identifi-
cation of unknown radar waveform. A sorting identification
model based on transfer learning and linear weight decision
fusion is proposed. Firstly, the general features of radar sig-
nals are extracted by using the known radar samples. Then,
based on the transfer learning, the reconstructed features of
some unknown signals are taken as the training samples of
subsequent classifiers. The difference between known and
unknown samples in general feature extraction is used to train
the classifier. At the decision level, the weight factor of the
dual image database is determined by the overall accuracy
of each database to various signals. Finally, the experimental
results show that the proposed method is able to identify
unknown radar signals under the wide range of SNR. The
stability of the recognition model and the high accuracy
are verified in several schemes that can simulate the real
situation,

Specifically, the contributions of this paper are as follows.
(1) Based on the current status of identifying the known

radar emitter signals, the idea of transfer learning is proposed
for the identification of unknown emitter signals.

(2) By integrating transfer learning and CNN, a newly
reconstructed feature extractor is designed to deeply extract
the reconstructed features of known radar emitter signals with
higher dimensions and mobility.

(3) Combining the features of the dual image database
and utilizing the advantages of the multi-classifier sys-
tem, the double classifier is fused to make decision output
judgment.

II. BASIC FRAMEWORK FOR UNKNOWN RADAR
IDENTIFICATION
In this section, this paper gives a basic framework for the
identification of unknown radar emitters based on transfer
learning and CNN. The configuration of the verification algo-
rithm environment and the preprocessing for selected signal
are explained subsequently.

A. TRANSFER LEARNING PROCESS OF UNKNOWN RADAR
IDENTIFICATION
In a typical recognition model of radar waveform, the deep
learning network can automatically extract data features, but
the output sample type labels are limited to known label sets.
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When an unknown new type of radar signal appears,
the learned knowledge will be acquired and to be trans-
ferred to a new classification situation, and it can realize
the identification of unknown new class samples [13], [28].
The transfer learning process of unknown new class of radar
emitter recognition is shown in Figure 1.

FIGURE 1. The transfer learning process of unknown new class of radar
emitter recognition.

As the training process shown in Figure 1, X =

{x1, x2, x3, · · ·, xn} is the sample set of the radar waveform,
and Y =

{
y1, y2, y3, · · ·, yp

}
is the label set to which the

signal sample belongs. Suppose A = {X ,Y } is a training data
set of known radar signal. Where, the classification network
is trained using the data set A, and the classification function
is recorded as F(·), and the output predicted label F(x) is as
much as possible true label Y . But in actual testing, when
the new type of radar signal

(
x ′, y′

)
appears, in other words,

x ′ /∈ X and y′ /∈ Y , the model will transfer the existing
knowledge to recognize the unknown signal, and predict the
signal as its true label y′. The predicted labels set can contain
and can be marked a new label.

B. MODEL STRUCTURE OF UNKNOWN RADAR
IDENTIFICATION
Different from the literature [30]–[32], the random forest
classifier proposed in this algorithm utilizes the neurons out-
put by CNN feature extractor [13], [19]. It can distinguish
unknown radar signals automatically after learning the char-
acteristics of unknown signals and known signals. As shown
in Figure 2, signals in space are received into the radar
signal receiver by the antenna, and the image obtained after
signal preprocessing is used as the input of feature extractor.
In the feature extraction stage, the CNN is used to extract the
general feature of radar signal, and the output neuron group
is used as the reconstructed feature vector. In the decision
fusion stage, the classifier decision of linear weight fusion
of two image data sets is set to recognize the unknown radar
waveform.

FIGURE 2. Unknown new class of radar emitter recognition transfer
learning process.

C. GENERAL SIGNAL PARAMETER SETTING AND
PREPROCESSING
1) SIMULATION ENVIRONMENT SETTINGS
When setting the simulation environment, each parameter
value of the signal is set as random transformation within the
specified range, and the waveform is set as in literature [39].
mod (a, b) represents the remainder function, and b·c repre-
sents the integer downward function. The 11 radar signals
defined in Table 1 were simulated in this paper, including
LFM, Frank, Costas, P1-P4 and T1-T4. Themain work of this
paper is that in the case of four known radar signal databases,
when a newmodulationmode other than the four knownmod-
ulation mode appears, the system can automatically judge it
as a new category. The first four signals in Table 1 (LFM,
Costas, BPSK, Frank) are marked as known modulation sig-
nals, while other signals are marked as unknown signals.
When the signal is simulated, the simulation range is from
−6dB to 9dB, and the step is 3dB.

TABLE 1. Radar waveform modulation parameters.
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For the design of feature extractor, the four kinds of signals
generate 2,500 samples at each SNR, and then the 2,500
samples generated are distributed to the training set and
the test set respectively in a 4:1 ratio. Therefore, there are
48,000 samples in the feature extractor’s training set and
12,000 samples in the test set; For the design of the classifier,
the four known signals generate 1000 samples at each SNR,
and then are distributed to the training set and the test set
respectively in a ratio of 1:1. The unknown eight kinds of
signals generate 500 samples under each SNR, and then
the 24,000 samples are distributed to the training set and
the test set respectively according to the ratio of 1:1 with
different signal types. Therefore, there are 24,000 samples in
the training set and 24,000 samples in the test set.

2) CWD TIME-FREQUENCY ANALYSIS TECHNOLOGY
The radar emitter signal is a typical non-stationary signal. The
time-frequency analysis (TFA) technology can describe the
change of the frequency spectrum content of the signal in
the time domain. And it can extract the effective information
to the maximum extent by mapping the one-dimensional
time domain signal to the two-dimensional time-frequency
surface. Among the many TFA processes, WVD is the most
basic analysis technology with a high time-frequency resolu-
tion [40]. However, in the processing of multi-component sig-
nals, there are serious cross-term influence and low anti-noise
performance. The TFA of Cohen class can be obtained by
smoothing WVD with different kernel functions ψ (t, τ ).
And the analysis can compromise the cross-restriction of
cross-terms and obtain high time-frequency resolution. For
a given time-frequency signal, the Cohen distribution of it is
defined as follows:

Cy (t, f ) =
∫∫

y
(
u+

τ

2

)
y∗
(
u−

τ

2

)
ψ (t − u, τ ) e−j2π f τdudτ (1)

Given different kernel function calculation expressions,
different functions will be obtained. Based on the nonlinear
time-frequency CWD distribution [41], its kernel function is
expressed as follows:

ψ(t, τ ) =
1

√
4πατ 2

exp
(

1
4πατ 2

t2
)

(2)

where, α is the scaling factor. It is a zero-dimensional
parameter to measure the influence of cross-suppression and
time-frequency resolution.

The time-frequency distribution CWD will be obtained
when formula (2) is bought into the Cohen formula, and
is expressed as CWD (·). For a given signal y (t), its CWD
distribution is expressed as follows:

CWDy (t, f ) =
∫∫

y
(
u+

τ

2

)
y∗
(
u−

τ

2

)
1

√
4πατ 2

e
1

4πατ2
(t−u)2−j2π f τdudτ (3)

This article sets α = 1 to balance the relationship between
CWD cross-term suppression and time-frequency resolution.

3) TIME-FREQUENCY IMAGE DATABASE
Now We analyze a simplest radar transmitting and receiving
system. The radar emitter signal reaches the receiver through
a channel. The received signal y (k) of the receiver can be
expressed as follow:

y (k) = s (k)+ w (k) (4)

where, s (k) represents the ideal discrete signal after inter-
mediate frequency sampling, and n (k) represents additional
Gaussian white noise (AGWN), k is an index value that
increases sequentially with the sampling interval.

The transmitted signal s (k) can be expressed as the
following:

s (k) = Aejθ(k) = Aej(2π f (k)(kTs)+φ(k)) (5)

where, A represents the instantaneous envelope (amplitude)
of the ideal sampled signal, θ (k) represents the instantaneous
phase of the ideal sampled signal, f (k) is the instantaneous
frequency, k is the sampling index value, Ts is the signal
sampling interval, and φ (k) is the instantaneous phase offset.

CWD is operated to the pulse modulation signal y (k), and
based on the performance considerations of the CPU and
GPU of the experimental platform, the appropriate signal
sampling interval Ts and the number of sampling points k are
set to obtain two-dimensional matrix MY in size of 64∗64.
MY (i, j) is used to represent the value of the i − th row
and the j − th column in that matrix. In order to convert to
image, the value of each pixel in the image is calculated and
expressed using the normalization method

TFI (i, j) = 255
MY (i, j)−min (MY)

max (MY)−min (MY)
(6)

where, max (·) and min (·) represent the maximum and min-
imum values of the two-dimensional matrix. So far, an orig-
inal TFI of the size of the signal modulation characteristic
is obtained. The original TFIs (SNR = 0dB) are shown
in Figure 3.

4) SHORT-TIME AUTOCORRELATION FEATURE IMAGE
DATABASE
Directly performing CWD time-frequency analysis to the
received unstable pulse-modulated signal y (t) can obtain the
original TFI, but the original TFI characterizes the feature
of the noise signal, too. Now, seeks a feature representation
that can highlight the received useful signal [36] and signal
recovery [37].

Observation shows that the radar signal can be regarded as
stable in a short time and can be approximately unchanged.
Using its short-time stationarity, the stable signals of each
segment are approximated by extracting a finite length part
of the radar signal using a window function. There are two
commonly used window functions, one is a rectangular win-
dow, the function is as follows:

w (n) =

{
1, 0 ≤ n ≤ N − 1
0, else

(7)
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FIGURE 3. Original time-frequency images of the 12 signals in Table 1
(SNR = 0dB).

The other is the Hamming window, whose function is as
follows,

w (n, α)=(1− α)−αcos
(

2πn
N − 1

)
, 0 ≤ n ≤ N − 1 (8)

In general, α is taken as 0.46.

Windowing is mainly to reduce leakage, and a window
function with narrow main lobe width and large side lobe
attenuation should be selected. This approach also has some
limitation. Since the single window is applicable to all fre-
quencies, the resolution of the analysis is the same for all
points in the time-frequency field. Therefore, it is almost
impossible to obtain any high resolution in time and fre-
quency. By comparison, the width of the main lobe of the
rectangular window is smaller than that of the Hamming
window, and it has a higher spectral resolution, but the
side lobe peak of the rectangular window is larger, so its
spectral leakage is more serious. The width of the main
lobe of the Hamming window is wider, about twice that
of the rectangular window, but its side lobe attenuation is
larger, with a smoother low-pass characteristic, which can
reflect the frequency characteristics of short-time signals to
a higher degree. Determine an appropriate window function
to get a frame of length of M , and the internal signal of the
frame structure remains stable. It should be emphasized that
although the continuous segmentation method can be used
for framing, the overlapping segmentation method (shown in
Figure 4) must be used, because such a framing method can
ensure a smooth transition from frame to frame and maintain
its continuity to ensure that data is not lost. Usually the
overlapping part of the previous frame and the next frame is
called frame shift. The ratio of frame shift and frame length is
generally taken as 0 ∼ 1/2. The schematic diagram of frame
shift and frame length is shown in Figure 4.

FIGURE 4. Acquisition of signal framing.

After obtaining a stable framed signal, since the values of
the deterministic signal at different times generally have a
strong correlation. For the interference noise which is with
strong randomness, the correlation of the values is generally
weak at different times. So, the difference can be used to
distinguish the deterministic signal in the sub-frame from the
interference noise.

The autocorrelation processing is operated on the signal
side y (t), and the autocorrelation Ry (τ ) is:

Ry (τ ) = E [y (t) y (t − τ)]

= E {[x (t)+ w (t)] [x (t − τ)+ w (t − τ)]}

= E [x (t) x (t − τ)]+ E [w (t)w (t − τ)]

+E [x (t)w (t − τ)]+ E [w (t) x (t − τ)]

= Rx (τ )+ Rw (τ )+ Rxw (τ )+ Rwx (τ )Ry (τ )

= Rx (τ )+ Rw (τ ) (9)
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Since the noise w (t) is not related to the signal x (t), then,
there is

Ry (τ ) = Rx (τ )+ Rw (τ ) (10)

For the zero-mean Gaussian white noise w (t) with a wide
bandwidth, the autocorrelation Rw (τ ) is mainly reflected in
the vicinity τ = 0. When τ is larger, it mainly reflects the
situation of Rx (τ ), so there is:

Ry (t) ≈ Rx (t) (11)

It can also be explained above that for the received signal
y (t) superimposed with noise, when the time delay τ of
its autocorrelation function Ry (τ ) is large, the contribution
of random noise to Ry (τ ) is small, and then Ry (τ ) mainly
express the characteristics of the deterministic signals con-
tained in y (t). For non-periodic random noise, when the time
delay τ is large, the autocorrelation function of the noise
term tends to zero, which can extract useful signals from
the noise [42]. In general, it is more complex to restore
a noise-contaminated signal than detecting the presence of
known signals in the noise. And if the noise-covered signal
appears only once, rather than appears repeatedly, the meth-
ods such as sampling-integrals and digital-averaging cannot
be used to restore the signal. This autocorrelation processing
is not to recover the signal polluted by noise, but to extract
the features of the useful signal directly, which is very useful
in this case.

According to the analysis to signal above, the method the
short-time autocorrelation feature image (SAFI) is adopted
to transform the received signals. The construction of feature
images is constituted by the following steps, and the diagram
of the construction above in Figure 5.

FIGURE 5. Construction process of short-time autocorrelation feature
image.

The specific details are explained below. In the stage
of frame acquisition, for the mixed sampled signal y (k)

with length of N , the signal is divided into several frames
by a rectangular window of length of M , then the length
of each frame signal obtained is M . If the last frame
is not full, the insufficient part will be added with zero
padding operation; in the frame signal auto-correlation
sequence generation stage, for each frame signal with length
of M , auto-correlation length of that is 2M − 1, the final
auto-correlation sequence is obtained by intercepting its frag-
ments in range of

(
M
/
2, 3M

/
2
)
; in the frame stitching

stage, due to the difference in autocorrelation values of
each subframe, after normalizing each subframe, splicing
frame by frame to obtain the autocorrelation sequence of the
sampled signal; in the generation stage of autocorrelation
feature image, the obtained short-term autocorrelation fea-
tures are processed by the CWD time-frequency transforma-
tion introduced in section II-C-2. After that a characteristic
image that can specifically feature of signals has been
obtained. In the image pixel size, choose the same size as
the original time-frequency image. As the Hamming win-
dow has a smoother low-pass characteristic, which can better
reflect the characteristics of short-term signals. After the
Hamming window is selected, and feature images obtained
have a better pixel distribution. The 12 signals in Table 1 are
processed as above, and SAFIs of those are shown in
Figure 6.

It should be further explained that the SAFI of radar signal
used in this section is obtained by autocorrelation sequence
with CWD time-frequency analysis. some related knowledge
the signal autocorrelation value such as the deviation analysis
the sample point parameters and the clipping rules are all
introduced in 3.1.4 of the literature [36] completely and in
detail.

III. REALIZATION OF THE UNKNOWN RADAR
WAVEFORM IDENTIFICATION FUNCTION
To achieve the identification of unknown new types of radar
emitter, a recognition algorithm using decision fusion after
transfer learning reconstruction feature extraction is proposed
in this paper. The network is divided into two parts, recon-
struction feature extraction and decision fusion.

A. RADAR SIGNAL FEATURE EXTRACTION
An accurate feature extraction is the basis to ensure the valid-
ity and rationality of the classification algorithm. Increasing
the feature dimension by an appropriate amount can obtain
the better signal parameter characteristics. In the field of
image recognition, CNN uses the generalization of com-
mon colors and features in natural images to achieve perfect
results [29]. The image set of two-dimensional TFI achieve
feature extraction by using CNN. The idea is based on the
concept of deep transfer learning, the reconstruction and
extraction of feature are realized by transferring some param-
eters [13]. The Original TFI or the SAFI which is obtained by
preprocessing the received signal is used as the input of CNN.
The diagram of reconstruction feature extraction is shown in
Figure 7.
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FIGURE 6. The short-time autocorrelation feature image of 12 signals
(SNR = 0dB).

The reconstructed-feature extraction based on transfer
learning is to realize the accurate classification of known
radar emitters and the accurate extraction of reconstructed
features. As shown in Figure 7, the classification of unknown
radar signal waveform in the whole process consists of three
steps.

FIGURE 7. Transfer learning reconstruction feature extractor.

The first step is called the training stage. The data set 1
(LFM, Costas, BPSK and Frank in Table 1) conducts param-
eter training for CNN classified network. After training a
large-scale data set, the parameters in CNN fit the data set 1
(known radar signal characteristic image) extremely. Based
on obtained training results, the neurons in the full connection
layer of CNN (that is, 256 neurons in the Figure 8) can show
the characteristics of each sample of the known radar signal
datasets 1.

FIGURE 8. CNN architecture of radar emitter feature extraction.

The second step is the feature extraction stage. The data
set 2 (P3, P4, T3 and T4 signals in Table 1) is used as the test
input of the trained CNN network. The 256 neurons extracted
from the full connection layer of CNN represent the feature
of each sample in data set 2. It should be noted that the signal
type of data set 2 is completely different from that of data
set 1. Since data set 2 does not participate in the training
of CNN, it is ‘‘unknown’’ to the trained CNN. After step
1 and Step 2, we obtain the characteristic representation of
known signals and unknown signals fromCNN, and complete
the classifier training with the training set marked as known
signal and unknown signal. So far, we can determine whether
the test signal is a known signal or an unknown signal.

The third step is the testing stage. The data set 3 (signals
P1, P2, T1 and T2 in Table 1) tests the recognition effect
of unknown signals of the transfer learning network model.
It should be noted that the signal type of data set 3 is different
from that of data set 1 and data set 2. Data set 3 does not
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participate in CNN training and is ‘‘unknown’’ to CNN.
During the test stage, 256 neurons in the full connection layer
of CNN are extracted as the feature representation of each
sample in data set 3, and then the feature representation was
input into the classifier trained in Step 2 to verify the model’s
ability to automatically distinguish unknown signals from the
results of the classifier. In order to avoid model overfitting,
signals of data set 1, during testing and training. data set 2
and data set 3 are extracted in random order respectively.

CNN and Softmax classifier are trained with the four
known radar signals in dataset 1. The network structure and
the size of the characteristic layers obtained by each layer are
shown in Figure 9.

FIGURE 9. Structure of random forest algorithm.

As shown in Figure 8.a, the input TFI is input to four
convolutional layers, four pooling layers and the fully con-
nected layer. The output 256 neurons (in Figure 8.b) which
are activated by Relu function are the reconstructed features.
The structure of CNN is relatively simple. It mainly com-
posed of the convolutional layer, the maximum pooling layer,
the fully connected layer, and the dropout layer. Among them,
the dropout layer will discard neurons from the former layer
randomly. The value of the drop probability is set as 0.25 to
prevent network overfitting [43]. As the relevant parameters
of the training time and accuracy of the neural network are the
learning rate, the size of the convolution kernel, the number
of iterations, and the batch of training samples (abbreviated as
batch size). By the method that changing a single variable at
one time, a structure with high accuracy and appropriate time
consumption can be obtained. The training signal samples are
chosen from the SNR of −6dB to 9dB, and the test set uses
the signal with a SNR of 0dB for testing. Under the simu-
lation condition of GTX1050TI GPU, after 10000 iterations,
the final hyperparameter configuration of the network model
is obtained as below: block size is 128, convolution kernel
size is 3× 3, learning rate is 0.0001.

B. DUAL IMAGE DATABASE DECISION FUSION
Based on the dual image databases in 2.3, the image fusion
theory is considered to extract features from TFI and SAFI
respectively. And the outputs of the two classifiers are fused
in parallel mode as the final classification decision. Decision
fusion is the process of information fusion from multiple
data sources after preliminary classification of each data
source [44]. As an important part of unknown signal recog-
nition in this paper, fusion strategy is mainly determined by

the output form of classifier and the cost of sample train-
ing [45]. Nowadays, the research on decision fusion model
focuses on a variety of combinations of classifier systems.
According to the constructed database, classification decision
and information fusion are performed at different information
levels to overcome the limitation of low accuracy of single
classifier [46]. For the decision fusion of double classifier,
a linear weight allocation technique based on recognition
accuracy is adopted in this paper. Firstly, based on the recog-
nition performance of unknown signals and known signals in
each data set, the weight factor of the classifier is determined.
And then the classification probability value output by the
classifier is combined with the weight factor linearly.

Generally speaking, the output levels of classifiers can
be divided into three levels: abstract level, rank level and
measurement level. The abstract layer refers to the num-
ber of the predicted category of the sample output by the
classifier. the rank level refers to the number sequence
of the predicted category of the sample output according
to the possibility of the category. The measurement layer
refers to the possibility of all categories of the sample
output by the classifier [47]. In terms of the amount of
information, there is a reduction process of an information
from the measurement layer to the abstract layer. In addi-
tion, the decision fusion effect based on the measurement
level performances better. Assuming that classification clas-
sifier have n classes, the initial probability of the signal
in TFI database Ti = {T1,T2,T3, . . . ,Tn, i = 1, . . . , n}
shows the probability of each category, and the initial
classification result of the signal in the SAFI database is
Si = {S1, S2, S3, . . . , Sn, i = 1, . . . , n}. The weights of
two databases the above for each class after normalization
are WTi =

{
WT1 ,WT2 ,WT3 , . . . ,WTn , i = 1, . . . , n

}
and

WSi =
{
WS1 ,WS2 ,WS3 , . . . ,WSn , i = 1, . . . , n

}
respectively.

Then the classification result after decision fusion is calcu-
lated as below:

Pi = Ti ×WTi + Si ×WSi (12)

where, Pi are the probability of the i-th class after fusion,
Ti represents the probability of the i-th class of TFI database,
Si represents the probability of the i-th class of the SAFI
database, WTi represents the linear weight of the i-th class
of the TFI database, WSi represents the linear weight of the
i-th class of the SAFI database.

The types of radar emitter in this article are divided
into known radar waveforms and unknown radar waveforms
(i.e. n = 2). the weight value and weight of each database
are determined by the accuracy of the recognition of the
known radar waveform and the unknown radar waveform
when each classifier is used alone. that the recognition accu-
racy rate ranges from 0% to 100%. The range of values is
[0, 1].So for the data of TFI( can be regarded as classifier 1),
the recognition accuracies of the known radar waveform and
the unknown radar waveform are PT1 and PT2 .And for the
data of SAFI( can be regarded as classifier 2), the recognition
accuracies of the known radar waveform and the unknown
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radar waveform are PT1 and PT2 he classifier using the short-
time autocorrelation feature image (defined as classifier 2),
so we can obtain the weights for the TFI database by the
following formulas.

WT1 =
PT1

PT1 + PS1
(13)

WT2 =
PT2

PT2 + PS2
(14)

where, WT1 is the normalized recognition accuracy of TFI
database for known radar waveform, i.e. the weight value,
WT2 is the normalized recognition accuracy of TFI database
for unknown radar waveform. By the similar method, the
weight value of SAFI database to the known signal WS1 and
unknown signal WS2 can be obtained. The calculations are
given as below.

WS1 =
PS1

PT1 + PS1
(15)

WS2 =
PS2

PT2 + PS2
(16)

C. RANDOM FOREST ALGORITHM
According to the dimensions and features of the reconstructed
features obtained in the section III-A, the selected base clas-
sifier is introduced in this section.

Random forest [48] is a learning method based on Bag-
ging integrated learning theory and random subspacemethod.
The random forest which is consisting of several decision
trees can aggregate the advantages of decision trees and
solve the problem of restricting the processing of complex
data. In addition, it has good parallelism and expansibility in
high-dimensional data classification and tolerances for noise
and outliers. With the high learning efficiency, it is often
used in high-dimensional big data classification. Based on the
thinking of unweighted selection proposed by Leo Breiman,
the training samples for the decision trees are select randomly
by the baggingmechanism. As the selection are operated with
the return, there will be a possibility of overlapping between
the sub-training sets. The feature variables are also chosen
randomly to avoid the problem of sample coincidence. Thus,
the samples and decision trees modeled by the samples are
both different from each other.

The training set for random forest is consisting of the
radar signals features obtained by CNN. The structure of
the random algorithm is shown in Figure 9, which is mainly
composed of three parts, the sub-training set of each decision
tree, the nodes of each decision tree and the random forest
formed by summarizing the results.

As shown in Figure 9, the total training set are set as
A = (X ,Y ), where, X represents the signal sample set and
Y represents the signal label set. For a random forest with t
decision trees, each decision tree is modeled as follows: first,
conduct bagging resampling to form the sub-training set 2i
for the i-th decision tree; Then random feature tailoring is
carried out for each signal sample in the sub-training set, and

feature number is m. Thus, the construction of nodes in each
decision tree is completed.

When the test sample S is input, the result of i-th decision
tree is decided by the sub-training set2i generated randomly
by the according to the total training set A and is expressed
as The random forest summarizes the results of the decision
tree classifier {h (S,2i) , i = 1, 2, 3, · · ·, t} and usesmajority
voting method to output the final classification results. The
prediction result of the random forest depends on the decision
categories of all decision trees. The decision tree conducts a
majority vote and h (S,2i) outputs the most categories as the
categories to which the test set samples belong [49]. For the
test samples S, the probability of it is classified to label Y is
expressed as PRF (S,Y ) and is calculated as below:

PRF (S,Y ) =
1
t

t∑
i=1

I (h(S,2i) = Y ) (17)

where, I (·) is the indicator function, if · true, it takes the
value 1, otherwise it takes the value 0; t is the number of
decision trees in the random forest; h (S,2i) is the decision
result of the decision tree. According to the output classifica-
tion probability vector, the highest probability is selected as
the classification category of the test signal sample. Then the
classification function GRF (S) of the random forest for the
test sample S can be expressed as

GRF (S) = argmax
Y

(PRF (S,Y )) (18)

where, PRF (S,Y ) is the probability of sample to category,
and argmax(·)

Y
is the parameter of output maximum value.

For a certain training set, the number of decision trees t
and the number of featuresm both affect the accuracy and loss
value of the random forest model. As a base classifier for ran-
dom forests, the greater the difference between decision trees,
the better the results we will get. and the difference between
decision trees can be enhanced by adjusting the number of t .
With the classification accuracy of the algorithm as the target,
the number of decision trees is determined t = 101 based
on the various loss functions. It should be noted that when
training the nodes of each decision tree, the features used
are extracted from all features (total number is M ) randomly
according to a certain proportion without replacement. For
the setting of the number of feature subsets m, according to
Leo Breiman’s suggestion, can be set as the three gradients:
1/2
√
M ,
√
M , 2
√
M . In this paper, the signal samples after fea-

ture extraction are represented by 256 neurons, i.e. M=256.
The random forest classifier effect is tested, according to
the conditions of 8, 16, and 32. The TFI dataset is used to
set the parameter of random forest model. The simulation
range is from −6dB to 9dB at an interval of 3dB. 4 types
of known waveforms are composed of LFM, Costas, Frank,
BPSK, T1, T2, P1, P2 are marked as unknown waveforms
for training. And T3, T4, P3, P4 are marked as unknown
waveforms for testing. The other simulation conditions are
stated in section II-C-1. The recognition accuracy results are
shown in Table 2.
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TABLE 2. The selection of the feature number.

Analysis of the data in Table 2 shows that when the number
of decision trees remains the same, the number of features is
changed according to the three gradients.When the number of
sub-features is 8, the model recognition accuracy reaches the
highest. Considering the calculation amount and accuracy, the
number of decision trees is set to be 101 and 8 sub-features are
chosen tomodel the decision tree. So far, for the identification
of unknown signals, the best state of the model is selected.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DOUBLE DATABASE LINEAR WEIGHT DETERMINATION
The implementation stages of the entire classification model
described in section III-A includes the training stage,
the unknown feature extraction stage and test the transfer
learning network.

The dataset 1 (the original TFI of the four signals of LFM,
Costas, BPSK, and Frank) is used to train the CNN, then
the classification result and the neurons of known signal
can be obtained from the CNN. The data set 2 (the original
TFI of the four signals P3, P4, T3 and T4) are input to the
CNN to get the 256 neurons of the fully connected layer
in the CNN. At the CNN level, the four signals in dataset
2 are unknown signals compared to dataset 1. The two above
groups of neurons obtained are used to train the classifier.
Then, the data set 3 (the original TFI of the four signals P1,
P2, T1 and T2) are also input to the CNN to get the 256 neu-
rons of the fully connected layer in the CNN. The obtained
256 neurons are then input into the trained hybrid classifier
to determine whether the target signal is known or unknown.
After the above three stages, the obtained classifier is labeled
as Scheme 1. For comparison, Then, the original TFI data
set is changed to the STFI data set data set. After the similar
three stages, the obtained classifier is marked as scheme 2.
According to the simulation conditions introduced in section
II-C-1, the test set is consisting of eight signals. And each
signal has 500 samples at each SNR. When the SNR is 0 dB,
the test results of the eight signals at 0 SNR are shown
in Figure 10.

After observation of Figure 10, it can be found that under
the two schemes these eight test signals have different recog-
nition effects. For the first four types of signals, the accuracy
rates between the two schemes have little difference, and the
accuracy rate of the recognized signals is close to 100%; For
the latter four types of signals, the performance between the
two schemes is different, scheme 1 performances better in
recognizing the T1 and P1 signal, while scheme 2 perfor-
mances better in recognizing the T2 and P2 signal. On the
whole, accuracy rate of unknown signal is in the interval

FIGURE 10. The recognition accuracy of eight test signals by the two
schemes (SNR = 0 dB).

[70%, 100%]. The advantages of Scheme 1 and Scheme 2 are
not average in different signals. And it is not wise to use only
single scheme to identify unknown signals. The performance
of the known and unknown signals by the two databases are
aggregated and shown in Table 3.

TABLE 3. The recognition rate of two databases for unknown and known
signals.

After analyzing the data in Table 3, we find that the
two types of image databases have different classification
effects for known and unknown signals. Based on formulas
(13)-(16), the linear weights of the two classifiers for known
and unknown signals are calculated and shown in Table 4.

TABLE 4. The linear weight of two databases for unknown and known
signals.

When the classifiers trained by the two image databases
produce different decisions, as shown in Figure 11, the model
can give a final decision.

FIGURE 11. The decision fusion diagram.

B. RECOGNITION ACCURACY OF FUSION MODEL
The original TFI database and the SAFI database are fused
to complete the training, feature extraction and testing stages
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to achieve identifying the unknown radar waveforms. The
decision fusion model is introduced in III-B and the linear
weight values of the two databases are given in IV-A The test
results of the classification model are shown in Table 5.

TABLE 5. The results of decision fusion classification model.

It can be found from the data in Table 5 that the recognition
rate of the decision fusion classification model for the known
radar waveform is higher than that of the unknown radar
waveform. The accuracy of the known radar waveform can
reach more than 99.15%, and the accuracy of the unknown
radar waveform is in the interval (80%, 81%), which shows
that the known signal and the unknown signal can be better
distinguished. After observing the change of accuracy under
different SNRs, the accuracy of unknown signals and known
signals performance almost the same characteristics at dif-
ferent SNRs, which can indicate that the neurons extracted
in the CNN-trained data set are not trained by CNN. It can
be explained that there is a difference between the neurons
the trained CNN and the neurons extracted from non-trained
CNN. And it is feasible to use this difference to distinguish
the known and unknown radar waveforms.

To illustrate specifically the superior performance of the
decision fusion model, a Neuron Mix model is introduced
for comparison. After the feature extraction stage, the neural
output of the dual database of the original TFI database and
the SAFI database is mixed. Under the simulation conditions
of IV-A, the recognition results of the TFI database, neuron
mix model and decision fusion model are shown in Figure 12.

FIGURE 12. Comparison of results of multiple classification models.

As shown in Figure 12, in the recognition of known sig-
nals (a), the neuron mix model has the highest accuracy,
followed by the decision fusion mode. And for the recog-
nition of unknown signals (b), the decision fusion model
has the highest accuracy, followed by of Neurons Mixed
model. The recognition accuracy of the three classification
models showed consistency under different SNRs, which can

further indicate that the classification results are acceptable.
We can see that no matter for recognizing the known sig-
nal or an unknown signal, the decision fusion model and the
neuron mix model are better than the original TFI database
(Scheme 1). For the recognition of known signals (a), the neu-
ron mixmodel is always better than decision fusion, but in the
recognition of unknown signals (b), the neuron mix model is
not as obvious as decision fusion. In the context of the actual
application of waveforms, to capture the unknown radar.,
choosing a decision fusion model can effectively distinguish
between known and unknown radar waveforms.

C. ANTI-ALIASING PERFORMANCE ANALYSIS OF FUSION
MODEL
In section IV-A, when the original TFA database is used by
alone, the obtained recognition result of the T2 signal is not
optimistic (see Figure 10 for details). To analyze and solve
this case, the confusion matrix of all signals is studied further.
For the original TFI database, the confusion matrix of testing
signals is analyzed o at 0dB (see Table 6).

TABLE 6. Confusion matrix of the original TFI database (SNR = 0dB).

In Table 6, 8 kinds of signals are to be simulated, they
are recognized to be two labels, known signals and unknown
signals. At SNR of 0 dB, most of the unknown signals can be
identified accurately, in which almost 81 percent of T2 signal
is misjudged as the known radar waveform. After observing
the CNN parameters of the feature extraction network, it is
found that for CNN that have only been trained with LFM,
Costas, BPSK, and Frank. When the T2 signal is input, it will
100 percent be judged by the classifier as a BPSK. That is to
say, for the non-trained T2 signal, the feature of that is close
to BPSK signal. That is why T2 signal is recognized as an
unknown signal with low accuracy.

In the analysis of II-C-4, it can be seen that through the
construction of the SAFI, a new feature image that can char-
acterize the image uniquely. And from the perspective of
signal recognition, the feature of signal is strengthened SAFI.
The fusion matrix of the decision fusion of these two image
databases at 0 dB is shown in Table 7.

TABLE 7. Confusion matrix for decision fusion (SNR = 0dB).

From the confusion matrix of the decision fusion clas-
sification model, we can find that for the known radar
waveforms, the decision the BPSK and Frank signals have
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been slightly improved by fusion classification model. And
the recognition rate of the known signals remains at a high
level. For the unknown radar waveform, it can be found
that the discriminating ability of the P2 signal is improved
significantly, and accuracy rate of it rises to 99%. In addi-
tion, the easy-confusing T2 signal has also been significantly
improved, and its accuracy rate has also increased from 19%
to 32%, the overall recognition rate has been improved.

D. STABILITY ANALYSIS OF FUSION MODEL
For the identification model of unknown signals, the signifi-
cant difference from the previous known signal classification
is the variability of the training set and the test set. According
to the feature extraction scheme proposed in Section IV-A,
two methods are used: swapping data set 2 and data set 3 and
expanding data set 2 to complete the purpose of verifying the
stability of the training set of the changing unknown signal.

First, the types of the unknown radar waveform have been
changed. Meanwhile, the data set 1 of the training CNN
remains unchanged, and it is still consisting of LFM, Costas,
BPSK, and Frank. The data set 2 in the extraction of unknown
features and the data set 3 in the transfer learning network
test are swapped. That is to say, the training signals of the
unknown signals are P1, P2, T1, and T2. And the test signals
of the unknown signals are P3, P4, T3, and T4. The values
of linear weight are obtained under the same simulation
conditions in section IV-B. Then classification results of the
decision fusion model, neuron mix model, and scheme 1 can
be obtained after that. The results of decision fusion, neuron
mixing, and scheme1 are shown in Figure 13.

FIGURE 13. Comparison of results of multiple classification models
(change data set 3).

It can be seen from Figure 13 that, similar to the result in
section IV-B, the decision fusion classification model and the
neuron mix model still have promoted the recognition rate for
unknown signals compared with scheme 1. The recognition
results of the two models for unknown radar waveform are
basically the same. And no matter the known radar wave-
form or unknown radar waveform, each SNR presents almost
the same characteristic, which shows that this method has
good stability. Compared with IV-B results, after changing
the unknown radar signal style, the recognition accuracy of
known signals remains at a high level.

No matter what kind of radar waveform samples are
adopted, the decision fusion model based on transfer learning

has improved significantly in unknown radar waveform
recognition, and that further illustrates the neurons extracted
from trained CNN and neurons extracted from non-trained
CNN has differences. The difference is not related to the
dataset of 2 and 3 always exists

Then, the type of unknown signal (extended dataset 2) is
added to verify the stability of the model. For all the methods
discussed above, data sets 1, 2, and 3 are all four signal
waveforms. By comparing this simulation condition to the
real battlefield environment, the known signal of dataset
1 is the signal waveform that we have mastered, while
dataset 2 belongs to the unknown signal waveform relative
to dataset 1, but it can also be considered as the signal that we
want to distinguish from dataset 1 through prior knowledge.
Through the previous data analysis, it can be seen that the
decision fusion model proposed in this paper has a strong res-
olution ability for known signal waveform, and can achieve
more than 99% recognition rate under the SNR ranging from-
6dB to 9dB. For unknown signals, when the signals in data set
2 are not the same, although the trend is consistent, there are
some differences in the recognition rate. Therefore, by adding
signals in dataset 2, more unknown waveform features can
be extracted to further improve the recognition ability of
unknown signals. For data set 2, the other three signals BFSK-
BPSK, LFM-BPSK and NCFM are added successively. Data
set 1 and data set 3 remain unchanged as LFM, Costas, BPSK
and Frank4 radar waveforms, and data set 3 is P1, P2, T1 and
T2 signals. The same simulation conditions as VI-C-1 are
adopted and the test results are shown in Figure 14.

FIGURE 14. Recognition rate of decision fusion classification model
(extended data set 2).

After observation of Figure 14, It can be found the
recognition accuracy of the known radar waveform decreases
gradually as the number of signals increases. However,
the recognition accuracy of the unknown radar waveform
increases obviously as the number of signals increases.

It can be noticed that when the data set2 is added three
kinds of radar waveforms, recognition accuracies of the
known radar waveform and the unknown radar waveform
both exceed 95%, maintaining a high recognition rate. There-
fore, the selection of data set 2 can be adjusted according
to the actual battlefield needs and the goals of the post-
classification processing, which has guaranteed the accuracy
of information acquisition.
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V. CONCLUSION
An unknown radar signal recognitionmodel based on transfer
deep learning is proposed in this paper. Where, the recon-
structed feature of signals is extracted and a linear weight
decision fusion is used to improve the recognition accuracy.
For the multiple feature image of the signal, a reconstruction
feature extraction method based on transfer learning is pro-
posed, and the neural value of the fully connected layer of the
CNN is output to realize the reconstruction feature extraction
after the signal is imaged. In order to realize the recognition of
unknown radar waveforms, a multi-classifier system is used
to analyze the changes of neurons, and linear weight decision
fusion is used to realize the identification of unknown type.

Under the premise of knowing 4 kinds of signals, to iden-
tify different unknown new signals decision fusion method
can greatly improve the recognition rate. In addition, chang-
ing the unknown signal types in the training and test set,
the stability of the model always performances better; in
addition, by increasing the training types of unknown signal
samples, the model can improve the recognition accuracy
of the unknown signal. And that can provide directions to
the research of improving the recognition rate in the later
period. But in the analysis of this paper, the recognition rate
of unknown signals is generally below 85%, and there is a
problem that it is difficult to extract a certain signal feature.
The main work in the next step is mainly in two aspects: one
is studying the change in the accuracy of network recognition
in the condition of reducing the amount of unknown signal
data in the training set; the other is to study feature extraction
based on the determination of unknown signals. The opti-
mization of the extractor can obtain the characteristics of the
known signal to a greater extent and distinguish it from the
characteristics of the unknown signal.
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