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ABSTRACT This article proposes a distributed hierarchical automatic generation control (AGC) frame-
work with multiple regulation units in the performance-based frequency regulation market, named virtual
generation alliance automatic generation control (VGA-AGC), aiming to achieve the coordination of control
algorithm and AGC dispatch algorithm and adapt to the development trend of AGC from centralized
framework to centralized-decentralized framework. The framework also involves a multi agent distributed
multiple improved deep deterministic policy gradient (MADMI-TD3) algorithm that is characterized by
excellent global search capability and optimizing speed. The algorithm can help create an optimal AGC
strategy in a randomization environment so as to obtain an optimal cooperative control of AGC. According
to a simulation verification on the LFCmodel for an interconnected power grid of a province, the algorithm is
superior to the current algorithms and conventional engineeringmethods in terms of control performance and
economic benefits. In other words, the algorithm can improve control performance and reduce the regulation
mileage payment.

INDEX TERMS Performance-based frequency regulation market, virtual generation alliance automatic gen-
eration control (VGA-AGC), multi agent distributed multiple improved deep deterministic policy gradient,
regulation mileage payment, centralized-decentralized autonomy.

I. INTRODUCTION
The ever-increasing innovation of renewable energy makes
the power grid more dispersed, diverse, and random [1]–[3].
A traditional AGC strategy has difficulty dealing with the
strong random disturbance. In the strategy, the total AGC
generation power command of system is generated and dis-
patched to units through the proportion integration (PI) con-
troller and the proportional dispatch method [4].

Especially when there is a sudden power disturbance in
a complicated power grid system, in which the large-scale
wind turbine has a poor disturbance tolerance, the traditional
AGC strategy may result in chain reactions, which can cause
a larger power disturbance and affect the safety as well as sta-
bility of the system frequency. For example, during the ‘‘8·9’’
blackout in the UK [5] and ‘‘9.28’’ blackout in Australia [6],
the major power failure accidents were all caused by the off
grid of wind turbine, which resulted in serious reduction of
frequency. The AGC could not timely be responded and the
frequency regulation capacity was short during the accident.
Thus, it is very important to improve the response speed and
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control performance of AGC in a complicated power grid
system with large-scale wind turbine.

The algorithms can generally be divided into two cate-
gories. The first category is the control algorithm such as
the conventional PID algorithm [7], [8], sliding mode control
(SMC) [9], active disturbance rejection control (ADRC) [10],
fractional Order PID (FOPID) [11], fuzzy control [8], and
reinforcement learning series such as Q learning algo-
rithm [12], [13], Q learning algorithm [14], R(λ) learning
algorithm [15], (Deep Q-Network) DQN [16], and (Double
Deep Q-Network)DDQN [17]. Generally speaking, these
algorithms take the entire power grid as a single area for
calculation of generation command, which is then proportion-
ally distributed to AGC regulation units. The other category
of algorithms refers to generation power command dispatch
algorithm such as classical genetic algorithm (GA), quadratic
programming, gray wolf optimizer (GWO) [18]–[20], pro-
portional algorithm, particle swarm optimization (PSO) [21],
moth-flame optimization (MFO) [22], whale optimization
algorithm (WOA) [23], ant lion optimizer (ALO) [24],
dragonfly algorithm (DA) [25], group search optimizer
(GSO) [26], chicken swarm optimization (CSO) [27], sine
cosine algorithm, SCA) [28], and etc [28], [29]. The classical
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PID control algorithm is generally adopted as the control
algorithm and the dispatch algorithm is generally used to
dispatch the total power regulation command of ACG to
each AGC unit, aiming to minimize the regulation payment.
The separation of the two types of algorithms has certain
advantages. For example, the control algorithm and dispatch
algorithm can separately be designed. The two types of
algorithms also have a problem in terms of cooperation. The
control algorithm aims to minimize the control deviation of
frequency while dispatch algorithm the regulation payment.
The combination of two types can reduce the frequency devi-
ation and the regulation payment, thus improving the control
performance as well as lowering the regulation payment of
the AGC. The methods, mentioned above, are all based on
the centralized control framework. It is necessary to collect
real time operation data from all units, which means a large
amount of information for transmission. When the sizes of
units increase, the convergence time of the above methods
can greatly be improved, however, it may become difficult to
meet the real-time control requirements of AGC [28].

The performance-based frequency regulation market
(hereinafter referred to as ‘‘frequency regulation market’’)
[30] is proposed in Order No. 755, issued by the Federal
Energy Regulatory Commission (FERC) in 2011, aiming
to encourage more fast- response regulation units, such as
wind turbine unit, photovoltaic generation unit, and flexible
loads, to participate in the secondary frequency regulation.
Due to the new frequency regulation market mechanism,
AGC regulation payment is changed from the original simple
fixed payment per unit of regulation output to the dynamic
compensation payment influenced by the comprehensive fre-
quency regulation performance index, frequency regulation
mileage, and frequency regulation mileage quotation. The
original combination of control algorithm and dispatch algo-
rithm (hereinafter referred to as the conventional combined
algorithm) of AGC scheduling framework cannot be suitable
to the new frequency regulation market mechanism, and the
problem concerning coordination of control algorithm and
dispatch algorithm has become more serious.

This article aims to design a virtual generation alliance
automatic generation control (VGA-AGC) framework with
various units including distributed energy units and flex-
ible load units in order to solve the problem concerning
coordination of control algorithm and dispatch algorithm
in performance-based frequency regulation, make AGC to
control more frequency regulation units, and adapt to the
development trend of AGC from centralized framework to
centralized-decentralized framework. The VGA-AGC frame-
work also involves the coordination ofAGC control algorithm
and generation power command dispatch algorithm. The
VGA-AGC framework, which is based on MADMI-TD3
algorithm, has following characteristics.

1) The proposed MADMI-TD3 algorithm employs differ-
ent parameters of multiple actor networks and critic networks
for distributed optimizing. A few techniques such as clas-
sified experience replay, variable noise models, and warm

boot of experience pool are used to improve the global search
ability and optimizing speed of the algorithm. The algorithm
can obtain the optimal control strategy under strong random
environment with random disturbance caused by large-scale
distributed energy in the power grid.

2) The proposed MADMI-TD3 algorithm employs differ-
ent parameters of multiple actor networks and critic networks
for distributed optimizing, in addition, several techniques like
classified experience replay, variable noise models, warm
boot of experience pool are utilized to obtain an adaptive
reinforcement learning control algorithmwith superior global
search ability and optimizing speed. The algorithm can obtain
the optimal control strategy under strong random environ-
ment with random disturbance caused by large-scale dis-
tributed energy introduction in the power grid.

3) A simulation verification on the LFC model for an
interconnected power grid of a province has shown that the
algorithm proposed here is superior to the current algorithms
and conventional engineering methods in terms of control
performance and economic benefits: that is, the improvement
of the control performance and reduction of the regulation
mileage payment.

II. VIRTUAL GENERATION ALLIANCE AUTOMATIC
GENERATION CONTROL(VGA-AGC)
A. CONTROL FRAMEWORK
Different from conventional AGC system, VGA–AGC has a
framework with multiple agents for generating and dispatch-
ing of the AGC total generation power command. Agents,
composing the virtual generation alliance, cooperate with
each other in all the layers. The AGC control cycle is 4s.

B. VIRTUAL GENERATION ALLIANCE
Virtual generation alliance: Professor Clerc divided the
whole particle swarm into several subgroups, namely
‘‘alliances’’ [31], and each ‘‘alliance’’ consists of several
particles. Hence, this article divided the units into several
territory groups of units according to their type, namely
‘‘alliance’’. It is actually a new dispatch and control layer
added between the center scheduling and plant controller
(PLC) as a form of centralized-decentralized autonomy, cor-
responding to territory groups of units. For each territory,
there is an administrator: Lord agent. As shown in Figure 1,
for the VGA-AGC framework, four roles corresponding to
the agents are proposed, including king agent, general agent,
lord agent, and knight (units).

1) KING AGENT
It refers to the controller for an area of the power grid.
In this article, the king agent based onMADMI-TD3 replaced
the conventional PI controller. In the process of offline
training, the agent can observe the state of each agent in
the environment, so as to evaluate the action made by the
king agent, thus adjusting its own actions based on global
information. As compared to conventional controller which
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FIGURE 1. VGA-AGC framework based on MADMI-TD3.

makes decisions only based on area control error (ACE),
the king agent has superior robustness and coordination. The
king agent is responsible for the real-time output of total
power regulation command.

2) GENERAL AGENT
It is the total dispatch agent inferior to the king agent. It dis-
patches the total power regulation command issued by the
king agent to the next level of agent: lord agent. General agent
also needs to observe the state of all agents in offline training
process, so as to evaluate and adjust its own actions, thus
obtaining the optimal dispatch strategy.

3) LORD AGENT
Different types of units are classified in many groups which
named as the territory groups. The agent responsible for the
territory groups of units is lord agent, and it is responsi-
ble for dispatching the generation power command issued
by the general agent to units which are in their territory
groups. Lord agents includes the following types: Coal lord
for coal-fired generation unit, gas lord for CHP and Liquefied
Natural Gas (LNG) units, hydropower lord for hydroelectric
unit, flexible load,virtual power plant (VVP) lord for various
distributed energies, such as wind power, photovoltaic power,
P2G and etc.

4) KNIGHT (UNITS)
It refers to the generation units which is responsible for
outputting power under the generation command of the lords.

C. APPLICATION PROCESS
Before applying the VGA-AGC to the power grid, which is
called online testing, it needs to participate sufficient offline
training:

1) OFFLINE TRAINING
During offline training, in each of the AGC control cycle,
each agent communicates with the EMS system of scheduling

center, and at the same time, all actions performed by other
agents can be observed by the agent, so that each agent can
understand the environment and cooperate with each other.
Therefore, they can evaluate and make their decisions based
on those of other agents.

2) ONLINE TESTING
During online testing, the king agent only needs to obtain the
frequency deviation, ACE and the integral value of two while
other agents only need to communicate with their superior
agents to obtain power regulation command, so as to realize
centralized- decentralized autonomous control of AGC.

D. REGULATION MILEAGE PAYMENT
According to the rules of china southern power grid (CSG),
the regulation mileage of each AGC regulation unit response
to the AGC generation power command is shown in
formula (1) [32].

The formula for regulationmileage of frequency regulation
unit i is as follows:

Mi(k) =
∣∣1Pouti (k + 1)−1Pouti (k)

∣∣ (1)

whereMi(k) refers to the frequency regulation mileage of the
ith AGC unit within the kth control interval period. In this
formula,1Pouti (k) refers to the actual regulation power output
of the ith AGC unit within the period of the kth control
interval.

The regulation mileage payment can be calculated by the
following formula [32]:

Di =
N∑
k=1

λ · Spi ·Mi(k) (2)

where Di refers to the total regulation mileage payment of
the ith AGC unit in N control intervals; λ refers to the price
of the frequency regulation mileage, Spi means the compre-
hensive frequency regulation performance indicator score of
the ith AGC unit; additionally, N refers to the control interval
number within every period of frequency regulation service.
For example, when the time cycle of AGC control is set to
be 4s, the real-time frequency regulation market settlement
cycle will be 900s. In addition, the amount of N is 225.

E. OBJECTIVE FUNCTION
1) KING AGENT
f1 is the absolute value of total frequency deviation, and f2 is
the absolute value of the total ACE, the objective function can
be expressed as formula (3)

min f1 =
N∑
k=1

|1f (k)|

min f2 =
N∑
k=1

|eACE (k)|

(3)

where n is the number of AGC units; 1f (k) is the frequency
deviation of control interval k , and Pouti (k + 1) is output of
AGC unit i at the beginning of control interval k + 1.
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2) GENERAL AGENT
In the objective function of general agent, for VGA-AGC,
the frequency error and regulation mileage payment are fully
considered, thus taking into account both the control per-
formance and the frequency regulation mileage payment for
optimization. The objective function is as follows:

min fG1 =
N∑
k=1

1P2error-G(k)

min fG2 =
N∑
k=1

5∑
i=1

Di(k)

1Perror−G(t) =
∣∣1Porder-∑(k)−1PG-∑(k + 1)

∣∣
(4)

where 1Perror-G(k) is total power control error at control
intervals k , 1Porder-∑(k) is the total AGC generation power
command of control interval k , and Di(k) is the regulation
mileage payment of unit group i in the control interval k .

3) LORD AGENT J

min fL1 =
N∑
k=1

1P2error-L(k)

min fL2 =
N∑
k=1

n∑
i=1

di(k)

1Perror-L-j(k) =
∣∣1Porder-L-j(k)−1PG-L-j(k + 1)

∣∣
d
nj
j (k) = λ

∗Spnj
∗

∣∣∣1PnjGj (k)−1PnjGj (k + 1)
∣∣∣

(5)

where 1Perror-L(k) is the power control error of control
interval k , di(k) is regulation mileage payment of unit group
i in control interval k , 1Perror-L-j(k) is the total power con-
trol error of territory unit group j in control interval k , and
1Porder-L-j(k) is the total AGC generation power command
of territory unit group j in control interval k; 1P

nj
Gj
(k) is

the actual total regulation output of territory unit group j at
the beginning of control interval k , Spnj is the comprehensive
frequency regulation performance index of unit nj.

F. FREGULATION UNIT AND RELEVANT CONSTRAINTS
1) CONVENTIONAL REGULATION UNIT
The conventional regulation unit includes coal-fired unit.
LNG unit and hydroelectric unit.
Constraints: Power balance constraints, regulation direc-

tion constraints, the upper and lower limits of AGC regulation
capacity, and constraints on generation ramp rate, which are
as formulas (11) and (12) in sequence:

n∑
i=1

1Pini (k) = 1Porder-
∑(k)

1Porder-∑(k) ∗1Pini (k) ≥ 0
1Pmin

i ≤ 1Pini (k) ≤ 1P
max
i

(6)

∣∣1Pouti (k + 1)−1Pouti (k)
∣∣ ≤ 1Pratei (7)

where 1Porder-∑(k) refers to the total AGC power regula-
tion command at the beginning of the kth control interval,

1Pmax
i refers to the AGC regulation power upper limit of the

ith AGC unit, and1Pmin
i refers to the AGC regulation power

upper limit of the ith AGC unit. In addition, 1Pratei refers to
the ramp rate of the ith AGC unit.

2) REGULATION UNIT FOR THE CHP AND P2G
The CHP consists of a compressor, a combustion chamber
and a steam turbine. The transformation formula is as follows:

PCHP = ηeGCHP (8)

where PCHP is the electrical power of the CHP unit, ηe is
the generation efficiency, and GCHP is the gas consumption
power.

Constraints on the feasible operating range of CHP:
Relevant constraints are as shown in formulas (7) and (9):{

Pmin
i (Hi) 6 P0i +1Pi 6 Pmax

i (Hi)

Hmin
i

(
P0i +1Pi

)
6 Hi 6 Hmax

i

(
P0i +1Pi

) (9)

where Hi is heat output of CHP, Pmin
i (Hi) is the lower limit

of CHP electrical power output when the heat output is Hi.
Pmax
i (Hi) is the upper limit of CHP electrical power output

when the heat output isHi. P0i is CHP’s basic electrical power
output. 1Pi is CHP’s additional electrical power output.
Hmax
i (P0i +1Pi) is the lower limit of CHP’s heat output when

the electrical power output is P0i +1Pi.H
min
i (P0i +1Pi) is the

lower limit of CHP’s heat output when the electrical power
output is P0i +1Pi.
P2G is used to convert electrical energy into easy-to-

transport-and-store hydrogen or natural gas through conver-
sion. Its model can be described by formula (10). It can be
regarded as a fast unit.

GP2G =
3600ηP2G
fLHV

PP2G (10)

where GP2G is natural gas production of the P2G, PP2G is
its electrical power consumption, ηP2G is the conversion effi-
ciency, and fLHV is the low heat value of the natural gas.

3) EGULATION UNIT OF RENEWABLE ENERGY
The frequency regulation unit of the renewable energy system
includes photovoltaic power and wind turbine, which are
controlled by power electronic equipment, and the constraints
are as shown in formula (7).

It is assumed that the active wind turbine output is tracked
and controlled based on the maximum power point. Pg, is the
active power output which can be calculated with the wind
speed as follows:

Pg =


0 Vw < V in

w , Vw > V out
w

PbaseW
Vw − V in

w

V base
w − V in

w
V in
w ≤ Vw ≤ V

base
w

Pbasew V base
w ≤ Vw ≤ V out

ω

(11)

where Vw is the wind speed, V in
w and V out

w are the cut-in wind
speed and cut-out wind speed respectively, V base

w is the rated
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wind speed of the fan, Pbasew is the rated output power of the
fan. Ppv is the active photovoltaic power output. It can be
calculated as follows:

Ppv = Pbasepv
[
1+ αpv ·

(
T − Tref

)]
·
spv
1000

(12)

where Pbasepv is the rated generated power of the photovoltaic
power station, αpv is the photovoltaic temperature conversion
power factor, T is the temperature at the current moment,
Tref is the reference value of temperature, Spv is the illumina-
tion intensity at the current moment.

4) FLEXIBLE LOAD REGULATION UNIT
The load aggregators are introduced according to the power
grid source-charge collaborative frequency control theory.
For relevant equipment, there are three temperature control
devices including air conditioner, refrigerator, electric water
heater, energy storage and electric vehicles. The general con-
straints of them are shown in formula (7).

General heating/cooling air conditioner load is an impor-
tant part of demand response. The mathematical expression
for cooling air conditioning is as follows:

T int+1=T
in
t e

1t/RCair +

(
e1t/RCair − 1

)
(T outt −RPt1t) (13)

• where Qt is the indoor heat absorbed from the outdoor at
time t; T outt and T int are outdoor and indoor temperatures
at time t respectively; R is the thermal resistance of
the house, Pt is the heating power at time t, Cair is the
specific heat capacity of air, and 1t is time increment.

The electrical characteristics of the refrigerator load are
shown in formula (14):

T FR
t+1 = T FR

t −

(
αFRsFRt − γFR

)
1t (14)

where T FRt is the internal temperature of the refrigerator at
the time t; sFRt is the on/off state for refrigeration function
of the refrigerator; αFR is the refrigeration coefficient of the
refrigerator when the refrigeration function is on; γFR is the
warming coefficient of the refrigerator when the refrigeration
function is off.

It is assumed that after the hot water is consumed,
an equal amount of cold water will be immediately intro-
duced. According to the second law of thermodynamics,
the water temperature can be expressed as follows:

T hw
t+1 =

ρV cold
t (T cold

− T hw
t )+ ρV tan kT hw

t

ρV tan k +
hwht 1t

ρV tan kCw
(15)

where Thw is the hot water temperature at time t; ρ, V tank,
and Cw are water density, water tank volume and specific
heat capacity of water respectively; V t

cold is the volume of
cold water introduced at time t;T cold is the temperature of
introduced cold water; htwh is the heating power at time t.

The battery energy storage system (BESS) can help con-
ventional regulation units maintain frequency stability due to

its fast response speed and flexible control of output.

SOCmin
im ≤ SOCim(k) ≤ SOCmax

im (16)

SOCim(k) =


SOCim(k − 1)− Poutim (k)
·1T · ηch/Eim if Poutim (k) ≤ 0
SOCim(k − 1)− Poutim (k)
·1T/ (ηdis · Eim) if Poutim (k) > 0

(17)

where, SOCmin
im , SOCmax

im are the upper and lower limits of
SOC, ηch is the charging efficiency, ηdis is the discharge
efficiency, and Eim is the rated capacity.

Electric vehicles can be regarded as a kind of large-scale
energy storage facilities. After a single electric vehicle is
connected to the charging pile, the relation between the state
of charge (SOC) at time t . P is the charging/discharging
power, can be expressed as SOC. Cmax is the ratio of current
battery capacity to the battery capacity:

SOCt = SOCt−1 +

t∫
t−1

Pdt

Cmax
(18)

P is the charging/discharging power. In order to ensure the
safety of the battery in the process of charging/discharging,
P shall be within the charging/discharging power limit of the
battery:

Pdis.max ≤ P ≤ Pchar.max (19)

where Pdis.max and Pchar.max are the maximum discharging
power and the maximum charging power that the battery can
withstand under safe operation conditions respectively.

III. MADMI-TD3
A. DEEP DETERMINISTIC POLICY GRADIENT (DDPG)
DDPG, an actor-critic framework algorithm of deep
reinforcement learning, incorporates deep learning neural
networks into the deterministic policy gradient (DPG):

DDPG only employs an actor network to explore the envi-
ronment, which will lead to a large amount of redundancy
in the information used by agent. Thus resulting in slow
parameter update. It is difficult to ensure the diversity of
samples and easy to fall into the local optimum.

B. MADMI-TD3 FRAMEWORK
MADMI-TD3 is a deep reinforcement learning algorithm
developed from DDPG [33], [34]. In order to overcome the
over-estimation of Q value [35], [36] and the low training
efficiency problem [37] in DDPG, the algorithm adopted
seven techniques for improvement of the stability and training
efficiency.

1) CLIPPED MULTIPLE Q-LEARNING STRATEGY
MADMI-TD3 employs the clipped multiple Q-learning strat-
egy to calculate the target value, and the formula is as follows:

y1t = r(st , at )+ γ mini=1,2Qθ ′i
(
st+1, πφ1 (st+1)

)
(20)
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To reduce the cost of training, each explorer used an inde-
pendent actor network and two critic networks. πφ1 is the
strategy of actor network which is updated based on Qθ1 of
the critic network. y2t and y

1
t are equal. Qθ ′2 is the values of

critic network.

2) STRATEGY DELAYED UPDATING
MADMI-TD3 updates the actor network one time after the
critic network is updated d times, so as to ensure that the
actor network can be updated as the Q value error is low, thus
improving the updating efficiency of actor network.

3) SMOOTH REGULARIZATION OF TARGET STRATEGY
The algorithm introduced a regularization method to reduce
the variance of the target values, and smooth the Q-value
estimate by bootstrap of similar action:

yt = r(st , at )+ Eε
[
Qθ ′

(
st+1, πφ′ (st+1)+ ε

)]
(21)

Moreover, smooth regularization is achieved by adding
a random noise to the target strategy and averaging on
mini-batch:

yt = r(st , at )+ γ mini=1,2Qθt
(
st+1, πφ′ (st+1)+ ε

)
(22)

ε ∼ clip (N (0, σ ),−c, c) (23)

4) DISTRIBUTED REINFORCEMENT LEARNING FRAMEWORK
BY DECENTRALIZED IMPLEMENTATION AND CENTRALIZED
TRAINING
In MADMI-TD3, each agent has multiple explorers, a leader
and two shared experience pools, among which the leader
includes two critic networks and an actor network. Each
explorer has an actor network. Also, it has own network and
environment. For an exploration environment with several
different explorers, first, the explorers generate the transfor-
mation experience based on their own environment and add
the transformation experience to the two experience buffer
pools according to the criteria. Then the leader samples and
transforms the experience from the experience buffer pools
according to the criteria. After this, it keeps learning. To speed
up the learning process of an agent, the input of the critic
network in the leader should include the observed states and
actions of other agents, so that each agent can have a com-
prehensive understanding of the environment, thus properly
evaluating the strategy, and cooperating with other agents.
Finally, the actor network in the explorer periodically updates
its network parameters based on the latest actor network
from the learner. Since multi-agent centralized training and
decentralized execution are adopted, different explorers of
multiple agents are grouped into one group. The distributed
training is implement withmultiple explorer teams in parallel,
as described in Section 1.1.2. In the centralized training,
each agent gets the action that needs to be performed in the
current state according to its own strategy. After all agents
interact with the environment. Each agent randomly selects
experience from the experience pool to train their neural
network.

5) VARIABLE NOISE MODEL
In the algorithm proposed, random noise with different vari-
ances is adopted to actor networks of different explorers,
so as to produce different samples. The random noise model
employs Gaussian noise or ornstein-uhlenbeck (OU) noise
model randomly, so as to increase the randomness and diver-
sity of the explored samples.

nosie = N (0, σ ) or OU (24)

6) CLASSIFIED EXPERIENCE REPLAY
The algorithm proposed uses the classification criteria for
the mean value of immediate rewards: two completely inde-
pendent experience buffer pools are used to store experience
samples. When the network model is initialized, the aver-
age value of immediate reward value of all samples in the
two experience buffer pools is set to 0. During training,
the immediate reward value is compared with the average
value of the sample data. If the immediate reward value in
the experience sample is greater than ra which is the mean
of all the immediate reward values in the experience sample,
store the sample in experience buffer pool 1, otherwise store
it in experience buffer pool 2.

7) ‘‘WARM BOOT’’ OF EXPERIENCE POOL
To improve the algorithm in optimizing features, so as not to
lose the direction for optimizing due to too many low-value
samples learnt by the algorithm at the beginning of the
training in the early stages of the training, in this article,
the experience pool is designed in a way of ‘‘warm boot’’, that
is, before the formal training, let each agent conduct ‘‘warm-
up’’ training, so as to produce some samples and classify
the samples based on the principle of classified replay. Then
according to the reward value, the sample in experience pool 1
obtained by ‘‘warm-up’’ training is divided into two parts
according to the classification criteria, which are put into
experience pool 1 and experience pool 2 respectively. In both
experience pools, samples of ‘‘warm-up’’ training with high
reward value are left in advance, so that the algorithm will not
to drift during formal training, thus obtaining a better solution
and accelerating the convergence speed.

During training, as to pool 1, nξ samples can be gotten with
the probability of ξ . In pool 2, n(1−ξ ) samples can be gotten
with the probability of 1-ξ . The detailed framework is dis-
played in Fig. 2. The explicit process is displayed in Table. 1.

IV. VGA-AGC SYSTEM BASED ON MADMI-TD3 IN
PERFORMANCE-BASED FREQUENCY REGULATION
MARKET
A. KING AGENT-CONTROLLER AGENT
1) ACTION SPACE
For any control interval, the output of king agent is the total
generation power command 1Porder-∑(k), and so the action
space is as follows: [

1Porder-∑(k)
]

(25)
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FIGURE 2. VGA-AGC framework based on MADMI-TD3 algorithm.

TABLE 1. VGA-AGC algorithm flow.

2) STATE SPACE
The state space is compose of frequency deviation 1f ,
the time integral of frequency deviation (

∫ t
0 1f dt), the ACE

eACE and the time integral of it (
∫ t
0 eACEdt). It can be shown

as follows:

[1f
∫ t

0
1f dt

∫ t

0
eACEdt eACE ] (26)

3) REWARD FUNCTION
The reward function is as follows:

r(t) = −
[
µ11f (k)2 + µ2 |eACE (k)|

]
+ A (27)

A =

{
2 |1f (t)| < 0.05
0 |1f (t)| ≥ 0.05

(28)

where A is the control reward item, and when the absolute
value of frequency deviation is less than 0.05, it is equal to 2.

B. GENERAL AGENT – TOTAL DISPATCH AGENT
1) ACTION SPACE
In order to meet the power balance constraint, as shown in
formula (29), the participation factors of each generation unit
are to satisfy the following formula:

0 ≤ aGi ≤ 1,
n∑
i=1

aGi = 1 (29)

To meet the requirement of formula (29), suppose that
it has n units, but participation factors only need to be
allocated to n − 1 of them in each AGC dispatch period.
The participation factor for the nth group can be calculated
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as below:

aGn = 1−
n−1∑
i=1

aGi (30)

In this article, generation unit group n is defined as the
balanced unit group, and the unit group with large regulation
capacity is selected as the balancing unit group, and the action
is:

[aG1 aG2 aG3 aG4] (31)

Constraints: 

4∑
i=1

aGi < 1

aG5 = 1−
4∑
i=1

aGi

(32)

2) STATE SPACE
State space of the general agent is composed of the total AGC
generation power command 1Porder-∑, 1PGG1, 1PGG2,
1PGG3, 1PGG4, 1PGG5 which are the outputs of different
units respectively. It can be shown in formula (33).

[1Porder-∑ 1PGG1 1PGG2 1PGG3 1PGG4 1PGG5]

(33)

3) REWARD FUNCTION
In order to keep the forms of reward function consistent,
the score of regulation mileage comprehensive frequency
regulation performance index is the historical average value
obtained through a long-term simulation.

r(k) = −

[
µG11P

2
error−G(k)+ µ

G
2

5∑
i=1

Di(k)

]
+ σ (34)

σ =

{
−0.5 aGn < 0
0 aGn ≥ 0

(35)

where σ is the penalty term. If the participation factor of
balanced units is less than 0 σ is equal to −0.5.

C. LORD AGENT J – SUB DISPATCH AGENT
Several lord agents have similar state space, action space and
reward functions.

1) ACTION SPACE
In this article, unit n is defined as a balanced unit, For the lord
agent j(j = 1, 2, 3, 4, 5), the action space is as follows:

[
aLj1 aLj2 . . . aLji . . . aLj(n−1)

]
,

n−1∑
i=1

aLji < 1

aLjn = 1−
n−1∑
i=1

aLji

(36)

2) STATE SPACE
State space of the general agent is composed of the AGC
generation power command1Porder-j input by the lord agent j
and the actual output of n units 1PGi(i = 1, 2, 3, . . . , n),
which are managed by the lord agent j. It can be shown in
formula (37).

[1Porder-i 1PG1-L-j 1PG2-L-j . . . . 1PGn-L-j] (37)

3) REWARD FUNCTIONS
As shown in formulas (38)-(39).

r(k) = −

µL11P2error-L-j(t)+ µL2 nj∑
nj=1

d
nj
L−j(t)

+ ρ (38)

ρ =

{
−0.5 aLjn < 0
0 aLjn ≥ 0

(39)

D. PARAMETER SELECTION
The weight coefficient in the reward function and the hyper-
parameter design in the pre-learning are as shown in Table 2.

TABLE 2. Parameter settings.

V. SIMULATION VERIFICATION
To verify the effectiveness of the proposed VGA-AGC
based on MADMI-TD3, the conventional AGC framework
(PI + GA, PI + PROP) and VGA-AGC based on deep
reinforcement learning algorithm (MADMI-DDPG, TD3 and
DDPG) are introduced as the comparisons.

The interconnected power grid system of a province
includes 32 regulation units. The specific control model is
shown in Figure 3, and the parameters for the units are shown
in Table 5.

A. SIMULATION OF A PROVINCIAL INTERCONNECTED
POWER GRID UNDER RANDOM STEP DISTURBANCE
1) PRE-LEARNING STAGE
In the pre-learning stage, a durative sinusoidal disturbance
with cycle of 3600s, amplitude of 1800MW, duration of

VOLUME 8, 2020 182211



J. Li, T. Yu: VGA-AGC Based on Deep Reinforcement Learning

FIGURE 3. A provincial power grid AGC control chart.

3600s and phase of 0.5π is added to area A. The specific con-
trol model diagram is shown in Figure 3, and the parameters
for the generation units are shown in Table 2. The training
chart is shown in Figure 4.

FIGURE 4. Training chart.

In Fig. 4, the curve represents the mean of reward values
of corresponding episodes for MADMI-TD3. Obviously, The
average reward value of the MADMI-TD3 algorithm can
smoothly converge to an optimal solution, and the algorithm
is stable.

2) STEP DISTURBANCE ONLINE TEST
For a power grid containing various regulation units, step load
disturbance is used for testing. The amplitude is not more than
800MW. The results are shown in Figures 5-9 and Table 4.

Figures 5-9 provide the online test results of VGA-AGC
based on MADMI-TD3 MADMI-DDPG, MA-TD3 and
MA-DDPG as well as the conventional combined algorithm
(PI + GA, PI + PROP). According to Fig. 5, at the same

FIGURE 5. CPS1 in 10min of a provincial grid with step disturbance.

FIGURE 6. Total power regulation of a provincial grid with step
disturbance.

FIGURE 7. Total power generation command of a provincial grid with
step disturbance.
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TABLE 3. Results of a provincial grid with step disturbance.

FIGURE 8. Unit regulation power output of a provincial grid with step
disturbance.

FIGURE 9. Frequency deviation of a provincial grid with step disturbance.

moments, the 10-minute average CPS1 of MADMI-TD3 is
significantly higher than that of the other six algorithms.
MADMI-TD3 power control deviation is much smaller than
that of conventional combination algorithm and the response
rate is faster than that of conventional combination algorithm
according to Fig. 6. This shows that the actual total output of
generation unit by MADMI-TD3 algorithm is closer to the
actual load disturbance. The reason for this is that in con-
ventional combination algorithm, too many slow-response
units are used for frequency regulation. In addition,

the coordination of PI controller and generation command
dispatch algorithm is not taken into account, whichmay cause
fluctuation of total AGC generation power command output
by PI controller (as shown in Fig. 7). Thus, the output of some
generation units are regulated frequently, and ‘‘overregula-
tion’’ is occurred, which can greatly increase the regulation
mileage of some units, thus increasing the regulation mileage
payment. In contrast, in the results of MADMI-TD3, more
fast-response units are used for frequency regulation, such
as hydroelectric units, renewable energy units, and flexible
load (as shown in Fig. 8). Moreover, in the process of offline
training, considering the coordination of agents, for king
agent, there is no instability and discordance caused by the
problem of cooperation between control algorithm and dis-
patch algorithm in the VGA-AGC based on MADMI-TD3.
The king agent (controller) output can track load disturbance
in real time and accurately. By MADMI-TD3, the actual total
output of generation units is always close to the actual load
disturbance as the control performance of AGC is signifi-
cantly improved. Thus, the possibility of ‘‘overregulation’’,
the regulation mileage as well as the regulation mileage pay-
ment is reduced. It also leads to a smaller change in the fre-
quency deviation of MADMI-TD3 frequency compared with
the conventional combination algorithm (as shown in Fig. 9)
and the frequency recovered faster. As shown in Fig. 9,
the regulation mileage payment for MADMI-TD3 algorithm
is less than that for conventional combination algorithm.
As shown in Table 3 for statistical results, in comparison of
several algorithms, the |1f |, |eACE | and regulation mileage
payment for MADMI-TD3 are at minimum while CCPS1 the
mean CPS1 is at maximum.

Compared with other algorithms for the VGA-AGC frame-
work, the MADMI-TD3 algorithm has the optimal control
performance and the regulation mileage payment is lower
than other algorithms.

B. RANDOM POWER DISTURBANCE ONLINE TEST
In the two-area power grid systems, the disturbance of photo-
voltaic units and wind units are simplified as random output
models, which are treated as random load disturbance of
AGC system.Meanwhile, part of the capacity of wind turbine
and photovoltaic units participated in secondary frequency
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FIGURE 10. Total power generation command of a provincial grid with random disturbance.

FIGURE 11. Total power regulation of a provincial grid with random disturbance.

TABLE 4. Results of a provincial grid with random disturbance.

regulation of the system. The wind model consists of three
small capacity wind turbine units and one large offshore
wind turbine unit. The latter does not participate in secondary
frequency regulation. Fig. 13 shows the 24h curves of load

disturbance, wind turbine’s output as well as photovoltaic
unit’s output.

The online test results are shown in Figures 10 to 12.
For the reason that there is an offshore wind power plant
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FIGURE 12. Regulation mileage payment of a provincial grid with
random disturbance.

in the system, the disturbance changes very rapidly with an
amplitude larger than that of the normal step disturbance.
According to Fig. 10, the total generation commend output
of MADMI-TD3 algorithm’s king agent (controller) can still
remain smooth and close to the actual power disturbance, but
those of PI + PROP algorithm’s controller will obviously
exceed the actual load disturbance, thus appearing the over-
regulation of the total actual unit output and resulting in big-
ger frequency deviation and larger ACE, as shown in Table 4.
It indicates that as the coordination of control algorithm
and dispatch algorithm is considered. The MADMI-TD3 has
better control performance and robustness in the control pro-
cess. Fig. 11 shows the total actual regulation power output
of six algorithms. Obviously, for the conventional combina-
tion algorithm, burrs and overregulation phenomenon appear
more frequently. The total actual regulation power output of

several deep reinforcement learning algorithm is closer to the
actual load disturbance, thus obtaining better control perfor-
mance and economic profits, as shown in Table 4. Because of
the conventional combination algorithms have relatively large
overregulation of the total actual regulation power output,
the regulation mileage as well as the regulation mileage pay-
ment is increased. Hence, their regulation mileage payment is
higher than that of deep reinforcement learning algorithm in
each market settlement cycle (as shown in Fig. 12), indicating
that as collaboration of control algorithm and dispatch algo-
rithm is considered. Deep reinforcement learning algorithm
is more economic in frequency regulation.

The results of simulation for all of the above algorithms
are summarized to form Table 4. According to Table 4,
the |1f |, |eACE | and regulation mileage payment for
MADMI-TD3 algorithm are at minimum while CCPS1, the
mean CPS1, is at maximum compare with other algorithms.
The data in the Table 4 show that in the LFC which is added
by random disturbance, theMADMI-TD3 has a better control
effect than that of other conventional combination algorithms,
and its frequency deviation is less than that of the conven-
tional combination algorithms. However, the exploration and
optimization process of other deep reinforcement learning
algorithms is not optimized sufficiently. Hence, others are
weaker than MADMI-TD3 algorithm in control performance
and economic benefits.

VI. CONCLUSION
To conclude:

1) In the performance-based frequency regulation mar-
ket, the VGA-AGC that is based on the proposed MADMI-
TD3 can help build a concentrated-decentralized autonomous
framework in order to solve the problem concerning the

FIGURE 13. Disturbance curve.
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TABLE 5. A certain province power grid AGC unit parameters.

collaboration of conventional control algorithm and dispatch
algorithm. Compared to the conventional combination algo-
rithm, the VGA-AGC framework can realize the compre-
hensive optimization of control performance and economic
benefits in the process of secondary frequency regulation of
a power grid with large random disturbance.

2) The proposed MADMI-TD3 employs different param-
eters of multiple actor networks for distributed optimizing.
A few techniques such as experience replay, various noise
models, and warm boot of experience pool are to improve the
global search ability and optimizing speed of the algorithm.
The algorithm can be used to obtain the optimal control
strategy in strong random environment, which can solve the
problems of random disturbance caused by the large-scale
distributed energies in the power grid.

3) According to the results of simulation, the proposed
method can significantly improve the control performance
and reduce the regulation mileage payment. Consequently,
the method can obtain the maximum CPS1 index and effec-
tively reduce the regulation mileage payment.

APPENDIX
See Table 5 and Fig. 13.
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