
Received September 24, 2020, accepted September 30, 2020, date of publication October 6, 2020, date of current version October 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028770

Online Multiple Object Tracking Using Rule
Distillated Siamese Random Forest
JIMI LEE, SANGWON KIM , AND BYOUNG CHUL KO , (Member, IEEE)
Department of Computer Engineering, Keimyung University, Daegu 42601, South Korea

Corresponding author: Byoung Chul Ko (niceko@kmu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education through the Basic
Science Research Program under Grant 2019R1I1A3A01042506.

ABSTRACT In a multiple object tracking (MOT) system, an association check between the tracker and
detected objects is an important factor in determining the tracking performance. Siamese convolution
neural network (CNN) is the most popular data association method in MOT owing to its good matching
performance and network sharing support. However, it is unsuitable for real-time online tracking in low-
end systems because numerous parameters and operations are still required. In this article, instead of a
CNN, we propose using a SiameseRF algorithm which combines Siamese structure and random forest (RF),
enabling high-speed learning and classification. SiameseRF has a shared-rule based Siamese structure rather
than shared weight, which improves the matching performance and solves existing slow CNN-based tracking
issues. During the learning process, the shared RFs consisting of tree rules are learned in the directions of
increasing similarity to the positive pair {anchor, positive} and increasing difference between the negative
pair {anchor, negative}. However, because many rules that make up SiameseRF remain a burden for online
processing, this study proposes an additional rule distillation algorithm to effectively remove redundant and
unimportant rules causing an overfitting with SiameseRF. This reduction in the number of rules reduces the
processing time and number of parameters in the rule distilled SiameseRF. In experiments conducted onMOT
benchmark datasets, our proposed 30% rule distilled SiameseRF achieved up to a 1.12-times faster speed
and a 1.13-times higher compression rate than basic SiameseRF while maintaining a similar or somewhat
better tracking performance than other state-of-the-art CNN-based MOT algorithms.

INDEX TERMS Multiple object tracking, data association, Siamese CNN, SiameseRF, rule distillation.

I. INTRODUCTION
Although object tracking has been a long-studied subject in
the field of computer vision, many problems in this area are
yet to be resolved. Object tracking can be divided into single
object tracking (SOT) and multiple object tracking (MOT)
depending on the number of objects to be tracked. The pur-
pose of SOT is to find and follow the position of a single
object in a continuous video sequence. The tracking model
used for SOT is relatively simple and fast compared to MOT,
although MOT is essential for various tracking technologies
such as video surveillance, autonomous driving, a human-
computer-interface (HCI), and augmented reality (AR).

MOT can be divided into offline and online versions
according to the tracker optimization method. Offline MOT
methods use the past and future frames at the same time to
create a tracking path, whereas online MOT methods utilize
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only the information available around the current frame.
Many techniques using a deep neural network (DNN) have
recently been developed as an alternative to conventional
techniques for offline MOT, such as a conditional random
field (CRF) [1], and have demonstrated a better perfor-
mance in comparison with the previous learning methods [2].
Although a long-term appearance model using features from
a DNN [3], DeepMatching [4], and a quadruplet convolu-
tional neural network (CNN) [5] have been proposed, offline
tracking is unsuitable for real-time object monitoring or other
applications because all frames must be considered to verify
the tracking path [6], [7]. In onlineMOT, a Kalman [8] or par-
ticle [9] filter based method has mainly been used, although
DNN-based methods [6], [10]–[12] have also recently been
applied.

Offline and online MOT are commonly based on the
tracking-by-detection (TBD) paradigm. The TBD method
consists of a detection step used for locating targets in each
frame of a single video, as well as a data association step
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for matching the detected objects to the targets and linking
them to the corresponding trajectories. With TBD, Faster
R-CNN [13], ResNet [14], YOLOv3 [15], andCornerNet [16]
are mainly used as the object detection algorithms, and
have an important effect on the performance level. However,
regardless of how good the detection method is, if an object
is missed or an inaccurate object is detected owing to an
occlusion of the object or camera shaking, the tracking
performance can significantly deteriorate. Therefore, various
data association methods have been proposed to compensate
for the inaccuracy of MOT detection. In particular, real-time
tracking inMOT is closely related to the efficiency of the data
association.

Although the greedy bipartite assignment [17] and opti-
mal Hungarian [18] algorithms are traditional techniques for
determining the data association, Siamese CNN [10], [5],
[19]–[23] based associations have also received significant
interest for real-time tracking. During the learning process,
a Siamese CNN applies the same network to the detection and
tracker and calculates the similarity based on the difference in
the output feature. Therefore, a Siamese CNN does not need
to maintain a separate network structure and has the advan-
tage of a fast tracking.Although a Siamese structure shows
a good matching performance between objects, the shared
network for similarity matching still has a large number of
hyper parameters and a slow tracking speed owing to the
complex network structure when combined with a CNN [23].
Therefore, Siamese CNN-based MOT methods may have
limited feasibility for real-time tracking in a real-world
environment.

A. CONTRIBUTIONS OF THIS STUDY
In this study, in contrast to existing methods, we do not use
a CNN-based Siamese structure to build an efficient joint
learning framework in terms of the MOT performance and
tracking speed. Instead, we propose a Siamese random forest
(RF)1 framework [24]; this framework combines an accurate
RF with a Siamese structure that has high-speed learning
and classification. However, because the RF structure is also
a combination of decision trees composed of a number of
rules, it is necessary to reduce the numbers of parameters
and operations to improve the speed for real-time operations
in low-end devices. In this study, we propose an additional
rule distillation method that can effectively remove unim-
portant and redundant rules causing an overfitting with the
proposed SiameseRF structure. Thus, rule-distilled Siame-
seRF can reduce the processing time and parameter storage
requirement by reducing the number of rules.

The main contributions of this article are summarized as
follows.
• A shared-rule based SiameseRF framework is recom-
mended that combines an accurate RF with a Siamese
structure.

1The short version of SiameseRF was published at the MOTChallenge
Workshop of CVPR 2020.

• A rule distillation method is proposed that can remove
duplicate or relatively inefficient rules from a tree by
calculating the rule contribution to the basic SiameseRF.

• Condensed features are suggested from output feature
maps of the first and second convolution layers as the
local appearance feature of the object for similarity
measurements.

• K-fold cross validation is adopted to determine the opti-
mal numbers of rules and parameters while reducing the
risk of an overfitting of the model.

• A frame-by-frame data association check is applied
between the tracking and detecting through a SiameseRF
-based similarity probability.

• It is proven that the MOT accuracy of the rule-distilled
SiameseRF is similar or to some extent better than
that of the basic SiameseRF and other state-of-the-art
CNN-basedMOTmethods, and the tracking speed is the
fastest despite using a CPU.

Figure 1 shows the overall architecture of the online MOT
system using the rule-distilled SiameseRF proposed in this
study. First, YOLOv3 [15] based on DarkNet53 is used to
detect objects in the input image. Condensed appearance
features (CAF) are then extracted from the feature maps of
two layers of DarkNet53 corresponding to the object region
at the same time as the object detection (Figure 1 (a)).
In Figure 1 (b), the CAF is computed from the detection
and tracker pairs, respectively, using the same structure as
shown in Figure 1 (a). The CAF distance computed between
two CAFs (Dt ,Tt) is applied to rule-sharing SiameseRF
(Figure 1 (c)), and a similarity score is used for an association
check (Figure 1 (d)). For real-time MOT, by applying the
proposed rule distillation technique, which removes unim-
portant rules constituting SiameseRF (Figure 1(e)), we can
significantly reduce the computation speed of an online
association while maintaining the matching accuracy. The
state of the tracker is updated by considering the matched
detection (Figure 1 (f)). The proposed SiameseRF structure is
extremely efficient in reducing the processing time for MOT
because it is impossible to simultaneously detect objects from
a single-shot detector and the CAF.

Before discussing the related studies and proposed algo-
rithm, we summarize the abbreviations for the main termi-
nologies used in this article in Table 1.

The remainder of this article is structured as fol-
lows. In Section II, MOT-related studies focusing on
Siamese-based tracking are reviewed. In Section III,
we present the details of our proposed method in terms of
its feature contribution and rule elimination. In Section IV,
a comprehensive evaluation of the proposed method is pro-
vided based on the results of various experiments. Finally,
some concluding remarks are given in Section V.

II. RELATED STUDIES
In studies on MOT tracking, long-term appearance models
using features from a DNN [3], DeepMatching [4], and a
quadruplet CNN [5] have demonstrated a better tracking
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FIGURE 1. Procedure of rule distille SiameseRF learning. (a) Condensed features are extracted from the feature maps of two layers of DarkNet 53 from
the detection and target pair, (b) the condensed appearance feature (CAF) is computed from detection and tracker, and (c) the CAF distance vector is
estimated between two corresponding CAFs. Then, the CAF vector is applied to the rule sharing SiameseRF and (d) a similarity score is used for an
association check. (e) The proposed rule distillation technique removes unimportant rules from the trained SiameseRF, and (f) the tracker’s state is
updated by considering a matched detection.

performance. However, such methods are unsuitable for
online tracking because the network structure is complicated
and the object tracking path of multiple frames must be
analyzed. Moreover, the purpose of this study is to track
multiple objects in a single video sequence in real time,
and we mainly focus on online MOT methods based on
a DNN. Sanchez-Matilla et al. [25] proposed an online
multi-target tracker that utilizes both high- and low-reliability
target detection in a probability hypothesis density particle
filter framework. This tracker also conducts a data associa-
tion immediately after the prediction phase, eliminating the
need for computationally expensive labeling procedures such
as clustering. Fang et al. [26] proposed a recurrent autore-
gressive network, which is a temporal generative modeling
framework used to characterize the appearance and motion
dynamics of multiple objects over time. The external memory
explicitly stores previous inputs of each trajectory in a time
window, whereas the internal memory learns to summarize
the long-term tracking history and associate detections by
processing the external memory. In addition, Kim et al. [27]
proposed an online MOT tracking using a pre-trained CNN
model and a teacher–student training mechanism. With this
method, multiple trackers are trained every frame using a
student-random fern to consider the variations in an object’s
appearance, instead of through the end-to-end online learning
of a CNN. These methods have the advantage of an online

MOT performance, but have the disadvantage of requiring
a long tracking time during the process of checking the
long-term tracking history [26] or re-learning [27] for each
tracker.

Wang et al. [28] proposed the joint learning of an
object detection and appearance embedding model using
a CNN-based single-shot detector for a data association.
Although this method provides a simple and fast association
method in conjunction with a joint model, it has certain
disadvantages in that many ID switches occur because it is too
dependent on the detection dataset and the embedding feature
is not optimized for a re-identification.

Zhou et al. [29] proposed a deep alignment network-based
MOT with occlusion and motion reasoning. Because inaccu-
rate detections are first corrected through a deep alignment
network, the deep features from an alignment network have
better representation power, thus leading to more consistent
tracks. A discriminative association cost matrix is constructed
using a coarse-to-fine schema with spatial, motion, and
appearance information. They also proposed a fine-grained
spatial alignment model [30] to effectively handle challeng-
ing scenarios such as complex poses, inaccurate detection,
and occlusions arising from person re-identification or MOT.
In particular, with this method, a pose resolution network
is first designed using a channel parsing block to extract
pose information at the pixel level. Given the extracted pose
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TABLE 1. Main terminologies and corresponding abbreviations used in
this article.

information, a locally reinforced alignment mode is then fur-
ther proposed to address the misalignment problem between
different local parts.

Tian et al. [31] proposed an association solution for
use under motion noise or long-term occlusions. With this
method, detections are assembled into small tracklets based
on meta-measurements of the object affinity, and the asso-
ciation task for tracklets-to-tracks is solved using struc-
tural information based on a motion pattern between them.
Xu et al. [32] introduced the choice of appropriate loss func-
tions for end-to-end training of MOT methods by proposing
a differentiable proxy of the MOT accuracy and precision.
In addition, deep Hungarian-net was proposed to provide
a soft approximation of the optimal prediction-to-ground-
truth assignment. As a similar approach, Pang et al. [33]
proposed an end-to-end model TubeTK, which only needs
one step training, by introducing a bounding-tube to indi-
cate temporal–spatial locations of objects in a short video
clip. Although these methods are fast, they require a post-
processing operation to connect the tracklets, and thus are
closer to semi-on-line tracking than to a full on-line tracking
method.

Tracking using a Siamese CNN for person re-identification
in MOT has recently been studied [10], [5], [19]–[22].
A Siamese CNN applies the same network to the detection
and tracker and calculates the similarity in the difference
between output function values. Therefore, a Siamese CNN
does not need to maintain a separate network structure and
has the advantage of a fast tracking.

Leal-Taixe et al. [10] proposed a Siamese CNN to learn
the descriptor encoding of local spatio-temporal structures
between two input image patches by aggregating the pixel
values and optical flow information. A Siamese CNN esti-
mates the likelihood that two pedestrian detections belong to
the same tracked entity.

In [19], Wang et al. first pre-trained a Siamese CNN on the
auxiliary data and jointly learned the temporally constrained
metrics online to construct the appearance-based tracklet
affinity models. For a reliable association between track-
lets, a loss function incorporating a temporally constrained
multi-task learning mechanism is proposed. Unlike the dual
architecture of the above twomethods, Son et al. [5] proposed
a quadruplet architecture by modifying a Siamese CNN and
triplet networks to learn object associations for MOT. This
method combines the shape of the detection with sequence-
specific motion-aware locations for metric learning, and
the entire network is trained end-to-end. However, because
online end-to-end learning of an entire network requires cer-
tain amounts of training time and system resources, it is
unsuitable for real-time environments. Zhu et al. [6] also
introduced dualmatching attention networkswith both spatial
and temporal attentionmechanisms based on a Siamese struc-
ture association. Bergmann et al. [20] proposed ‘Tracktor’
based on a Siamese network that tackles MOT by exploit-
ing the regression head of a detector to conduct a tem-
poral realignment of the object bounding boxes. Lee and
Kim [21] proposed a feature pyramid Siamese network to
address the simplicity of a basic Siamese structure. This
method extends the Siamese network by applying a feature
pyramid network to the plain Siamese architecture and by
developing a new multi-level discriminative feature. Chu and
Ling [22] proposed an end-to-end Siamese basedMOTmodel
including feature extraction, affinity estimation, and a multi-
dimensional assignment. To further improve the tracking
robustness during tracking, it includes single object tracking
and the prediction of a dedicated target management.

Although the CNN-based Siamese tracking approaches are
a good choice for applications in an on-lineMOT than general
CNN-based approaches, these studies still have certain limi-
tations: a shared network for similarity matching maintaining
a large number of hyper parameters, a slow tracking speed
owing to the complex CNN structure for real-time tracking,
and a performance degradation on heavily moving cameras.

Table 2 summarizes the representative DNN based MOT
approaches in terms of their main features, association
method, and online tracking.

III. MULTIPLE OBJECT TRACKING
Unlike CNN-based MOT methods, we propose a SiameseRF
framework that combines an accurate RF with a Siamese
structure having high-speed learning and classification.
Because this study follows MOT-based TBD, the object
detection must precede each input sequence. In this study,
YOLOv3 [15] is employed as an object detector based on
DarkNet53, which is a real-time object detection system.
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TABLE 2. Summary of the representative deep learning based MOT
approaches and their main features.

YOLOv3 uses a single neural network to predict the bounding
boxes and class probabilities directly from full images in a
single evaluation.

A. FEATURE EXTRACTION OF AN OBJECT
To match the existing trackers in the previous frame and the
newly detected objects in the current frame, a similarity score
matrix must be generated using SiameseRF, and applying this
matrix, an object with a high score must be connected to the
corresponding tracker. At this time, the most basic and impor-
tant step for measuring the similarity is the feature extraction.
An RF is known to achieve an excellent performance for
tabular data but has a poor performance for unconditioned
data such as image and video. Therefore, an optimal feature
extraction that can effectively distinguish objects should be
applied as a preprocessing step of Siamese RF.

Figure 2 shows the procedure of CAF feature extraction
from an object. The local appearance feature of the object for
a similarity measurement uses the output feature maps of the
first and second convolution layers of the DarkNet53 network
inspired by [34]. According to this study, the feature infor-
mation hidden in different two layers has the potential for a
feature discrimination capacity; however, deeper layers can
easily damage the scene feature structure [34]. We, therefore,
combine two feature layers at the front part of the network.
We, therefore, combine two feature layers at the front part
of the network. The experiment for selecting the optimal

FIGURE 2. Procedure of CAF extraction. Two CFMs are created from the
output feature maps of the first and second convolution layers.
Condensed features extracted from the corresponding location of the two
CFMs are concatenated into a 1250-dimensional CAF feature.

two convolution layers for feature extraction is described in
section V-A. Let us suppose we can obtain C feature maps,
Ac ∈ Ru×v, with each element indexed by i and j of layer l.
Therefore, Aci,j indicates the activation at location (i, j) of
featuremapAc. Inspired by [35], channel-wise global average
pooling (GAP) is applied to Ac to capture the feature impor-
tance weight αcl for a detected object. A condensed feature
map (CFM) at location (i, j) of layer l is then estimated by a
combination of importance weights αcl (1×1×C) and feature
maps of the same location, followed by L2 normalization
operation.

CFM l (i, j) = L2
{∑

c
αcl A

c
l (i, j)

}
. (1)

Two CFM l values are then upsampled to the input image
resolution using a bilinear interpolation. We extract the
object’s partial condensed features from the same location of
a detected object. The partial condensed features are normal-
ized to a size of 25 × 25 and flattened again (1 × 625D).
Two condensed features are concatenated to become one final
CAF (1 × 1250D). The CAF branch operates independently
from the YOLOv3 training because there are no learnable
parameters and it does not require space for a parameter
reduction. In addition, by reusing the DarkNet53 network
for the feature extraction of the YOLOv3 detector, we can
reduce the amount of unnecessary computations and resource
demand.

B. SIAMESE RANDOM FOREST
To associate CAF it of a detected object i and CAFkt of a
tracker k at the current time t , it is necessary to determine
whether the detected object and tracker are the same object.
One way to measure the similarity of two images in real time
is to use the distance function D.

Chopra et al. [36] proposed the use of a Siamese network,
which is a way to learn output function f through a deep
learning method. The learning of the Siamese network is
realized by training a network consisting of two identical
CNNs that share the same set of weights. The Siamese CNN
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converts image a and image b into vector representations of
f (a) and f (b) using shared networks.

To learn f , weights of a Siamese CNN are trained normally
using a Triplet loss function. A Triplet loss is a method for
creating a loss function from three images, and the idea is to
minimize the distance between the same identities Anchor (a)
and Positive (p) and maximize the distance between different
Anchor (a) and Negative (n) identities. The triplet loss for
configuring a Siamese network is as follows:

L (a, p, n)=max
(
‖f (a)−f (p)‖2−‖f (a)−f (n)‖2+α, 0

)
(2)

where α is a margin used to create a sufficient difference
between values.

In this study, we propose a SiameseRF framework that
combines a Siamese structure and an RF instead of a CNN;
this enables high-speed learning and classification.

In the SiameseRF training process, an initial RF consist-
ing of L ensemble trees is created. Two RFs receive the
CAF distance vector of an {anchor, positive} pair and an
{anchor, negative} pair as inputs, as shown in Figure 3. We
call an element-wise distance vector between the two CAFs
of the {anchor, positive} pair the AP distance. Meanwhile,
an element-wise distance vector between the two CAFs of
the {anchor, negative} pair is called the AN distance. The
two RFs share the same structure.

FIGURE 3. K-fold cross validation for the training process used to train
the shared rules of SiameseRF.

As the input of each RF, the CAF difference vectors,
AP and AN, are input as a feature. A vector AP,AN ∈ R1×m

is a distance vector if and only if the following holds:

APi = d (ai, pi) ,ANi = d (ai, ni), for 1 ≤ i ≤ m, (3)

where d is an L2 distance function, ai ∈ Anchor , pi ∈
Positive, ni ∈ Negative, and m is the number of samples in
each label, Anchor, Positive, and Negative.

To repeat the training phase of a shared RF, in this study,
K-fold cross validation is adopted to improve the accuracy of
the model. The K-fold cross-validation method automatically

determines the optimal rule numbers and parameters while
reducing the risk of an over-fitting. The Siamese RF learning
based on a K-fold validation is as follows.
• Step 1: K-1 folds are selected from the entire training
data set S, and the excluded fold is used as the valida-
tion set.

• Step 2: The AP-distance vector for a sample pair
{anchor, positive} and the AN-distance vector for a
sample pair {anchor, negative} is estimated using CAFs.

• Step 3: The distance vectors of the sample pairs are input
into each RF sharing the rules. The decision to update
the rules consisting of shared RF depends on whether
the K-fold cross-validation converges.

• Step 4: RF composed of L trees is trained using the AP
and AN distance vectors.

• Step 5: After the training of K-1 folds, AP and AN dis-
tance vectors are obtained from pairs {anchor, positive}
and {anchor, negative} of samples in the validation set.
A triplet loss of SiameseRF is computed using Eq. (4),
which is modified from Eq. (3). This process is per-
formed for all n pairs in the validation set.

L (a, p, n)k

= max
(
‖1− RFk (AP)‖2 − ‖RFk (AN )‖2 + α, 0

)
(4)

where RFk represents the RF structure used in k-th fold.
• Step 6: Store the trained RF structure and total loss J .
Steps 1–6 are repeated until each fold has been used as
the testing fold.

Jk =
∑n

i=1
L(ai, pi, ni)ik (5)

• Step 7: When the learning is completed for all K-folds,
the RF with the smallest total loss J is determined as the
final SiameseRF.

k = argmin
k∈K

Jk (6)

In the learning process, the shared SiameseRF is trained
in the direction in which the similarity between the positive
pair increases and the difference between the negative pair
increases. Unlike a Siamese CNN, SiameseRF does not share
weights, but instead rules consisting of a tree.

The detailed procedures for a training of SiameseRF are
described in Algorithm 1.

After training the SiameseRF using K-fold verification,
during the actual tracking, the CAFs extracted from a detec-
tion object and a tracker. The L2 distance vector is computed
from two CAFs and is input into the trained SiameseRF.
The similarity probability of the two objects becomes the
appearance score for the association, as shown in Figure 4.

C. TRACKER ONLINE ASSOCIATION
For real-time MOT, this study applies a frame-by-frame data
association check between the tracker and detection through
a SiameseRF-based similarity probability. The process of an
association check is as follows: objects are detected using
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Algorithm 1 Training of Siamese RF
Input:
S: a dataset consisting of N labeled samples
(xi, yi) . . . (xn, yn), where yi ∈ {0,+1,−1} is the label
for the anchor, and positive and negative classes, respectively
O: dataset of K-1 folds, V: dataset for validation
K : folding factor,
RF: a set of candidate RFs, J: a set of total loss of candidate
RFs
for k = 1 to K do

Ok← select K − 1 folds from S (k /∈ Ok )
V← get remaining k fold for validation
for i = 1 to m do

Select pair{(ai, pi) , (ai, ni)} from Ok
Distance vectors AP and AN estimation using Eq. (3)

end
// RF growing with L trees using AP and AN vector
for l = 1 to L do

RFk ← Tree(d, r)l //d: depth, r: rules
end
Compute Triplet loss L (a, p, n)k and total loss Jk
RF← RFk
J← Jk

end
Find RF having the smallest total loss using Eq. (6)
Output: SiameseRF← RF(k)

FIGURE 4. Estimation SiameseRF probability between a tracker and
detection pair used for testing.

YOLOv3; each object and tracker measures the similar-
ity by combining the probability value of the SiameseRF,
the aspect ratio, and the distance; using the Hungarian algo-
rithm, the detection with the highest similarity is linked to the
tracker’s trajectory; and the tracker status information is then
updated using formula (7).

Tracker set Trt = {trit , tr
i+1
t , . . . , trNt |1 ≤ t} of the t-th

frame can be defined as a list of ordered bounding boxes
trit = [x it , y

i
t ,w

i
t , h

i
t ] and the target detection set Dt ={

djt , d
j+1
t , . . .

}
, and the initial vector of the j-th detection is

automatically set as di= [cxicyiwihi]Td
j
t =

[
x jt , y

j
t ,w

j
t , h

j
t

]
.

Here, (x, y) is the center position, whereas w and h are the
width and height, respectively, of an object’s bounding box.

When t = 0, elements of tracker set Tr0 are initialized to
elements of D0. Actually, the process of matching the tracker
and the detection starts from frame t > 1.
In every frame, objects detected by YOLOv3 are assigned

to the tracker using the Hungarian method of Algorithm 2.
In general, the Kalman filter, which is frequently used in
online tracking, is used to predict the location of the pre-
vious tracker in the current frame. However, because the
test images include those in which the camera was shak-
ing or in which objects are moving unpredictably to the front,
left, or right, or multiple objects are moving at various speeds,
the tracker checks the association with the detections within
a limited boundary instead of through a prediction using a
Kalman filter.

If the detected object and tracker are matched, the state of
the tracker trit is updated by combining the states of the current
tracker trit−1 and detection d j using the following:

trit = δ · tr
i
t−1 + (1− δ) · d

j
t . (7)

By contrast, if the tracker does not match during τ frames,
it is considered to have disappeared and is deleted. Similarly,
if the detected object does not match any tracker, it is assigned
as a potential tracker, and if the number of matches between
the tracker and detection occurs over τ frames, it is assigned
as a new tracker; otherwise, it is recognized as a false detec-
tion and removed.

Three measures are used to calculate a similarity score
for Hungarian matching between the tracker and detection.
This study applies stepwise affinity measures for generating
matrix Minspired by the approach in [27]. As the first step,
we construct a pairwise blank affinity matrix M between the
predictions and detections. Then, only detections (j) within a
certain radius of the tracker (i) are defined as valid matching
pairs of affinityMi,j. In detail, based on the center (x, y) of the
i-th tracker, a search area having a tracker height (h× α, 1 ≤
α < 2) as a radius is created, and detections included in
the circle are determined as candidates for comparison of
tracker i. Parameter α for the radius depends on themovement
of the camera. That is, it has a value of ‘1’ in a static camera
and a value greater than ‘1’ in the case of an ego-motion
camera.

The first measure is the inverse probability value of Siame-
seRF, P̂Siam

(
tri|dj

)
= 1 − PSiam

(
tri|dj

)
. This value is the

most important factor in measuring the similarity between the
tracker and detection. The second measure is the aspect ratio
variation Aratio

(
tri, dj

)
between the tracker i and detection j.

Because the object deformation and rotation can be charac-
terized by the change in aspect ratio, we measured the degree
of aspect ratio variation by modifying of [37] in frame t as
follows:

Aratio(tri, dj) = max
(
r(d j)
r(tr i)

,
r(tr i)
r(d j)

)
, (8)

where r = h/w.
The third measure is the relative L1-distance Dis

(
tri, dj

)
between the center of track i and detection j in the appearance
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space. Finally, for the cost function of association matching,
we combine three distance measures using a weighted sum.

c
(
tr i, d j

)
= α · P̂Siam

(
tri|dj

)
+ β · Aratio(tri, dj)

+ γ · Dis
(
tri, dj

)
(9)

where α, β, and γ denote the weights, which are 0.4, 0.2, and
0.4, respectively. To obtain an appropriate weight, we mea-
sured the MOTA using the MOT 16 dataset. When 3 weights,
α, β, and γ were equally assigned by 0.33 each, the MOTA
was measured to be 53.8%. On the other hand, when α and γ
were given as 0.4 and β was given as 0.2, MOTA was
improved by 4.1% to 57.9%. This is because the ratio of
the size of the object represented by β is different when a
pedestrian is standing and when walking, especially when
occlusion occurs. Therefore, when the weight of β is 0.2 and
α and γ for the SiameseRF score and distance are equal to
0.4, it showed the best MOT performance. These weights are
also adjustable according to the characteristics of the dataset.

The detailed procedures for an online association are
described in Algorithm 2.

Algorithm 2 Online Association
Input:
Tracker set Trt = {trit , tr

i+1
t , . . . , trIt |1 ≤ t}

Target detection set Dt =

{
djt , d

j+1
t , . . . , dJt

}
Affinity matrixMi,j, i ≤ I , j ≤ J

Initialize affinity matrixM
Generate affinity matrixM for the trackers and the detections
For i = 1 to I

For j = 1 to J do
Compute search area of trit
Find a valid matching pair

(
trit , d

j
t

)
from Dt and

compute a cost function using Eq. (9)
Mi,j← c

(
trit , d

j
t

)
end

end

While (no further tracker is available)
Find a pair (trit , d

j
t ) fromMi,jthat has a minimum cost

function.
End While
The state of the tracker trit is updated using Eq. (7)

IV. RULE DISTILLATION OF SIAMESE-RF
SiameseRF itself shows a good performance in measuring
the similarity between the detection object and the tracker;
however, because SiameseRF is based on an RF composed
of multiple trees, it is necessary to reduce the number of
trees or reduce the rules of the tree for real-time online MOT.
However, because the number of trees is closely related to
the similarity matching performance, it cannot be removed
without care, and the method of removing the rules while

maintaining the number of trees is an effective alternative.
The proposed lightweight method of an RF can explain how
much influence each feature has through an analysis of the
contribution of node rules constituting each tree.

In SiameseRF learning, the nodes of each tree constituting
the RF not only have a class distribution but also learned
features and threshold values for an optimal tree generation.
This characteristic of the tree node enables an analysis of how
the rules of the tree generated in the learning process affect
the prediction result. Based on this fact, we can remove dupli-
cate or relatively inefficient rules from the tree by calculating
rule contribution Contri(ri).
The i-th rule in the tree Te is composed of several nodes.

We compute the feature contribution feat.Contri (i, j) =(
Pr j−1 − Pr j

)
for the j-th node using the class probability

distribution Pr = {pr1, . . . prNo.of .Class} between the parent
node (j-1) and the child node (j). Finally, SiameseRF with
some rules removed can maximize the efficiency of the RF
by reducing the number of essential parameters without sig-
nificantly affecting the accuracy.

This method is defined as a rule distillation herein, and
SiameseRF is made lighter by removing the rules of the tree
using Algorithm 3.

Algorithm 3 Rule Distillation of SiameseRF
Input:
Te: trained tree of SiameseRF
dR: distillation rate, P: depth of a tree
R: ordered rule set
Initialize rule set R = ∅
For each tree Te in SiameseRF do
Induce an i-th rule rTei from a trained tree Te
The rule contribution Contri(rTei ) is computed for the
i-th rule

Contri
(
rTei
)
=

∑P
j feat.Contri(i, j)∑Te

t=1 No.of .Class(Te)
(10)

Append rule rTei and Contri
(
rTei
)
to R[l]

End for
Sort rules in R[l] according to rule contribution
Eliminate rules with low contribution by dR %.
Output: dR% rules in R

SiameseRF, with a distillated rule, reduces the memory
space for parameter storage and enables a faster associa-
tion by removing unnecessary rules while maintaining the
tracking accuracy. In Section V-A, the association matching
according to the rule distillation rate is presented based on the
experimental results.

V. EXPERIMENTAL RESULTS
To measure the tracking performance of the proposed Siame-
seRF, in this study, several experiments were conducted on
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the benchmark databases that are mainly used in the MOT
challenges:
• MOT16 [38]: This dataset consists of a set of
14 sequences with more complex scenarios, different
perspectives, camera movements, and weather condi-
tions. All sequences were annotated by experts under
strict standards. MOT16 is annotated not only for pedes-
trians, but also for vehicles, sitting people, occluding
objects, and other important object classes.

• MOT17 [39]: This dataset is an extended version of the
MOT16 dataset and includes three sets of detections
from a deformable part model [38], Faster-RCNN [13],
and scale dependent pooling [40] for a more compre-
hensive evaluation of the tracking algorithms. MOT17 is
mainly used to compare and test the tracking perfor-
mance of objects detected by three public detectors.

For validation and evaluation of the proposed method,
we used CLEAR MOT metrics [7] such as the multiple
object tracking accuracy (MOTA), the multiple object track-
ing precision (MOTP), the average false alarms per frame
(FAF), the ratio of mostly tracked targets (MT), the ratio of
mostly lost targets (ML), the number of false positives (FP),
the number of false negatives (FN), the number of IDen-
tity switches (IDsw), the number of fragmentations (Frag),2

and Hz (frames per second). The two intuitive metrics MOTP
and MOTA can be defined in [7].

MOTP =

∑
i,t d

i
t∑

t ct
(11)

where ct is the number of matches found for time t and d it
is the distance between the object oi and its corresponding
hypothesis.

MOTA = 1−

∑
t (mt + fpt + mmet )∑

t gt
(12)

where gt is the number of objects present at time t , and
mt , fpt ,mmet are the number of misses, false positive, and
mismatches, respectively.

For SiameseRF learning, the area containing the pedes-
trian was cropped to the size of a pedestrian from the
CFM by applying the ground-truth in the sequence of the
MOT16 training set. The positive pair {anchor, positive} and
negative pair {anchor, negative} are composed of 31,170
images, respectively. During the learning process, the optimal
rules and the tree parameters are automatically determined
while reducing the risk of an overfitting using a five-fold
cross validation.

Both YOLOv3 and SiameseRF are implemented in C++,
and YOLOv3 for object detection runs in a single RTX2080ti
GPU environment, whereas SiameseRF runs using an Intel
Core i7-9700K processor under the Windows 10 environ-
ment. Tracking, including feature extraction, works in par-
allel with the object detection part.

2Track fragmentation occurs when a tracker tracks an object’s trajec-
tory or track into two or more separate track instances [42].

A. CONVOLUTION LAYER SELECTION FOR FEATURE
EXTRACTION
In Section III-A, we mentioned that, when extracting the
CFM for a similarity measurement, we combined the output
feature maps of the two consecutive convolution layers of
DarkNet53. Therefore, this experiment attempted to deter-
mine the appropriate layer-pair of Darknet53 for improving
the object matching accuracy without increasing the pro-
cessing time and parameter numbers. Experiments were con-
ducted using the MOT16 sequences 2 and 9 because they
were captured using a static camera.

Figure 5 shows the matching accuracy according to the
change in layer pairs. When a layer pair ‘1 + 2’ was used,
the average matching accuracy was 83.05%, which is better
than that when other pairs were used. As we determined
from the experimental results, the middle layer pair (‘2+ 3’)
of Darknet53 achieves a good matching accuracy compared
to the latter layer pairs, but a 7.35% lower accuracy than
the first layer pair. In general, although the latter layer of
the CNN expresses important abstraction information of an
object well, the matching accuracy is considered to be low
because distinctive informationmay be lost for a small object.

FIGURE 5. Nine possible pairs of experiment results for determining the
layer-pair of DarkNet53. Combining a ‘1 + 2’ pair shows the best matching
performance.

These results prove that the matching accuracy is strongly
dependent on the quality of the object features, and if the
size of the feature map is too small, it may influence the
degradation of the matching performance.

B. DETERMINATION OF RULE DISTILLATION RATIO
In the proposed SiameseRF structure, we compared and
tested the effect of the tracking performance of MOTA,
the computational quantity, and the number of parameters
when the ratios of the rule distillation constituting an RF
were different. Moreover, although an RF improves the per-
formance by averaging multiple decision trees trained using
a bagging method to reduce the overfitting and variance, the
performance cannot be improved further owing to unneces-
sary rules that are still overfit or have a high variance [27].
These problems can be solved to a certain extent by
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FIGURE 6. Tracking results for a moving camera using the proposed SiameseRF method: (a) tracking results for partial and short-term occlusions and
(b) cases of switching ID owing to a long-term occlusion.

removing less important or redundant rules. AllMOTA16 test
sequences were used in the comparative experiments.

As shown in Table 3, when the number of rules is decreased
by 10%, there is no significant difference in the num-
ber of operations or performance of the model, but it can
be seen that the number of parameters is greatly reduced.
From the results, we observe that the performance of the
model is maintained until 30% of the rules are removed;
important rules having a high contribution are retained
and non-important rules are effectively removed. However,
if more than 40% of the rules are removed, we observe
that the decline in MOTA also increases by approximately
22% as important rules with a high contribution are also
removed.

TABLE 3. Comparison results of MOTA, number of rules, parameters, and
operations according to the change in ratio of the rule distillation on MOT
16 sequences.

Thus, it was found that the proposed tracking system was
most suitable in terms of performance and weight reduction
when 30% of the rules were removed.

C. EVALUATION ON THE MOT16 CHALLENGE DATASET
In the first experiment for the tracking performance, the pro-
posed method is compared with the latest online multi-object
tracking method using the MOT 16 dataset, as shown
in Table 4. As the measures of the MOT performance, ten
CLEARMOT metrics described in the previous section were
used. We compared the performance of eight state-of-the-art
methods to verify the effectiveness of the proposed tracking

method: (1) DMAN [6] using dual matching attention
networks, (2) RAR 16 [26] applying a recurrent autoregres-
sive network, (3) JCSTD [31] using meta-measurements,
(4) Tracktor [20] using Tracktor based on a Siamese net-
work, (5) TrctrD16 [32] applying deep Hungarian net, (6)
MLT [43] using a multiplex labeling graph, (7) the proposed
SiameseRF without a rule distillation, and (8) the proposed
SiameseRF with a 30% rule distillation. Table 3 only mea-
sures the tracking performance of the proposed method based
on the results of a private detection. Among the comparison
methods, DMAN [6] used a Siamese CNN similar to the
proposed method.

As shown in Table 4, the proposed algorithm shows a sim-
ilar tracking performance and a relatively fast-tracking speed
compared to the state-of-the-art MOT algorithms based on a
CNN. Although with JCSTD [31], which shows the fastest
processing speed on a CPU among the six comparison meth-
ods, the MOTA and MT are 10.5 and almost 2-times lower
than those of the proposed method, respectively. In terms
of the MOTA performance, RAR16 [26] showed the best
performance at 63%, but it can be seen that the tracking
speed is possibly 7.75-times slower than that of the pro-
posed rule distillated method (8). The proposed SiameseRF
in (7) shows a performance similar to MOTA when applying
the latest three methods, i.e., (4), (5), and (6), and specifi-
cally, MOTP showed the highest value of 79.4%. However,
frequent IDsw and fragment events are problems requiring
improvement.

D. EVALUATION ON MOT17 CHALLENGE DATASET
In the second experiment on the tracking performance,
we compared the state-of-the-art methods with the proposed
method using the MOT 17 dataset, as shown in Table 5.
To verify the effectiveness of the proposed tracking method,
the same performance was measured using 10 state-of-the-
art methods: (1) DMAN [6], (2) DEEP_TAMA [41] using
deep temporal appearance matching, (3) STRN [45] applying
a spatial-temporal relation network, (4) FAMNet [22] using a
multi-object assignment, (5) Tracktor [20], (6) TrctrD17 [32],
(7) YoonKJ17 [46] applying one-shot-learning, (8) the pro-
posed SiameseRF without rule distillation, and (9) the
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TABLE 4. Comparison results of 10 CLEAR MOT metrics using eight state-of-the-art MOT methods on MOT 16 sequences.

TABLE 5. Comparison results of 10 CLEAR MOT metrics using 10 state-of-the-art MOT methods on MOT 17 sequences.

proposed SiameseRF with 30% rule distillation. Unlike
in Table 4, in Table 5, public detection results are listed
instead of private detection to evaluate a more accurate track-
ing performance. Similar to Table 4, the proposed method
shows a good performance in MOTA, which is the best track-
ing performance indicator. In particular, SiameseRF with
30% rule distillation showed a 0.4% lower MOTA than the
full version (8) but demonstrated the best performance inMT.

E. EVALUATION ON TRACKING SPEED
The tracking speed of the proposed SiameseRFwas compared
with that of five other methods, as shown in Table 6. For
objective speed comparison, performance was compared only
for the results of experiments in the same Intel CPU i7 envi-
ronment among the algorithms used in Table 4 and Table 5.3

In Table 6, Hz represents frames per second for only
the tracking; it excludes object detection. Similar to the
proposed method, the JCSTD [31] method showed the
fastest processing time among the CNN-based methods at
8.8 Hz in MOT 16 dataset. However, this method not only
showed a slower speed of 2.3 Hz than SiameseRF but was
also 3.6 Hz slower than rule-distilled SiameseRF. In the
case of rule-distilled SiameseRF, a processing speed of

3The operating environment of each comparison method was based on the
results of the MOT Challenge.

TABLE 6. Comparison results of tracking speed according to the change
in ratio of the rule distillation on MOT 16 and 17 sequences.

approximately 1.3 Hz faster than the basic SiameseRF
method was shown while maintaining the overall perfor-
mance. For the MOT17 dataset, FAMNet [22] showed the
fastest processing speed at 1.6 Hz among other three compar-
ison methods. However, this method has a large speed differ-
ence of 10.8 Hz from the basic SiameseRF. This means that
if only the CPU is used for MOT, real-time processing cannot
be expected in terms of tracking speed whenMOT algorithms
are based on only CNN. Overall, the proposed method has a
tracking performance similar to that of a CNN-based method
and shows a faster tracking speed than state-of-the-art com-
parison methods indicated in Table 6.
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TABLE 7. A detailed summary of the tracking results of our Basic SiameseRF tracker on MOT 16 and 17 Challenge benchmarks.

Figure 4 shows a qualitative example of the proposed
approach in the case of occlusions. When the camera move-
ment is low, the proposed SiameseRF accurately tracks

partially hidden or temporarily hidden pedestrians, as shown
in Figure 4 (a). However, as shown in Figure 4(b), if the
camera movement is large or a full occlusion occurs over
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the time window, the tracker will go missing (yellow arrow)
or the tracker ID will switch to another tracker (red arrow).
Therefore, a method to solve the problem of ID switching
from long-term occlusions without losing the advantage of
fast online tracking should be studied in the future.

A detailed summary of the MOT Challenge benchmark
results for the proposed basic and 30% rule distilled Siame-
seRF tracker is shown in Table 7. For the corresponding
results for each sequence of the other trackers mentioned in
this study, please refer to the officialMOTChallengewebpage
available at the MOT Challenge website.4

VI. CONCLUSION
In this study, we proposed a new SiameseRF for MOT.
SiameseRF is not CNN-based and does not share weights, but
instead shares rules that make up the RF. Therefore, unlike a
CNN, it showed an excellent object matching performance
without requiring many parameters or a long computation
time. In addition, the rule distillation algorithm, which can
effectively remove the rules that make up the RF, makes
SiameseRF lighter and allows a faster matching. We verified
the good performance of the proposed SiameseRF through
various benchmark datasets and proved that both real-time
and online tracking are possible because of the low computa-
tional time.

VII. DISCUSSION
Although the SiameseRF-based MOT proposed in this article
is run on a CPU, the matching performance of the model
is improved and the issue of the existing slow CNN-based
tracking is resolved. However, the proposed method is still
unsuitable for real-time operation on low-end systems such as
limited embedded devices because numerous parameters and
operations are still required. Moreover, because the proposed
method relies only on appearance features, for a higher track-
ing performance, the object and cameramovements should be
additionally considered. In addition, there is a need for an ID
switching solution owing to the long-term occlusion of the
trackers.

As a future study, we plan to develop a more robust asso-
ciation checking algorithm that can consider both long- and
short-term occlusions of the object. In addition, we will focus
on reducing the weight and optimizing the algorithm so that
it can be installed and used in low-end embedded systems
required by autonomous vehicles or robots.
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