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ABSTRACT Typical radar detectors exploit only a small proportion of the valuable information contained in
radar reflections, i.e. magnitude and Doppler. A neural network-based approach for augmenting traditional
radar detector structures using machine learning (ML) is proposed in this paper. Specifically, the network is
designed to augment target detection in the field of maritime wide area surveillance for non-coherent data.
A combination network consisting of a convolutional neural network (CNN) to extract spatial features and
a long short-term memory (LSTM) for extracting temporal patterns in the spatial features is proposed. The
network augments the detector structure by blanking out regions of the frame which are classified as not
containing a target, thus reducing false alarms. The network is tested on data containing four marine targets
collected by a ground-based radar. The data set was chosen because it contains strong sea clutter returns.
When ML is used, the receiver operating characteristic (ROC) curves are shifted to lower probability of
false alarm (PFA). A Kalman filter tracker was applied to the ML-augmented and baseline detections, and
it was shown that ML-augmented detections produced similar tracks at lower PFA. The feature discovering
capability of the network is analyzed through a series of tests, and the argument is made that the CNN-LSTM
network presented in this work demonstrates the ability to improve the detection performance by exploiting
spatial and temporal information in the data.

INDEX TERMS CNN, LSTM, maritime surveillance, wide area surveillance radar.

I. INTRODUCTION
The purpose of this work is to study the use of machine learn-
ing (ML) as a means to augment traditional detector struc-
tures in situations where targets are not easily separable from
surrounding sea clutter due to low signal to clutter plus noise
ratio (SCNR) resulting from unfavorable geometries (i.e. high
grazing angles) or low observable targets (including stealth
vessels or semi-submersibles) [1], [2]. Two aims of this work
are to exploit spatial information (aim 1) and temporal infor-
mation (aim 2) which are neglected by traditional detectors.
In particular, two types of ML networks from the field of
deep learning, convolutional neural networks (CNN) and long
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short-term memory (LSTM), will be examined because of
their inherent ability to discover spatial and temporal patterns.

Traditionally, automated target detectors use only ampli-
tude and/or Doppler information [3]. Radar data contains
a lot of information which is not being exploited by basic
detectors, including spatial patterns (shapes of targets, land
clutter, wave fronts) and temporal patterns (persistence and
movement of targets and wave fronts, and lack of movement
of land clutter). It is these spatial and temporal patterns which
are being recognized by human operators for manual detec-
tion of targets in radar data. Furthermore, spatial and temporal
patterns are more robust than simple amplitude statistics in
environments with low SCNR. In some environmental con-
ditions (such as rough sea states or high grazing angles),
automatic target detection fails to detect targets, or detec-
tion is only possible at unacceptably high false alarm rates.
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ML is proposed as a means to augment traditional detectors
with information obtained by exploiting spatial and temporal
patterns within the data. Neural networks can be designed to
exploit two-dimensional and temporal patterns, thus using the
same information as human operators. ML is investigated as a
way to bridge the performance gap between manual detection
via human operators and automated detection via traditional
detectors.

A. USE OF ML FOR RADAR SURVEILLANCE IN LITERATURE
The use of ML or artificial intelligence to aid in radar detec-
tion of targets embedded in clutter has been discussed in
literature since at least the early 1990s. In [4] artificial intel-
ligence was presented as a means to boost the robustness of
the constant false alarm rate (CFAR) algorithmwithwide area
surveillance (WAS) radar. Clutter was observed in real time
and prior knowledge of semantic labeling of clutter was used
to choose correct clutter statistics. In [5] and [6] ML-based
detection strategies for passive radar were presented. In [7]
the micro-Doppler characteristics of a target were used for
classification of target types (background clutter, real human
target and single simulated tone) using a X-band wide
area airborne radar. The target micro-Doppler signature was
extracted from a time-frequency plot of received data and
a simple AM-FM model was used to fit to the data. The
parameters of themodel were used as features for training and
validating a support vector machine (SVM) classifier. This
work used short coherent processing interval (CPI) lengths,
which is a limitation of WAS. In [8] a bi-linear transform
was used to obtain the time-frequency plot from radar returns.
TheWigner-Ville distributionwas used alongwith aGaussian
kernel function in the bi-linear transform. Themarginal distri-
bution of frequency (MARF) was extracted for use as features
in classification. A feed forward neural network (NN) was
used to classify a signal as being reflected from sea clutter
as opposed to a signal reflected from sea clutter and a target.
The authors showed that by using a NN to classify targets
an increase in accuracy of 20% was achieved compared to
the CFAR method at a PFA of 10−3. While these results are
impressive, the signals appeared to have high SCNR. In [9]
ML was used to suppress sea clutter in radar returns. Doppler
frequency coefficients were used as features, and both SVM
and kNN classifiers were tested and compared. Only one
target was present in the data used. All of these previously
mentioned works used engineered features. The work pre-
sented in this paper deviates from these previous applications
of ML on target detection in that it relies on ML architectures
to discover descriptive features. By using this strategy the
limitations of an engineered feature set, namely assumptions
of the problem and domain knowledge, are avoided.

Some works in literature have presented ML methods
for detecting targets in maritime clutter without the need
to explicitly engineer features. Using the chaos theory of
dynamic sea clutter, a NN approach was presented in [10].
The network was used to predict the next value in the time
series data given N previous data points. The value of N ,

which also corresponds to the number of input nodes to
the NN, was determined by computing the amount of pre-
dictability of the chaotic system. The NN had two hidden
layers of size 80 and 55. A CFAR algorithm was imple-
mented for target detection, in which the error of the model
predictions were used as input to the CFAR algorithm. Both
coherent and non-coherent networks were trained and tested.
The results were compared to results obtained by traditional
magnitude-based CFAR algorithms, and it was shown that the
coherent NN method outperformed the CFAR only methods.
The theory underpinning the design of the classifier was con-
troversial, however. Unsworth et al. [11] and McDonald and
Damini [12] showed that themethods outlined in [10] resulted
in false detections for chaos. Haykin conceded in [13] that
the methods discussed in [10], namely correlation dimension
and Lyapunov exponent analysis, do not provide conclusive
proof that a given signal is from a chaotic system, a non-
linear deterministic system with added noise or a colored
noise stochastic system.

A novel convolution-only CNN was presented in [14] for
classification of targets in synthetic aperture radar (SAR)
imagery. The presented method was two staged- first detect-
ing targets and then classifying the target as one of ten
possible types. The maximum accuracy was higher for the
convolutional-only CNN than traditional CNNs (containing
fully connected layers), but the probability of detection (PD)
vs probability of false alarm (PFA) performance did not
exceed the traditional CNNs. Many ML applications have
been presented for SAR imagery (see [15], [16]). It is impor-
tant to emphasize that SAR imagery is much richer in spatial
information due to its higher resolution than WAS, meaning
these previous studies cannot be used as benchmark results
for the work in this paper.

In this paper a novel method of detecting maritime targets
in WAS radar by augmenting a traditional cell averaging
CFAR detector with ML is presented. ML is used in order to
exploit neglected information contained within the radar data,
namely spatial and temporal patterns. By choosing ML net-
works which are able to discover features, the process of engi-
neering features (a process which is limited by knowledge
and assumptions on the underlying data) can be avoided. The
training and testing data is non-coherent (i.e. non-complex,
real data only), meaning Doppler information is not available.

B. DEEP LEARNING SPATIAL-TEMPORAL APPROACHES
Feature sets are designed by an engineer, based on their
understanding of the data set. This limits the effectiveness
of the feature set by the amount of domain knowledge the
engineer possesses. To avoid this limitation, it is possible
to use ML networks which discover their own features. The
proposed method is a combined approach, using a CNN and
LSTM (an extension of the recurrent neural network (RNN))
for spatial and temporal pattern recognition respectively. Sim-
ilar combination deep learning approaches have been previ-
ously proposed in other research areas [17], [18]. As ML has
had limited use in radar target detection it is necessary to
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TABLE 1. Parameters of radar.

borrow concepts from other areas which have a richer history
of ML application.

A combined approach, much like the one that is proposed
in this work, was presented by Sainath et al. [19] for use
in speech processing. Features were discovered by the CNN
and then extracted from one of the intermediate layers of the
network. The features were then reduced using a feature space
reduction technique and then passed to an LSTM as input.
Like the CNN, the LSTM was only used for discovering
features. A fully connected NN was used for classification.
The network presented in [19] provided a lot of inspiration for
the work presented in this paper, however many of the details
were changed to make it suitable for maritime WAS radar
data. The feature reduction stage of [19] was not included.
Instead, a fully connected layer in the CNN was used to
reduce the size of the output (or input to the LSTM). This
was done so that the feature reduction stage is incorporated
into the training process of the CNN.

C. OUTLINE OF PAPER
The remainder of the paper is organized as follows: Section II
discusses the data set used for this work, Section III describes
the ML architecture used, Section IV presents the results,
Section V provides concluding remarks and Section VI men-
tions limitations of the work presented in this paper along
with suggested future work.

II. DATA SET
The data used in this work was supplied by DenbridgeMarine
(Birkenhead, UK) and was recorded at St. Annes Head
in Pembrokeshire, Wales. A Sperry Marine Bridgemaster
X-bandmagnetron non-coherent radar was used. The antenna
rotated in the azimuth direction, with each full rotation form-
ing a single frame of range-azimuth data. The relevant param-
eters of the radar are displayed in Table 1. The radar data was
quantized with 8 bit resolution (non-complex values) by the
receiver circuit. Due to the quantization of the data, much of
the far-range low-magnitude clutter became zero in value.

Data used in this work was collected over 20 minutes, cor-
responding to 400 frames and contained four targets (boats).
Automatic identification system (AIS) locations were not
available for the 4 targets, so the locations had to be manually
labeled by an operator. The data was analyzed to identify all
targets present, however, it is possible that there were other

small or stationary targets present that went unlabeled. The
tracks of these targets can be seen in Figure 1, while images
of the targets can be seen in Figure 2. The relative magnitude
and range-azimuth extent varies from one target to another.
Target 1 is large and clearly visible to an untrained observer
whereas the other three targets are small and weak in magni-
tude (i.e. small boats) when compared to surrounding clutter.
Since the targets are of different sizes and have different
radar cross sections, the detector performance will largely
depend on the type of the target. The SCNR value of each
target plotted against the frame number is shown in Figure 3.
Target 2 was located far from the radar for the majority of the
collection- beginning approximately 10.8 km from the radar
and ending 8 km from the radar. As previously mentioned, the
quantization of the data results in some data cells (where cell
is defined as the range-azimuth bin of the radar returns) being
zero in magnitude. SCNR is calculated by dividing the target
cell value by the average of the local clutter cells Ac+n[·]:

Ac+n[m, n, t] =
1

(2a+ 2g+ 1)2 − (2g+ 1)2

· (
m+(a+g)∑
i=m−(a+g)

n+(a+g)∑
j=n−(a+g)

X [i, j, t]

−

m+g∑
i=m−g

n+g∑
j=n−g

X [i, j, t]) (1)

SCNR[m, n, t] = log(
X [m, n, t]

Ac+n[m, n, t]
) (2)

where m, n and t are the range, azimuth and time locations
of a target, X [·] is the radar data, a is the width of cells taken
for averaging and g is the width of guard cells around the
target location. If the average of the local clutter cells is zero,
the SCNR is undefined due to a division by zero. Only the
SCNR values which are not undefined are shown on the plot
in Figure 3. As seen in Figure 3, the SCNR fluctuates for each
target over time. SCNR peaks when the target is furthest from
the radar and SCNR dips the lowest when the target is closest
to the radar.

III. CNN-LSTM CLASSIFIER DESIGN
The convolutional long short-term memory neural network
(CNN-LSTM) utilized in this work is composed of two
parts: a CNN which is tasked with extracting spatial informa-
tion within the data, and an LSTM, for analyzing temporal
changes in the spatial information of the data. Finally, fully
connected layers are used to make the classification. Figure 4
provides a block diagram of the proposed network. The net-
work in this application is used to augment traditional CFAR
detection methods. The first stage of the block diagram is
to cell-average the data to normalize power across the range
extent. The proposed method incorporates a segmentation
step to limit the size of the input data to the classifier. These
segments are then masked by multiplying the segments with
the results of the classifier (an integer value of 0 or 1).
Once the data has been masked to remove excess clutter,

VOLUME 8, 2020 179283



Z. Baird et al.: CNN-LSTM Network for Augmenting Target Detection

FIGURE 1. Target tracks superimposed on averaged frames. Target 1 in blue, Target 2 in red, Target 3 in
yellow and Target 4 in purple. Y-axis indexes azimuth direction while x-axis indexes range samples. The data
is collected in a rotational sweep of the radar therefore the azimuthal index corresponds to a clockwise
rotation of the compass from North-East-South-West-North where each rotational sweep is a frame.

FIGURE 2. Example segments of frames featuring each of the four
targets. Each column is five successive samples of the target.

a traditional detector structure is applied. By incorporating
the ML network with a traditional CFAR detector, it could
be integrated into legacy radar systems. Upon detection,
a tracker is applied to further improve the performance of the
algorithm. The following subsections detail each block in the
block diagram in Figure 4.

FIGURE 3. SCNR values for each target over duration of data collection,
with a = 32 and g = 8. Target 1 moves little in the radial direction,
Target 2 moves towards the shore, Target 3 moves towards shore and
Target 4 moves along the coast of an island, away from shore.

A. CELL-AVERAGING
The raw data is cell averaged according to

X ′[i, j, t] =
X [i, j, t]∑j−NG

s=j−NG−NA X [i, s, t]

+
X [i, j, t]∑j+NG+NA

s=j+NG X [i, s, t]
(3)

where NA is the number of cells averaged on either side of
the cell and NG is the number of guard cells on either side of
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FIGURE 4. CNN-LSTM ML network. X [·] is the radar data input, t is the
time sample of X [·], M is number of azimuthal samples, N is number of
range samples, X ′[·] is the cell-averaged data, S is number of segments
X ′S [·] created by the segmentation block, L the length of the feature vector
Y [·], z ′[·] is the binary output of the LSTM classifier, Z [·] is the masked
radar data, D[·] is the binary valued detection tensor and T [·] is the
output of the tracking filter.

the cell. In this paper, the values of NG = 16 and NA = 8 are
used.

B. IMAGE SEGMENTATION
The input data is a matrix, or frame, of size 1024 × 2048,
corresponding to a circular area of 689 km2. The target
signature is very small (on the order of 100 to 101 cells)
when compared to the area of the entire data frame (on the
order of 106 cells). Furthermore, multiple targets could be
contained within any given frame. In the case of this data
set, there are 4 targets present in each frame. The input
frame is segmented into a grid of contiguous small segments.
The benefits of segmentation are (1) reducing the size of
the frames results in fewer input parameters, and (2) the
targets are more likely to be isolated to individual segments,
or regions of the overall data frame. A size of 25 × 25 was
chosen for the segmentation of the data. The size was chosen
because it was large enough to fully contain the largest target

FIGURE 5. Example of target trajectory through adjacent segments. The
grid represents the boundaries of the segments, and the yellow pixels
represent locations of Target 3 over a 1 minute interval.

seen in the data set. Furthermore, the smaller the size of the
segment, the better the targets’ isolation from the surrounding
clutter. Occasionally, targets may move into an adjacent seg-
ment which then results in the target being ’split’ for a short
duration. This is graphically represented in Figure 5. This
could potentially cause a missed detection. For this paper,
this issue is not addressed. Future work will be devoted to
identifying the scope of this problem and a solution. Potential
solutions could involve overlapping segmentation or using a
majority rules classification for adjacent segments.

C. CNN
CNNs are a special type of multi-layered NN. CNNs are
used extensively in the field of computer vision due to their
inherent ability to classify 2D images [20]. Unlike con-
ventional NNs, CNNs are composed mainly of layers that
have sparse weight connections which means there are fewer
parameters to optimize. The underlying principle in CNNs
is that 2D filters, which comprise a convolutional layer, are
convolved with input images to create 2D feature images.
These filters (convolutional layers) have adjustable weights
which are optimized during the training process [20]. Convo-
lutional layers can be stacked in series to derive high order
features. The result of training is that specialized features
are discovered by the network. Each convolutional layer has
architectural parameters which must be defined by the user.
These architectural parameters include the size of the filters,
the number of filters, amount of padding to the input and
filter stride length. Additionally, the number of convolutional
layers must also be defined. CNNs include other layer types
such as pooling and activations which are explained in detail
in [20].

CNNs can be considered as consisting of two stages: fea-
ture extraction via convolutional layers and classification via
fully connected layers. This is shown in Figure 6. When mul-
tiple fully connected layers are used, the size of the feature
vector changes according to the number of nodes in each
layer. Fully connected layers can therefore be used to reduce
the size, or dimensionality of the feature vector before it is
passed on to the next stage, the LSTM. The CNN is trained,
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FIGURE 6. Graphical example of CNN with single convolutional layer.
Here p(c1|X ′S [1 : M′, 1 : N ′, t ]) and p(c2|X ′S [1 : M′, 1 : N ′, t ]) represent the
posterior probabilities of class c1 and c2 given the input of
X ′S [1 : M′, 1 : N ′, t ].

and then the final fully connected layer is removed so that
the output of the CNN becomes the input to the next stage
of the CNN-LSTM classifier. The number of convolutional
and fully connected layers, as well as the number of filters
or nodes in each layer, is determined through trial and error,
with the goal of maximizing test set accuracy and minimizing
test set false alarms.

An important aspect of the CNN is its ability to discover
features rather than requiring the user to engineer features.
This makes CNNs useful for problems in which the model
for the underlying system dynamics are unknown or too com-
plex. Rather than developing custom design features based on
domain knowledge by users, the task is left to the CNN to
discover an optimal feature set based on spatial patterns. Fur-
thermore, targets move and therefore shift in space over time.
Therefore, it is preferable to use a classifier which is invariant
to translations (CNNs are invariant to shift translations due to
convolutional and max-pooling operations [21]). Automatic
feature discovery can also be achieved through other methods
such as auto-encoders or k-means clustering.

Many specialized CNN architectures have been pre-
sented in literature, such as AlexNet [22], VGG-16 [23],
Inception-V1 [24] and ResNet-50 [25] which show marked
improvement over conventional CNNs. These networks are
very deep and contain millions of parameters. These net-
works were designed for high resolution images, which is
not what this paper deals with. These networks are therefore
not considered as candidates for the CNN in the CNN-LSTM
network presented in this paper.

The input to the CNN-LSTM classifier is a sequence of
segments X ′S [1 : M

′, 1 : N ′, t]. Unlike the LSTM, the
CNN has no time dependency and therefore does not exploit
temporal patterns.

D. LSTM
LSTM is an extended form of the RNN. LSTMs were pro-
posed as a solution to the vanishing gradient problem of
RNNs [26]. Furthermore LSTMs can capture both long-term
and short-term temporal patterns within the data unlike
RNNs. Many versions of LSTMs exist (see [27] for an excel-
lent review of these), however the basic LSTM consists of a
block input, an input gate, a forget gate and an output gate.
Each of these gates take as input the data vector Y [1 : L, t]
and the recursive output z′[t − 1]. The purpose of the gates
within the LSTM is to control the flow of information from
the input to output while maintaining a memory of past inputs

(cell state). It is this basic form of the LSTM that will be
used in this paper. The output of the LSTM, z′[·], is the
learned posterior probability that the segment belongs to the
clutter-only class.

E. FULLY CONNECTED LAYERS
The data is sparsely populated with targets and therefore,
has a large class imbalance. Conventional or default loss
functions for fully connected neural networks (or any binary
classifiers for that matter) assign equivalent loss to mis-
classification of both classes. For highly imbalanced data
sets, these classifiers can achieve very low loss and high
overall accuracy by simply classifying the over-represented
class very well and sacrificing the classification performance
of the under-represented class. In the extreme case, this
would mean classifying all observations as belonging to the
over-represented class. For the application considered in this
paper, this would result in all clutter being masked along with
all targets. In order to remedy this, a cost or weight term for
incorrectly classifying each class is added to the cost function.
In particular, data which is over represented would have a
weight of less than 0.5 while the under-represented class
would have a weight greater than 0.5 (assuming normalized
weights). The higher the weight, the more the classifier favors
correct classification for that class, albeit at the expense
of the other class. The two extremes of this weighted loss
function are when both weights are 0.5 (which simplifies
to the original unweighted function) and when the weights
are 1 and 0, it will likely assign a single class label for
all data points. The weighted cost function is defined as
follows

L = −
1
l

l∑
s=1

C∑
c=1

wchsclog(z′sc) (4)

where l is the number of data points in the training set,
C is the number of classes (2 in this work), h is the truth
value and z′ is the output of the classifier. A weighted cost
function is used for the training of both the LSTM and the
CNN. The actual values of the weight wc are computed
for each network based on the ratio of training samples for
each.

F. SEGMENT MASKING
Segments are masked based on the result of the LSTM
classifier:

X ′1[·] =

{
0 z′1[·] > CThresh
X ′1[·] otherwise

(5)

whereCThresh is a value between 0 and 1. The valueCThresh
defines the operating point of the classifier, it represents
how much confidence is placed on the classifier output. The
higher the value of CThresh, the less confidence is placed on
the classifier. When CThresh = 1, the classifier does not
have any effect on the flow of data therefore the results are
equivalent to baseline.
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After segment masking, the segments are reassembled to
form the original frame (albeit masked according to the cho-
sen CThresh value).

G. DETECTOR STRUCTURE
The detector structure in this work is the threshold-based cell
averaged (CA) CFAR [3], which defines any point greater
or equal to the set threshold as a detection. Because the cell
under test (CUT) is scaled by the surrounding clutter power,
the threshold can be considered as being adaptive. The output
of the detector is a binary valued multidimensional array of
sizeM ×N ×m, where m is the number of frames in the data
set. The output of the detector is defined as

D[i, j, t] =

{
1 Z [i, j, t] ≥ Thresh
0 otherwise

(6)

where Z [i, j, t] is the cell averaged data with the segment
masking applied.

H. TRACKING FILTER
In typical operation, a tracking filter is applied to detections
to build target tracks [28]. Trackers make use of associa-
tion rules to cluster nearby detections and also to associate
detections over a series of observations to form tracks. Track-
ers make assumptions about the velocity characteristics of
targets in order to determine if successive detections are
generated from a moving target or generated from clutter.
Tracking filters are effective at suppressing false detections
and improving detection performance.

The tracker used in this study used a global nearest neigh-
bor (GNN) algorithm [28]. Tracks were confirmed if 4 of the
past 5 steps had detections, and deleted if less than 9 detec-
tions occur in the previous 10 steps. These parameters were
found through trial and error to provide the lowest number of
false tracks while maintaining the maximum detection rate.
The filter uses a near constant velocity (NCV) Kalman filter
[28]. Prior to applying the tracker the detections are clustered
using a connectivity-based clustering algorithm [29] with a
maximum Euclidean distance of 15. This is done to collapse
multiple detections from a single reflector to one detection.
Cluster centers are taken as the new detection points.

IV. RESULTS
A. TRAINING
All work was done in Matlab R2020a using the deep learning
toolbox. The code was run on a laptop computer with an
N3700 Intel Pentium CPU (1.60 GHz) and 8 GB of RAM.
Table 2 shows the parameters used in the network. The param-
eters were found mainly through trial and error. Training
occurred in the following order:

1) The CNN was trained with the custom weighted cost
function. The training set consisted of 25 × 25 cell
segments.

2) The final fully connected layer was stripped from
the CNN.

TABLE 2. Parameters of classifier network.

3) The LSTM was trained with the custom weighted cost
function. The training set consisted of sequences of
25 × 25 segments which had been passed through
the CNN.

An Adam optimizer [30] was used for training the CNN
and LSTM.

B. CNN TRAINING SET
Data from the first 50% of frames were used for training and
the final 50% was reserved for testing. The target class was
sampled with some overlap so that the number of samples
could be increased for training. This was performed by tak-
ing 16 segments for each of the four targets from each of
the first 200 frames (with the exception of Target 3 which
is not present in the first 128 frames of the data set). This
resulted in a total of 10752 segments associated with a target.
The overlap between target samples was 5 cells in the range
and azimuth axes. For the non-target class, 18600 segments
(not containing a target) were taken at random from the
first 200 frames. The ratio of non-target to target class sam-
ples was 18600 to 10752. The cost function weights were
found to result in the best PD to PFA performance when they
were approximately equal to the relative proportions of the
class imbalance, therefore the weights of the cost function
for the CNN, wc, were set to [0.3663, 0.6337]. Training
took 33 minutes and 8 seconds to complete 5 epochs with
a mini-batch size of 512 (57 iterations per epoch).

C. LSTM TRAINING SET
The training-testing split of the data set was the same for the
LSTM and the CNN but the sampling method was different
as LSTM operates on sequences of segments. As a result,
storage requirements for training and testing will be very
large. Therefore, it was not practical to use the same over-
sampling method used for training the CNN. For the target
class, 25 sequences of segments were randomly selected for
each of the four targets. Each of these sequences contained a
target in at least one segment. An additional 220 sequences
which had no targets present in any segment were randomly
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selected. The total number of sequences was 320, meaning a
total number of segments of 64000. The ratio of segments not
containing a target to containing a target was 57222 to 6778,
therefore the weights of the cost function for the LSTM,
wc, were set to [0.1059, 0.8941]. Training took 25 minutes
and 46 seconds to complete 500 epochs with full batches.

D. PERFORMANCE METRICS
Detectors are evaluated based on their PD vs PFA rates. For
this work, PD is defined as the percentage of frames in which
a particular target is detected. Detectors operate on each cell
of the frame whereas targets cover many cells. A positive
detection, Pd , occurs when a positive finite number of detec-
tions greater than 0 are made within a small area centered on
a target:

Pdo[t] =


1,

Lo1+I∑
i=Lo1−I

Lo2+J∑
j=Lo2−J

D[i, j, t] > 0

0, otherwise

(7)

where Lo1 and Lo2 is the location of target o in the first and
second axes respectively (range and azimuth) and I and J are
the margins of the target area in both axes. The margins are
used so that small errors in the labeled points Lo1 and Lo2
do not effect the computation of the PD. In this paper, the
margins were set to I = 10 and J = 10. PD is then computed
by simply taking the average of the positive detections Pdo
for each target:

PDo =
1
m

m∑
t=1

Pdo[t] (8)

where m is the total number of time samples t used in the
computation of the average. A false detection, or false alarm
is defined as

Fdi,j[t] =



0, if Lo1 − I ≤ i
≤ Lo1 + I ,
Lo2 − J ≤ j
≤ Lo2 + J ,
∀o ∈ [1, 0]

D[i, j, t], otherwise

(9)

which means any detections outside of the regions labeled
as targets are considered false alarms. The false alarm rate
is computed as the number of false detections divided by
the maximum possible number of false detections, as defined
by

PFA =

∑m
t=1

∑M
i=1

∑N
j=1 Fdi,j[t]

(M · N · m)− (4 · I · J · m)
(10)

where the number 4 is the number of targets in this particular
data set. ROC curves are constructed by computing PDo and
PFA in a threshold sweep. The PD and PFA calculations
use apriori information about the targets, which means they
require labeled data.

E. DEFINITION OF BASELINE
In this paper, baseline is defined as the results obtained from
the cell averaged data without undergoing ML augmentation.
This is equivalent to when CThresh is set to 1. All perfor-
mance metrics are computed the same way for the baseline
and ML approach.

F. ANALYSIS OF RESULTS
The ROC curves as seen in Figure 7 are the results of applying
the network architecture from Figure 4 to the test data. The
ROC curves are plotted against the log10(PFA). Seven differ-
ent operating points were tested as can be seen in Figure 7.
The value ofCThresh for each operating point can be found in
the legend. As previously stated, CThresh = 1 is equivalent
to the baseline approach. The effect that ML has on the
ROC curves is a shift towards lower PFA. The bend in the
averaged ROC curve occurs at approximately 10−2.7 to 10−3

for baseline, whereas is occurs between 10−3.3 to 10−3.6 in
the ML augmented curves. The cost of lower PFA, however,
is a reduction in PD. As the operating point is adjusted to
more blanking (lower CThresh value), the PFA drops along
with PD. The use of the operating point parameter CThresh
would give an operator the control over PFA and PD perfor-
mance. The performance is improved overall, with significant
improvement for Targets 2 and 4. The performance remains
unchanged for Target 1, likely because it is detectable at very
low PFA to begin with. Target 3 is the only target for which
the performance doesn’t improve in both PFA and PD. The
PFA is lowered for Target 3, but the PD remains limited even
for the operating point of CThresh = 0.9. It is speculated that
the performance is the least improved for Target 3 because
of all the targets it moves across the range extent much
faster than the rest. This means that the target is present
in any particular segment for a much shorter period than
for the other targets. This restricts the amount of temporal
information that the LSTM can exploit for identifying this
target.

Figure 8 shows an example of the clutter masking capabil-
ity of the CNN-LSTM network. On the left pane of Figure 8,
a region of a single frame containing Target 1 is shown using
the baseline approach, while the right pane of the figure the
same region of the same frame but with masking applied with
CThresh = 0.2 is shown.
A sliding window was applied over the baseline data to

average each frame with the frames one time sample behind
and ahead (three frames averaged). The sliding window fil-
ter degraded the performance, therefore the resulting ROC
curves are not included in this paper. The performance degra-
dation is speculated to be due to the large time between
samples causing the targets to de-correlate between suc-
cessive frames. Each range cell is approximately 7.23 m
in length, and sampling is performed at a rate on 1 frame
every 3 seconds. The fastest target travels radially at 7.13 m/s
meaning for each successive sample it covers a distance equal
to approximately 3 range cells.
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FIGURE 7. ROC curves for validation data. The legend shows the corresponding values of CThresh used.

FIGURE 8. Example of a region of a frame without (left) and with (right) machine learning applied.
Target 1 can be seen near the point (4600, 225) in both images. A value of CThresh = 0.2 was used for
masking.

G. CNN ONLY
To verify that the LSTM portion of the algorithm contributed
positively to the performance, ROCs were generated by using
only the output of the final layer of the CNN, effectively
removing the LSTM. These results can be seen in Figure 9.
An interesting result of this test is that the CNN alone was
inadequate in classifying the data, but the CNN-LSTM com-
bined approach performed better than the baseline. A possible
reason for this is that spatial information alone is not enough

to identify targets within a field of clutter. This is evident
when looking at a single frame of the data without the context
of time. Targets can be very difficult to identify even by direct
observation without observing multiple frames over a short
period of time.

H. ROTATIONAL INVARIANCE
The frames of the test set were rotated 90o clockwise and
fed to the trained CNN-LSTM classifier to test the rotational
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FIGURE 9. ROC curves for each target using only CNN. The legend shows the corresponding values of
CThresh used.

invariance of the classifier. The resulting ROC curves can be
seen in Figure 10. The performance degradation was negli-
gible for Targets 2 and 3. This suggests that the performance
reduction was derived from reduced detectability as opposed
to increased false alarms. If there was an increase in false
alarms it would be expected that there would be a perfor-
mance degradation associated with all target ROC curves.
There was, however, only two target ROC curve showing
any significant change in performance. Figure 2 helps lend
insight into this result. Target 1 has a well defined shape, and
when the target is rotated it possibly appears novel. Unlike
Targets 1-3, Target 4was surrounded by ground clutter returns
associated with coast lines. It is speculated that the network
discovered features that were consistent with the shape and
orientation of the coast line near Target 4 as opposed to
features related to the target. There was no rule explicit in
the training of the classifier to prevent it from discovering
such features. Rotating the coast line to align in a vertical
direction possibly caused the target to appear novel. This
would indicate that the network discovered some non-useful
spatial features which would lead to poor generalization. This
insight shows the need for large target-rich data sets, and even
target-free coastal data, for development of robust ML-based
detectors with good generalization performance. Onemitigat-
ing technique for this issue would be to augment the training
set with rotated copies of the original frames. Another option
may be to implement a coast line masking classifier.

I. SPATIAL FEATURES
Aim 1 of this paper is to determine if the features discovered
by the CNN were based on spatial patterns. By destroying

the spatial patterns of the segments insights could be gained
into the dependence of the CNN-LSTM network on the CNN
portion of the network, since this is the portion that relies
solely on spatial information. To this end, each segment was
shuffled by randomizing the elements’ indices. This removed
spatial correlations while preserving magnitude characteris-
tics. Figure 11 shows the results of this test. Detectability of
Target 1 was essentially unchanged. This is possibly because
Target 1 is high in intensity compared to surrounding clutter,
as shown in Figure 3, and so the classifier is relying solely on
the amplitude statistics. Detectability of Target 4was compro-
mised as was expected due the fact that it exhibited distinct
spatial signatures (i.e. spatial distribution in space) and low
SCNR. An unexpected result was that the ROC performance
curves for Target 2 and 3 showed that detectability was
improved at a lower PFA compared to baseline. It is specu-
lated that this was not because of an increased ability to detect
these targets after they had been shuffled, but rather the clutter
became less ‘target-like’ after it had been shuffled. Certain
regions of the frame contained land clutter which had persis-
tent and well defined shapes that may have appeared similar
to targets. When the segments corresponding to these regions
were shuffled, they appeared more like clutter than targets.
A possible reason that the detectability of these two targets
was preserved even after randomly shuffling the indices of
the segments was because the targets contained little spatial
information/structure to begin with. The magnitude statistics
over time however, were completely preserved, which would
still be identified by the LSTM nodes. This shows that certain
targets may be identified by spatial features whereas others
are not.
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FIGURE 10. ROC curves for each target with and without frame rotation. The legend shows the
corresponding values of CThresh used.

FIGURE 11. ROC curves for each target with space shuffling. The legend shows the corresponding
values of CThresh used.

J. TEMPORAL PATTERN RECOGNITION
To test the effectiveness of the LSTM recurrent nodes in their
ability to exploit temporal patterns in the data (as per aim 2 of
the paper), the sequences of radar frames in the test set were
shuffled to randomize the order of the frames. The effect of
doing this was to destroy any temporal patterns existing in the

data. The resulting ROC curves for the CNN-LSTM can be
seen in Figure 12.

As might be expected, the overall performance of the
classifier dropped significantly when the order of the frames
were randomized. Target 1 was mostly detectable when the
frames were shuffled. Even though successive frames were
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FIGURE 12. ROC curves for each target with time shuffling. The legend shows the corresponding
values of CThresh used.

randomized, it is speculated that the relatively slow motion
of Target 1 along with its well defined and consistent shape
allowed detections to be made. Similarly, Target 4 moved
relatively slow and was surrounded by well defined land
clutter shapes. It is possible that the classifier was able to
still identify this target for the same reasons as for Target 1.
Targets 2 and 3 were undetectable in the randomized frames.
This showed that the network relied strongly on the temporal
changes of these targets in order to classify them correctly.
This observation is consistent with intuition, given the exam-
ple segments of the targets in Figure 2. Targets 2 and 3 had
little to no spatial features that allowed them to be contrasted
against clutter. Furthermore, Targets 2 and 3 moved much
faster and further than Targets 1 and 4 meaning that when
randomized, successive segments were even less likely to
retain any temporal correlation of those targets.

Overall, the results from this trial show the ability of the
LSTM recurrent nodes specifically, in exploiting temporal
features.

K. TRACKING
The tracker, as described in Section III-H, was applied to both
the baseline data and the ML-masked data from Section F
in the Results. Detections made at a fixed PD of 0.7 with
CThresh = 0.2 were used for the tracking stage. The results
of the tracking algorithm can be seen in Table 3, whereNTracks
was the number of confirmed tracks for each trial.

With ML, the average PD was decreased from 0.9325 to
0.7700. The false alarm rate however, was reduced signif-
icantly with the ML augmented detections, from 10−4.1298

TABLE 3. Performance metrics of tracker.

FIGURE 13. Baseline tracks with truth data highlighted (Target 1-4
highlighted in the colors blue, red, yellow and purple respectively).

to 10−4.7411. Furthermore, fewer tracks were generated when
ML was used (1407 versus 9999). This shows that the
ML-based approach presented in this paper was exploit-
ing information that was not utilized by tracking filters.
Plots of the track updates after filtering can be seen in
Figures 13 and 14.
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FIGURE 14. ML tracks with truth data highlighted (Target 1-4 highlighted
in the colors blue, red, yellow and purple respectively).

V. CONCLUSION
The purpose of this paper was to determine whether or
not ML could be used as an effective means for augment-
ing traditional detector structures for targets in maritime
environments by exploiting spatio-temporal features within
the data. A CNN-LSTM approach was presented so that
spatio-temporal features could be exploited for classification
of target containing regions. Not only do these network archi-
tectures exploit spatio-temporal features for classification,
they also discover them, bypassing the need to define custom
feature sets.

It was shown that the relative importance of spatial and
temporal information depended on the target characteristics,
such as size, shape, velocity and surrounding environment.
It was shown that the network was relatively invariant to
rotations of the data. By shuffling the spatial information
in the input to the network, it was shown that performance
dropped due to the elimination of discovered spatial patterns.
Shuffling the order of the frames resulted in a degradation of
performance for fast moving targets. It was shown that the
ML approach performed better than baseline, with the ROC
detection curves being shifted to lower PFA values. Finally,
a tracker algorithm was applied to both ML and baseline
detections, and it was found that a lower PFA was achievable
with ML. This showed that some of the gains achieved using
ML were propagated even through the tracker filter.

VI. LIMITATIONS AND FUTURE WORKS
While the results presented in this paper have demonstrated
an ability to exploit spatio-temporal information contained
within maritime radar data, initial tests done on different
data sets showed poor generalized performance. Improving
generalizability across different data sets is the next step in
this research. Certain key future works include collecting
more data so that the network depth can be increased with-
out compromising generalizability and experimenting with
different classifier models at the back end to replace the
fully connected layers such as SVMs. To get the results of
the classifier for the test set takes a total of 10.4 seconds
per frame of data. The radar antenna rotates at 20 RPM,
meaning frames are recorded every 3 seconds. The algorithm

in this paper is too slow for real time operation at the rate
that it currently takes. This should be easy to mitigate by
implementing changes such as coding for parallel processing,
using a GPU or rewriting in a coding language that has less
overhead. This paper does not address the issue of targets
migrating into adjacent segments causing missed detections
during the transition period. This is another issue that should
be addressed in future work. Possible solutions would be to
test overlapping segments, or to try and eliminate the seg-
mentation stage by using a regression type network instead
of classification type.
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