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ABSTRACT In this study, a new volumetric array design approach is presented for both azimuth and
elevation isotropic direction of arrival (DOA) estimation. The presented method uses a minimum number of
additional sensors to extend the given arrays to a volumetric array which has equal values for the Cramér-Rao
lower bound (CRLB) for the entire azimuth and elevation angles. This approach can be applied to all arbitrary
linear and planar arrays. Moreover, the design approach also takes into account the electromagnetic mutual
coupling (MC) effect between the array elements and both the azimuth and elevation angular ambiguity
uncertainties in an optimum manner while extending the array. It has been verified both analytically and
with simulations that the designed volumetric arrays satisfy the two dimensional (2-D) isotropic DOA
estimation conditions. The proposed approach is applied to Uniform Linear Arrays (ULA), Uniform Circular
Arrays (UCA), V-shaped Arrays, and an arbitrary planar array to extend to optimum volumetric arrays with
considerable results.

INDEX TERMS 2-D isotropic array, 3-D arrays, angular ambiguity, array signal processing, direction of

arrival, DOA, mutual coupling, sensor array design, volumetric arrays.

I. INTRODUCTION
Design of optimum array geometry for the best DOA
estimation is widely studied in the literature for decades, and
generally, CRLB [1], [2] and the angular ambiguity functions
[3], [4] are used together or separately as the performance
criteria of the design. CRLB gives the ultimate performance
of an unbiased DOA estimation, and the angular ambiguity
functions are used to measure the similarities of manifold
vectors of a given array for different angles. The primary pur-
pose of practical applications on the sensor array geometry
design is to get a minimum and same values of the CRLB for
all azimuth angles while maintaining the angular ambiguity
within a tolerable level. These arrays are known as isotropic
planar arrays, which give an isotropic performance for only
azimuth angles [5]-[12]. Since these arrays are planar, their
elevation angle estimations are not isotropic.

In recent years, the positioning and tracking of multiple
mobile users for the next generation’s dense radio access net-
works are becoming important requirements [13]. Similarly,
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the amateur small unmanned aerial vehicles, also known as
drones, have been a high concern for public safety. Hence
the geo-localization and tracking of these drones are critical
[14], [15]. In all these problems, the sources are mobile, and
both the azimuth and elevation angles should be accurately
and quickly estimated. Planar array geometries are insuffi-
cient to meet these new and compelling requirements. For
both azimuth and elevation isotropic DOA estimation, two
dimensional (2-D) isotropic volumetric arrays are defined
in [6]. Therefore, it is critically important to find an opti-
mum approach to extend an arbitrary planar array into 2-D
isotropic volumetric arrays for the best 2-D DOA estimation.
In [17], the effects of the adding sensors to the vertical plane
are considered and different volumetric array geometries
are analyzed. In [8], the same problem is investigated for
the multiple-input multiple-output (MIMO) radar systems.
In [9], CRLB based isotropic and directional array design
approach with a sensor selection strategy with adaptive array
thinning is proposed. In [18], Joint 2-D DOA estimation
performance of 3-D L-shaped antenna array design was
compared with some well-known planar arrays in terms of
detection rate.
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In all these aforementioned studies, the proposed arrays
and design approaches have approximately 2-D isotropic per-
formances. Their azimuth and elevation CRLB levels are not
exactly equal for all angles. In this paper, a new optimum vol-
umetric array design approach, which extends arbitrary pla-
nar arrays to both azimuth and elevation isotropic volumetric
arrays with a minimum number of additional sensors, is pre-
sented. The presented two-step design approach guaranties
to satisfy 2-D isotropic conditions while minimizing both the
azimuth and elevation angular ambiguity function subject to
the constraint of the mutual coupling effect in an optimum
manner. This volumetric array extension approach is applied
for well known ULA, UCA, V-shaped array, and an arbitrary
planar array with considerable performance improvements.
The extended 3-D V-shaped array’s 2-D MUSIC spectrum is
also compared with the planar V-shaped array in simulations
to show the improvements in elevation estimation.

This paper is structured into five sections. Section II briefly
describes the data model and general CRLB expressions for
arbitrary arrays. In Section III, the 2-D isotropic volumetric
sensor array design approach for any given arbitrary linear
and planar arrays is presented. Section IV provides the sim-
ulation results to verify the effectiveness of the proposed
method. Finally, section V concludes the paper.

Notations: We use bold small letters to denote vectors and
uppercase boldface letters to denote matrices. 17 and 0y
denote a row vector of M ones and zeros, respectively. ||+
represents two norm. I, denotes M xM identity matrix. The
operators (+)7 and (-)f denote the transpose and conjugate-
transpose of a vector or a matrix, respectively.

Il. PROBLEM FORMULATION

A. DATA MODEL

We assume an array geometry composed of M identical
and omnidirectional sensors located at the positions p,, =
[Xm Y zml’, m = 1,..., M. We consider that L narrow-
band and far-field source signals are impinging on the
array from the directions (¢;, 6;), | = 1,...,L, where
¢ € [0°, 180°]and 8 € [0°, 90°] denote source azimuth and
elevation angles, respectively as shown in Fig. 1. ¢ is mea-
sured as a counter-clockwise from the positive x-axis on the x-
y plane, while 6 is the clockwise angle made with the positive
z-axis. The array output, y (¢), at time ¢ can be modeled by,

yO =As(@®)+n(@), t=1,...,T (1)

where T is the number of snapshots. The source signal; s(z)
is Lx 1 vector, y(t) and the noise, n(t) are Mx1 vectors.
It is assumed that the signal and noise are uncorrelated,
zero-mean, spatially and temporally white Gaussian complex
random processes. A is M x L steering matrix,

A= [a(¢1791)7 a(¢2702)’ R a(¢L59L)] (2)

where a (¢;, 6;) is the Mx 1 steering vector of the sensor
array in direction (¢, 6;) as,
. . T
a(gn, 0) = [e{fk’T'P‘} e{/klr'p’”}] 3)
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FIGURE 1. Coordinate system for 2-D DOA estimation.

where k; = 2nf.w) /c = (2mw;) /A is the wave-number
vector in the direction (¢, 6;), and A, ¢, and f, denote the
wavelength, propagation speed of wave, and carrier fre-
quency, respectively. The unit vector pointing towards the
source signal directions (¢, 6y) is,

u; = [sinf;cos ¢; sin6;sin¢; cos GI]T 4)
The output covariance matrix, R, is
E{y )y (0"} =R =ARA" 1+ 571y )

where E{-} denotes the expectation operator and R; is the
source correlation matrix.

B. CRLB EXPRESSION OF ARBITRARY ARRAYS

FOR DOA ESTIMATION

The CRLB gives a lower bound on the variance of any
unbiased estimator. The azimuth and elevation angle esti-
mators variances should satisfy the following inequalities
respectively,

var (@ > [F_l]ll’ var (/9\) > [F_l] (6)

22

where Fisher information matrix (FIM), F, is given in [1] as,

F F
F— | Foo ¢>9] 7
|:F9¢ Foo M
The elements of F can be calculated by,
_1oR__,0R
Fpp =T xtr {RT —R7" — )
¢ 0¢
F T x i |R1Rg-12R 9)
= X tr R _
99 3 06

where tr {-} denotes trace of the matrix and T is the number
of snapshots. Thus,

Fyp = i—;m [(RATR'AR,) © (AfP{RT'A,)] (10)

ZT . .
Fgo = 5 | (RATRTIAR,) 0 (AZPLR1A, )L (1)
Un
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where 9 {x} denotes real part of x and © is the Hadamard (or
elementwise) product. Note that Fypg can be written similar
to (10). F9¢ = F¢9 and,

L
-1 . 0A
P§=IM—A(AHA) ATAT S e (2
=1

where Pi- is the orthogonal projection of column space of
steering matrix A. CRLB expressions for azimuth and eleva-
tion estimators are given in [6] as,

2 —1
CRLB(¢) = — [ 1 — (13)
Jop Jpg o0
~1
1 J¢2,9
CRLB®) = — [1— (14)
Joo JppJoo

where Jpy = /11 (F¢¢) /L. Jgo, Jog, and Jgg can be written

in a similar manner.

lll. 2-D ISOTROPIC VOLUMETRIC ARRAY DESIGN

In this section, a new array design approach, which extends
the given arbitrary planar array to volumetric arrays to satisfy
the 2-D isotropic DOA estimation conditions, is presented.
It is assumed that any arbitrary planar array with M sensors
is located on the x-y plane as

X=[xix2... ML, y=D1y2... yul, z=[0y] (15)

An arbitrary array’s moment-of-inertia matrix, I,
is defined in [19]-[21] as,

L=|Ly Ly I (16)
Ixz Iyz Izz

where Iy, I,, and I, represent the cross moment-of-inertia
(off-diagonal elements) and Iy, Iyy, and I represent the
auto moment-of-inertia (diagonal elements) of x, y and z
coordinates, respectively. The matrix elements of (16) are
calculated as,

Ly = (X — puxyn) (v — ylu)” (17)
Lo = (x — pxly) (2 — padp)” (18)
Ly = (y — nyly) (2 — uada)” (19)
Lee = IIx — uxdy 1%, Ly = ly — pylu|1?

L; = |z — pdul? (20)

where the mean of coordinates is defined as,
= (x1) M,y =(v1) /M. a=(21]) /M @D)

For the given arbitrary arrays, if I, in (16) is a scaled
identity matrix then it is a 2-D isotropic array [10]. Thereby,
2-D isotropic conditions in [6], [8] are given as,

Ly=05L;=1,=0 (22)
L = Iy = I ;. (23)
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Fig. 2 shows the uniform linear array (ULA), uniform
circular array (UCA), and V-shaped array all with a number
of five sensors, respectively. These arrays are known as linear
and centrosymmetric (planar) arrays and they are located
on the x-y plane (there is no sensor on z plane). Hence
Mz, Iz, Ly, Iy, and Iy, are all zero for these arrays. On the
other hand, Fig. 3 shows an arbitrary planar array with four
sensors where (g, I, Iy, and Iy, are zero but Iy, is not
ZEero.

Here, we propose the two-step method that can extend all
given linear, centrosymmetric (Fig. 2) and non-symmetric
arbitrary planar arrays (Fig. 3) to volumetric arrays which
satisfy the 2-D isotropic DOA estimation conditions in (22)
and (23) by adding a minimum number of sensors.

A. STEP-1

This step simply checks if the given planar array’s cross
moment-of-inertia, Iyy, is zero or not. If it is already zero,
there is no need to add a new sensor to the x-y plane and we
can proceed to the second step directly. Otherwise, we should
add a new sensor to the x-y plane to make Iy, zero. Since
the I,y’s of the linear and planar arrays in Fig. 2 are zero,
we will move on to the second step for these arrays. But for
the planar array in Fig. 3, the Iy is not zero. In this case,
we have to add a new sensor with coordinate (¢, ,) which
makes I, = 0. After adding the new sensor, the updated
planar array coordinates are,

0 =gl v =[ygl 20 =120 @4

where (-)(1) denotes the updated parameter at the first step.
The updated I)gyl ) is obtained as (the derivation details are in
Appendix VI-A),

[0y M M? M
xy =Xy + M(l) {xé‘y - M(l) I’LXH’Y_ M(])MY{X
M
_M(I)ngy (25)

where MD = M + 1. My and My are the updated mean

of coordinates,

Mpx + 8y
MDD

Muy + &y

D (26)

Mgy = y My =

The solution set which makes I,Syl) = ( is a curve on the
x-y plane as shown by the dotted blue line in Fig. 3 for the
chosen arbitrary array.

In order to choose a best point on this curve, the two impor-
tant array design criteria are considered. The first criterion is
the angular ambiguity where the steering vectors in (3) should
be different for different DOA’s. If they are similar for differ-
ent DOA’s, large ambiguity errors are likely to occur. So while
searching the best solution for I)Eyl ) = 0, the azimuth angular
ambiguity function in [23], which measures the similarity
between steering vectors, should be minimized. The second
criterion is the electromagnetic mutual coupling (MC) effect
between the array elements. When the array elements are
located close to each other, the MC distorts the array model
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FIGURE 2. The given arrays: (a) ULA, (b) UCA, and (c) V-shaped array.
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FIGURE 3. The solution curve which makes I,g,) =0 in Step 1 for the
given arbitrary array.

in (1) [26]. We define the MC effect as a constraint in (28).
The new sensor location problem is defined as the ambiguity
and MC constrained minimization (optimization) problem
which is presented in Section III-B.

B. AZIMUTH AMBIGUITY AND MC MINIMIZATION
The normalized azimuth angle ambiguity function, defined

in [23], is

0 _r{A@+4a9)"A9)

where L is the number of the source signals.

This function measures the similarity between the steering
vectors for different azimuth angles and gives values between
0 and 1 which means perfect orthogonal and collinear, respec-
tively. We try to minimize this function while satisfying
the zero cross moment-of-inertia constraint (Ig.) 0).
Additionally, we define a new Mutual Coupling (MC) con-
straint for the new sensor to be added. The new sensor
should not be located closer to any sensor in the array than
A/4. This distance restricts the MC effect at a reasonable

27
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FIGURE 4. Low ambiguity and high MC areas on the solution curve
obtained by (28) in Step 1.

level [22] and can be adjusted more precisely according to
practical situations. Finally, we define the following con-
strained optimization cost function to get the optimum sensor

location, (£, ¢y),

minimize : secondmax {Ae (o, A¢)}

;ng}'
. A
subject to : ||(§x,§y)—(x,-,y,-) [|> T i=1,....M
1§ =o; (28)
We have to minimize the side-lobe-levels (SLLs)

(second max) for minimum ambiguity error with zero cross
moment-of-inertia. For the given four-element arbitrary pla-
nar array in Fig. 4, the triangle markers show the minimum
ambiguity locations which also make I,Eyl) = 0. On the
other hand, the hexagram markers, which are close to the
array elements, show the high MC points. Hence the opti-
mum location of the sensor to be added as a result of this
optimization is marked with a square (®) marker for this
example.
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C. STEP-2
In this step, we have to equalize the auto moment-of-inertia
of coordinates (Iyy, Iyy, and I;) of a given array while keeping
the Ig) = 0. We first find the largest auto moment-of-inertia
and bring the rest to that value by adding new sensors.
I = max {Ig), I)g,), IZ(ZI)} (29)

where I is the maximum auto moment-of-inertia of x(1), y(l),
and z1 coordinates given in (24).

Then, in order to equate Ig), Iy(.)],), IZ(Z1 ) without changing
the mean of z, we should add N uniform sensors as follows,

x® = [x(l) dxlN]
y(z) = [y(l) dle]
N+1
O _ [Zo) 0. ((_;F) _ l)} (30)

wherei = 1,..., N, and (~)(2) denotes the updated param-
eter at the second step. New auto moment-of-inertia of the
updated x®, y(z), and z® coordinates where the derivation
details are presented in Appendix VI-B, are obtained as,

MON M2 wmDN
1P = o b = ——m—ixnde+ XV
M M@ TX M©®
(3D
MON M2 wmON
I)E}%) = @) y 2 n a — 2 My(l)dy+||y(1)||2
M M@ 7Y M@
(32)
N(N2-1) , MO
2 2 2 12
18 = ———d? — g + 127 (33)

where M@ = MDD 4N . o), Iy and f1,) are the updated
mean of coordinates at the second step,

MY p) + Nd, MD pyay + Nd,

Ux@ = IiE) » My@ = IE)
MO,
Mz = W 34

The following three equations are solved for the unknowns
dy, dy, and d_,

I$-1=0 1y -1=0, 1 -1=0 (35)

Finally, the locations of the new additional N sensors
in (30) equalize the auto moment-of-inertia of coordinates.
These sensors are marked with a diamond (¢) marker in Fig. 5
for ULA, UCA, V-shaped, and an arbitrary planar array for
N = 2. We observed that adding new sensors to the z-axis
affects the elevation angle ambiguity performance and the
MC effect. Therefore, it is possible to examine the elevation
angle ambiguity performance and the MC effect while select-
ing the optimum N which is presented in Section III-D.

This procedure can be applied for all uniform/nonuniform
linear and planar arrays. The proposed two-step algorithm
is presented in Algorithm 1 for all the arrays located on the
x-y plane.
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Algorithm 1: Pseudo-Code for the Proposed Algorithm

1 Step 1: Check cross moment-of-inertia between x and y
coordinates
Input:x, y, z, M
Output: xV, y®  zM pD
if I, = 0 then
xD=x yO =y z0=z MO=pm
go to Step 2
else
Find the optimum ({y, ¢y) using (28)
Update sensor coordinates (24) and other
parameters (25), (26)

N S B W

8 Step 2: Equate auto moment-of-inertia of coordinates
Input: xV, y®» 20 pyD N

OutPut: x@ y@ @y
9 if 1Y # 13 # 1Y then
10 Find the largest auto moment-of-inertia via (29)
11 Solve (35) to find d, dy and d,
12 Update sensor coordinates (30) and other parameters
(31)-(34)

D. ELEVATION AMBIGUITY ANALYSIS

In order to extend arbitrary arrays by this approach, the num-
ber of array elements and added sensors should respectively
satisfy M > 2 and N > 2 [24]. We can prefer a mini-
mum number of additional sensors (N = 2) (to minimize
array cost) while designing a volumetric array. On the other
hand, although the number of sensors (N) added on the
z-axis does not affect the azimuth ambiguity, these sensors
will affect elevation ambiguity performance. The elevation
angle ambiguity function can be written similarly to (27) with
only M@ instead of M1, This function can be used as a
performance criterion for choosing the appropriate number
of added sensors in Step 2. If we choose N too small, the ele-
vation ambiguity performance may deteriorate as the distance
between the sensors increases too much. But if we choose N
too large, the sensors on the z-axis become very close to each
other. Thus, the MC effect arises. Consequently, there is a
trade-off while choosing N. The graphical representation of
the elevation angle ambiguity analysis for the arbitrary array
given in Fig. 5(d) is shown in Fig. 6.

The figure shows that increasing the number of added sen-
sors to the z-axis decreases the distance between the sensors
(d;())) which increases the MC. However, the elevation angle
ambiguity (side-lobe peak gain) decreases. It is possible to
choose N = 2, but for the best results while taking into
account the MC and ambiguity errors, choose N between 3
and 6 (see Fig. 6) for the given array in Fig. 5(d).

IV. SIMULATION RESULTS

In this part, we consider ULA, UCA, and V-shaped arrays and
an arbitrary planar array in Fig. 2 and 3, respectively in order
to show the performances of the extended volumetric arrays

183907
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for different cases. All the exact sensor locations are given
in Table 1 in Appendix VI-C. The elements of the given planar
array are denoted by circle markers (®) for M = 5 sensors.

183908

If a sensor is added in step 1, it is shown by a square (m)
marker. Each sensor added in step 2 is shown by a diamond
(®) marker. Furthermore, for a fair comparison, the same total
number of arrays elements are chosen.

In simulations, a single far-field source is assumed for
DOA estimation. The source direction is represented as
(¢1, 01), where ¢ € [0,180°] and 8 € [0,90°] denote
its azimuth and elevation angles in degrees, respectively as
shown in Fig. 1. While azimuth performance of the array is
tested, the elevation angle of the source is fixed at 85°, and
while elevation performance of the array is tested, the azimuth
angle of the source is fixed at 15°. CRLB values are obtained
for the 256 snapshots (i.e. T = 256) and signal-to-noise
ratio (SNR) of 20 dB. CRLB expressions given by (13) and
(14) state the lowest achievable error variance of the unbiased
azimuth and elevation estimators, respectively [1].

Fig. 7 shows the azimuth and elevation CRLB levels for
given ULA, UCA, and V-shaped arrays and their volumet-
ric versions obtained by the proposed algorithm. For the
given planar arrays, the elevation errors go to infinity when
the elevation angle approaches 90° as seen in Fig. 7(b).
The proposed array design approach adds sensors to make
both the azimuth and elevation CRLB levels equal over the
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entire azimuth/elevation angle range. Since these three arrays
have zero cross-moments, (22) is satisfied and proceeded
with the second step of Algorithm 1 (Step 2). In this step,
the locations of N new additional sensors, (30), are solved
for the minimum possible number of sensors as N = 2.
In Fig. 5(a), (b), and (c) newly added sensors are marked
with the diamond marker (’) to satisfy the (23) for ULA,
UCA, and V-shaped arrays, respectively. The corresponding
CRLB levels for these extended volumetric arrays are shown
in Fig. 7(a) and (b) step by step. As it is shown, both the
azimuth and elevation CRLB levels are equal for all the
azimuth/elevation angles.

To verify that the proposed algorithm works for all linear
and planar arrays, we arbitrarily choose four sensor locations
on the planar array as shown in Fig. 3 with circle markers (®).
This arbitrary array does not satisfy both the cross and auto
moment-of-inertia conditions, (22) and (23), respectively.
If we apply the algorithm, in the first step a solution curve
on the x-y plane which makes the cross moment-of-inertia to
zero is created. The optimum sensor location (gx, §y), which
is marked by a square (M) on this curve, is the solution of
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the (28). This solution guarantees the mutual coupling and
I,y = 0 constraints while keeping the angular ambiguity min-
imum. In the second step of the algorithm two new sensors,
which are marked as diamond (’) as shown in Fig. 5(d), are
added to equate the auto moment-of-inertia of coordinates.
Fig. 8(a) and (b) show the azimuth and elevation CRLB
levels of the arbitrary planar array before and after applying
the array design approach for both azimuth and elevation
isotropic performance. The effect of the progressively added
sensors to CRLB levels in step one and two are also shown
in 8(a) and (b), respectively.

The effect of the ambiguity errors is also investigated by
using the two dimensional (2-D) Multiple Signal Classifi-
cation (MUSIC) [25] algorithm. The MUSIC spectrum is
calculated as,

1
af (¢1,6))S,SHa (41, 01)

Pyy (¢.0) = (36)

where S, corresponds to the noise subspace of the eigenvector
matrix. L highest peaks of Py (¢, 6) will be DOA angles of
source signals.
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FIGURE 9. 2-D MUSIC spectrum for (a) the planar V-Shaped and (b) proposed 3-D V-Shaped arrays.

In order to see 2-D DOA estimation performance of the
designed array, an example of the 2-D MUSIC algorithm
applied to the planar V-shaped [16] and proposed 3-D V-
shaped arrays as shown in Fig. 9(a) and (b), respectively.
In simulations, 100 Monte Carlo trials are performed to esti-
mate L = 2 uncorrelated sources located at (40°, 85°) and
(120°, 15°) for 5 dB SNR.

It can be seen that the planar V-shaped and proposed 3-
D V-shaped arrays have almost the same performance for
a low elevation angle with any azimuth angle. Nonethe-
less, the proposed volumetric array geometry overwhelm-
ingly outperforms the planar V-shaped array after a cer-
tain elevation angle. Although the proposed 3-D V-shaped
array estimates the second source (40°, 85°) correctly with-
out SLLs (see Fig. 9(b)), the given planar V-shaped array
can not accurately estimate as well as creating high SLLs
(see Fig. 9(a)).

V. CONCLUSION

In this paper, an optimum and practical array extension algo-
rithm is proposed for 2-D isotropic DOA estimation. The
proposed approach can be applied to all arbitrary linear and
planar arrays. In simulations, we applied the proposed design
algorithm to well known ULA, UCA, V-shaped, and an arbi-
trary planar array. It is shown that for the selected arrays,
the proposed volumetric array extension procedure improves
the elevation estimation performances of these arrays (2-D
isotropic) by considering both the angular ambiguity and
mutual coupling effects with a minimum number of addi-
tional sensors. Thanks to its 2-D isotropic estimation perfor-
mance, obtained arrays can be used as a benchmark array
configuration for upcoming 2-D DOA estimation or beam-
forming algorithms. Besides, the proposed 2-D isotropic
arrays can be considered for MIMO radar, acoustic, and smart
antenna applications.
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Vi. APPENDICES
A. DERIVATION OF CROSS MOMENT-OF-INERTIA
Let’s assume that we have given a planar array with coordi-
nates as in (15). And then, assume that we add an additional
sensor, then updated coordinates as in (24).

Mean of updated coordinates,

4T
x( )lMa) _ Mpux + &

Hx® = 73 MO ©7
)T

_ y L0 _Mpy+¢ 38

Myt = — i = T (38)

The cross moment-of-inertia between updated x!) and y(
coordinates is,

Ig) = (X(l) — Mg lM(l)) (y(l) — Ky lM(l))T
= (xl - an)) (yl - Mya)) +...

+ (xar — iy) (o — Mym)

+ (& = 1x) (& — My(n)
= XYL~ X1y = Y1Hg() F Ky hy) + -+ -+ XYM
= XM Py — YM x() + P Py + Ex 8y — Lxpy)
— Sybx) F My Iy ()
xy! — I’Ly(l)XIL — unylh, +M(1)Mx(1)ﬂya)
+ 8xly = Sxby) — Syl (39)

Substitute (37) and (38) into (39), and recall (21) as x17, =
M iy, thus,

Ml/«y+§y

T Tmm M

Mpx+ & Mpy +¢

o X T 6x y TSy
M= S Ty
Mpuy + &y _

MO Y

Mpx + &x

= o

My

Mpx + &
MM

+ {x{y - §x
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T Mzﬂxl’«y _ M pxgy B MZMxMy

:Xy

MO MM MM
_ My Mzﬂxﬂy Muxty — Muygy
MO MO MO MO
+ Cx 8y o, — M/Lyé'x _ Cx 8y _Ml/«xgy . Cx 8y
MO *oy YO YOO )
;. M m? M
=Xy + Wixiy ~ sty — Wﬂyix
- W,U«xé“y (40)

This completes the proof.

B. DERIVATION OF AUTO MOMENT-OF-INERTIA
The auto moment-of-inertia of x?, is,

12 = Ix? - ueo ol

(61— 11x0)” + (2 = g ) 4+ -+ (xnr — ix00)
+ (& - Mx<2>)2 + N (dy — Mx<2>)2

X g gy + 8+ NG

_ 2ui<z> (x1 +x2... X0 + & + Ndy) +M(2)Mi(z>

MO,

= |xD)? + NdF — M@ 2, (41)

Substituting (34) into (41) yields,

MON M2 2MON
2 )2
1§ == dd =~ o i = 5 o de XV
(42)
Iy(yl ) and Iz(zl) can be obtained in the same way. This completes

the proof.

C. SENSOR ARRAY COORDINATES

TABLE 1. The Coordinates of Sensors in Terms of the wavelength (1).

Planar array sensors (@) Added sensor(4)
Arrays A ond 3rd 4t 5th 6" 7th

x -1.00 -0.50 0.00 0.50 1.00 0.00 0.00
3-D y 0.00 0.00 0.00 0.00 0.00 -1,32 -1,32
ULA 2 0.00 0.00 0.00 0.00 0.00 1,11 -1,11
X 0.42 0.13 -0.34 -0.34 0.13 0.00 0.00
3-D y 0.00 0.40 0.25 -0.25 -0.40 0.00 0.00
UCA 2 0.00 0.00 0.00 0.00 0.00 -0.47 0.47
x -046 -0.23 0.00 0.23 0.46 0.00 0.00
3-D y 0.88 0.44 0.00 0.44 0.88 0.53 0.53
\'% z 0.00 0.00 0.00 0.00 0.00 -0.52 0.52
OB OO
x 0.50 0.00 -0.50 -0.25 0.488 0.047 0.047
3-D y -1.00 0.00 -0.50 -1.00 -0.27 -0.526 -0.526
Arb. z 0.00 0.00 0.00 0.00 0.00 -0.628 0.628
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