
Received September 17, 2020, accepted September 25, 2020, date of publication October 6, 2020, date of current version October 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028831

MEG Sensor Selection for Neural Speech
Decoding
DEBADATTA DASH 1,2, (Graduate Student Member, IEEE), ALAN WISLER3, (Member, IEEE),
PAUL FERRARI4,5, ELIZABETH MOODY DAVENPORT6, (Member, IEEE), JOSEPH MALDJIAN6,
AND JUN WANG 2,3, (Member, IEEE)
1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
2Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
3Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA
4MEG Laboratory, Dell Children’s Medical Center, Austin, TX 78723, USA
5Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
6Department of Radiology, University of Texas at Southwestern, Dallas, TX 75390, USA

Corresponding author: Jun Wang (jun.wang@austin.utexas.edu)

This work was supported by the University of Texas System through a UT Brain Grant under award number 362221 and in part by the
National Institutes of Health (NIH) under awards R03DC013990 and R01DC016621.

ABSTRACT Direct decoding of speech from the brain is a faster alternative to current electroencephalog-
raphy (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to
locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive
neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other
high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled
channels/sensors (200 − 300) encapsulated within a fixed liquid helium dewar, precluding their use as
wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not
require cryogens, and have the potential to be wearable and movable making them more suitable for BCI
applications. This design is also modular allowing for customized montages to include only the sensors
necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight
of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in
the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and
spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine
classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy
compared to using all channels. Additionally, the forward selection algorithm achieved similar performance
to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech
decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors
approximately located near Broca’s area were found to be commonly contributing among the higher-ranked
sensors across all subjects.

INDEX TERMS Autoencoder, brain-computer interface, forward selection algorithm, magnetoencephalog-
raphy, neural speech decoding, OPM, SVM.

I. INTRODUCTION
Speech processing involves a complex yet hierarchical execu-
tion of oromotor tasks underpinned by continuous cross-talk
among various cortical areas. This process can be impaired
with neurodegenerative diseases such as amyotrophic lat-
eral sclerosis (ALS), a motor neuron disease that causes
progressive motor paralysis. Late-stage ALS can lead to a
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state of complete paralysis but aware, called locked-in syn-
drome [1], which impairs motor functions including speech
production. Despite its devastating effects on motor con-
trol, ALS spares cognitive processes [2], leaving the brain
to be the only viable source of communication for these
patients. Current commercially available brain-computer
interfaces (BCI) use electroencephalography (EEG) record-
ings of visual and attention correlates to spell characters
from a screen, providing a means of communication for these
patients [3]–[5]. However, the slow communication rate
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of these BCI spellers (under 10 words per minute) is a
major obstacle for users [6]–[8] as they may experience
fatigue. Acknowledging this limitation, recent studies have
attempted on direct neural speech decoding, which involves
designing classifiers corresponding to different speech
units [9]–[14] or direct mapping of brain to text/speech
[15]–[18]. These speech decoding driven BCIs or speech-
BCIs have the potential of offering real-time communication
assistance to locked-in patients [14], [18]–[20].

To develop a speech-BCI, the choice of neuroimaging
modality is of paramount importance. Cortical speech pro-
cessing is dynamic and fast, involving multiple brain regions
undergoing parallel processes. Hence, to effectively char-
acterize speech information, the modality must have good
enough spatial resolution to localize focal sources and a
temporal resolution that can capture the rapid dynamics of
speech-neural processing. Extensive decoding research has
been carried out with EEG, due in large part to its low
cost, non-invasiveness, and easy data acquisition capabil-
ity. Classification of individualized speech units, such as
imagined syllables/phonemes/digits or even words have been
thoroughly investigated with EEG [21]–[26] providing strong
evidence for speech decoding using non-invasive signals.
However, there are several drawbacks with this modality such
as signal distortion by neural tissue boundaries during record-
ing and reference dependence, which degrade the decoding
performance.

Electrocorticography (ECoG) has also been explored for
speech decoding, where researchers have successfully syn-
thesized speech directly from neural signals [16]–[18]. ECoG
has been shown to be effective for closed-set classification-
based speech decoding [27]–[29] as well as open-set recog-
nition of phonemes [15] or characters [30]. Despite this
success, ECoG is invasive, requiring a craniotomy and
surgery to implant electrodes into patients’ brains. Addi-
tionally, it may be challenging to establish long-term bio-
compatibility between the ECoG electrode grid and the brain.
Although some recent ECoGBCI studies have shown promis-
ing results for ALS patients with relatively longer-termmotor
applications via a few (2 − 4) electrodes those were placed
around the motor cortex [31]–[33], it is unknown how many
electrodes are needed for speech production decoding. More-
over, prior ECoG studies have analyzed only part of the brain,
as ECoG electrodes are typically implanted only into the
areas prone to epileptic seizures. Hence, ECoG lacks a full-
scale utilization of brain function for speech processing.

Magnetoencephalography (MEG) is a non-invasive,
whole-head neuroimaging modality well suited for neural
speech decoding. This functional neuroimaging technique
measures patterns of magnetic fields produced by the small
cortical neuronal currents using highly sensitive magnetome-
ters and gradiometers. Although the extracranially measured
magnetic fields by MEG can be influenced by conductivity
boundaries, the effects can be corrected using various mod-
eling strategies [34]. It has a high spatial resolution (3 −
10mm) as well as an excellent temporal resolution (< 1ms).

This combination of high spatial and temporal resolution
makes MEG an excellent neurophysiological measurement
modality to image complex brain activity during speech
production. MEG has been previously used to investigate
numerousmechanisms underlying speech, including auditory
cortical responses to speech perception [35]–[37], neural
phase-locking patterns via discriminating speech stimuli
[38], and cortical network oscillations for speech production
mechanisms [39]. These studies provide strong support for
the efficacy of using MEG for speech-based BCI studies.
Specifically, the advantages in the high temporal resolution of
MEG has been proven to be effective by several MEG studies
including the superiority of MEG recordings for speech
production [40], neural tracking of speech envelope [41],
investigating temporal dynamics of communicative language
processing (naming and requesting) [42], temporal patterns
of neural activations in speech [43], automatic neural speech
activity recognition [44], and real-time voice activity detec-
tion from neuromagnetic signals (NeuroVAD) [45]. These
studies provide strong evidence for the ability of MEG to
decode speech from neuromagnetic signals. Moreover, our
prior works [10]–[12], [20], [46], have demonstrated the
effectiveness of neuromagnetic signals for high accuracy
speech decoding.

Despite the advantages of neuromagnetic signals, there
remain technological barriers to the widespread implemen-
tation of MEG machines in speech decoding applications.
Current MEGmeasurements are based on SQUID (supercon-
ducting quantum interference device) arrays housed within
a liquid helium dewar for cryogenic cooling with a vacuum
gap separating sensors and scalp. This arrangement makes
the MEG machine bulky, non-portable, and very costly. The
development of optically pumped magnetometers (OPM)
[47]–[52] can overcome many of these limitations. OPMs
leverage the quantummechanical properties of alkali atoms to
measure small magnetic fields in the brain [53] in contrast to
the SQUID-MEG, which uses magnetic coils. Nevertheless,
both measure the same neuromagnetic activity in the brain.
OPM-MEG systems are relatively light, can operate at room
temperature, potentially portable, and individual sensors can
be slotted onto a 3D printed scanner cast form-fitted to the
individuals’ head. The OPM-MEG (on-scalp-MEG) system
improves sensor-to-cortex proximity compared to the con-
ventional MEG (in-helmet-MEG) systems thereby provid-
ing improved spatial resolution, higher signal magnitude,
and better separation of source activations [54], [55]. These
advances have made OPM-based MEG systems far more
suitable as a wearable device. Another major advantage of
this next-generation MEG system is the option of a modular
design, in contrast to the present ‘one helmet fits all sensors’
MEG system. This opens up new possibilities for selecting
sensor locations for studying specific neuro-cognitive oper-
ations including speech production. An optimal sensor set
may prove instrumental for designing efficient and low-cost
devices in the future. While OPMs currently lack the ability
to operate outside of a shielded room, future hardware and
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software development may allow for a truly mobile device for
patients. Although our current study used data collected using
the traditional SQUID MEG, the feature extraction strategies
and decoding algorithms would be the same if applied to data
collected using OPM.

In the current study, we investigated the efficacy of using
optimal sets of MEG sensors for neural speech decoding.
We hypothesize that a set of optimally located sensors can
be empirically chosen. A forward selection-based feature
selection algorithm was used to classify neuromagnetic sig-
nals corresponding to different imagined and spoken phrases
with superior performance compared to using the entire
MEG sensor array. A feature selection approach selects
the most significant subset from the whole feature set by
removing irrelevant or redundant features from the data and
thereby improves model performance, reduces computation,
and facilitates a better understanding of the model learning.
There are a number of intelligent feature selection or reduc-
tion approaches that have been proposed in literature includ-
ing filter methods, wrapper methods, forward selection, back-
ward selection, embeddedmethods or regularization, LASSO
regression, Ridge regression, matrix factorization methods
such as principal component analysis (PCA), independent
component analysis (ICA), etc. [56]. In most of the cases,
features are transformed into a new low-dimensional feature
space. The objective of this study is to reduce the number
of sensors in the sensor space itself such that locations of
those optimal sensor set can be selected. The algorithmwhich
we experimented for our objective was the forward selection
algorithm [57], because of its inherent nature of iterative
approach starting from the smallest dimension to the opti-
mal set leading to faster computation. We chose a support
vector machine (SVM) decoder for classification consider-
ing its faster training ability with small datasets and well
suitability when combined with feature selection algorithms
[58]. Moreover, SVMs have been proven to be effective in
various classification tasks including our previous works with
MEG [45], [59]. In addition, we also investigated a stacked
autoencoder-based dimension reduction strategy to reconfirm
the improved decoding accuracy. We chose autoencoder for
the dimension reduction task considering its effectiveness
and previous successful MEG studies [60], [61]. We imple-
mented both forward selection-based feature selection and
autoencoder-based dimension reduction algorithms with an
SVM decoder in a subject-dependent speech decoding per-
spective.

The major contributions of this study are as follows:

• This study presented a simple yet effective method for
determining an optimally arranged sensor array that
provides improved neural speech decoding of imagined
and spoken phrases over the full sensor array. To our
knowledge, this is the first MEG sensor selection for
neural speech decoding work.

• This study also investigated a neural dimension reduc-
tion strategy using autoencoders to provide further evi-

dence on the efficacy of reduced feature dimension-
based speech decoding.

• Through analysis of the optimal arrays, we showed that
spatial information underlying speech-related decoding
can be revealed and that both hemispheres contribute
to decoding, with the left hemisphere sensors being
the most common across subjects despite tremendous
individual differences in spatial distribution.

FIGURE 1. The MEG unit (Neuromag; MEGIN, LCC) with a subject. The
MEG was kept at upright position with the subject sitting comfortably
with their head inside the dewar (sensor cap). The screen was placed at
about 90 cm distance from the subject which displayed the stimuli.

II. MEG METHODS
A. SUBJECTS
Seven healthy subjects without any history of neurologi-
cal or developmental disorder (mean age: 41 ± 14 years; 3
females) participated in this study. All subjects were English
speakers and right-handed. Informed consent was obtained
from each subject prior to data acquisition, in compliance
with the institutional review boards (IRB) of the participating
institutions.

B. STIMULI
Stimuli consisted of five commonly used short phrases bor-
rowed from the list used in alternative and augmented com-
munication: 1. Do you understand me; 2. That’s perfect; 3.
How are you; 4. Good-bye; 5. I need help. These were used
as visual stimuli, displayed on a screen, one at a time, writ-
ten in English. A stimulus dedicated computer running the
STIM2 software (Compumedics, LTD) connected to a high-
quality DLP projector was used to display the stimuli onto a
back-projection screen situated at 90 cm from the subjects.

C. DATA ACQUISITION
Two identical Triux NeuromagMEG devices (MEGIN, LCC)
were used for neuromagnetic signal acquisition at Dell Chil-
dren’s Medical Center, Austin, TX, USA and Cook Chil-
dren’s Medical Center, Fort Worth, TX, USA (FIGURE 1).
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The MEG system has 306 channels with 102 magnetometer
and 204 gradiometer sensors and is housed inside a mag-
netically shielded room (MSR). Data were recorded with
a 4000Hz sampling rate with an online hardware filter of
0.03−1000Hz. Prior toMEG data acquisition, a subject head
coordinate system based on three fiducial points was cre-
ated using the FastTrak digitization system (Polhemus Ltd.).
Five head-position-coils placed on the scalp were also digi-
tized to facilitate head localization within the MEG helmet.
Bipolar electrooculography (EOG) and electrocardiograph
(ECG) sensors were used for recording the eyemovement and
cardiac signals, respectively. A standard microphone with a
transducer situated outside the MSR was used to record the
vocal responses from the subjects. A custom-built pressure
sensor attached to an air bladder placed on the chin was used
to record jaw movements. Both acoustic and jaw movement
signals were provided to the MEG system Analog to Digi-
tal Converter (ADC) separately in real-time for digitization.
Sensors were calibrated prior to data acquisition.

FIGURE 2. Experimental design of the time locked protocol. One trial
consisted of 4 stages successively. The ‘0’ in the figure represents the
stimulus onset. During the stage before stimulus onset (pre-stimuli) the
screen was blank. After 0.5 s of pre-stimuli stage, a sample stimulus out
of the 5 stimuli was displayed on the screen that remained there for 1 s.
Then a fixation cross (‘+’) replaced the stimulus on the screen during the
preparation/imagination stage. After 1 s, the screen went blank and the
subject overtly spoke the phrase during the production/articulation stage
which lasted for 1.5-2.5 s. There was a non-movement baseline of 1 s
before the start of the next trial during which the screen was blank as
well.

D. PROTOCOL
The experiment was designed as a time-locked delayed overt
reading task as shown in FIGURE 2. Each trial was time-
locked to stimulus onset. Each trial started with a 1-second
presentation of a stimulus phrase on the screen. This was
followed by a delay period of 1 second where the stimulus
was replaced by a fixation cross (+) heralding the subject
to imagine and prepare for the articulation (production) of
the previously shown phrase. The removal of the fixation
(blank screen) cued the subject to articulate the previously
shown stimulus at their natural speaking rate. Considering
the difficulty in verifying the behavioral compliance of imag-
ined speech production [62] we collected speech imagination
and production data consecutively, within the same trial,
where the timing of this paradigm constrained the subjects

to imagining/preparing the same phrase which is expected
to be articulated for the trial. The inter-stimulus interval was
5 seconds and the first 500ms prior to stimulus onset served
as the baseline. The 5 phrases were displayed on the screen
in pseudo-randomized order to avoid response suppression
from repeated exposure [63], [64]. Each trial was repeated
100 times per phrase for each subject. The whole experiment
lasted for about 45 minutes per subject.

E. PREPROCESSING
The acquired signals were epoched into trials from−0.5 to 5 s
centered on stimulus onset. The MEG signals were low-pass
filtered below 250Hz with a 4th order Butterworth filter and
resampled to 1 kHz. Line noise (60Hz) and harmonics were
removed with a notch filter. Only gradiometer sensor data
were considered for decoding due to their effectiveness in
noise suppression. Sensors that showed a flat or overly noisy
response were discarded, leaving 196-dimensional gradiome-
ter sensor data for analysis. Through visual inspection of trials
containing large artifacts, excessive eye blinks (checked from
EOG data) or erroneous trials (subjects spoke before the cue)
were removed. After preprocessing, a total of 2685 trials were
retained out of 3500 recorded trials (7 subjects × 5 phrases
× 100 trials). Although the average number of retained trials
was 75 per phrase per subject, the data for one subject had
only 63 valid trials for a phrase after preprocessing. Thus, for
an unbiased comparison, we considered only the first 60 trials
per phrase per subject for decoding.

III. DECODING METHODS
The objective of this study was to identify the optimal
MEG channels that are most critical for decoding speech
imagination and production. For this, we implemented an
SVM classifier based forward selection algorithm which iter-
atively selects an optimal set of sensors until the decod-
ing performance converges. Further, we explored a stacked-
autoencoder-based dimension reduction strategy to shrink
the high dimension of MEG data onto the dimension of the
optimal-set for verifying the improvement in decoding perfor-
mance. Each of these two methods is briefly discussed below
along with feature and classifier selection. The decoding task
was a subject-dependent 5-class classification of the neuro-
magnetic (MEG) signals collected during the imagination
and the production stage corresponding to the 5 phrases.
We separated the signals of the imagination stage and the
production stage into two separate tasks and performed the
decoding on each task separately.

The core idea of this investigation was to use a forward
selection algorithm to choose a smaller set of number of
MEG sensors that have a similar performance level with that
using all sensors. Speech decoding performances (accuracies)
using data from the selected sensors were compared with
these from the whole sensors using statistical analysis. If the
speech decoding performance from the selected sensors was
not significantly lower than these with the whole sensor set,
we think the optimal set was found. We also performed
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additional analysis using a latest feature reduction technique,
autoencoder, to confirm the speech performance using the
forward selection algorithm.

A. FEATURE EXTRACTION
Post preprocessing, the signals were decomposed with
Daubechies-4 (db4) wavelet with 7-level decomposition. The
signals were of 1 kHz sampling frequency, from which the
first two detail coefficients (d1 and d2) of frequencies 250−
500Hz and 125−250Hz were discarded as noise. The detail
coefficients (d3−7) and the approximation coefficient (a7)
were reconstructed back to the 1000Hz sampling frequency
representing all the neural oscillations such as high-gamma
(61 − 125Hz), gamma (31 − 59Hz), beta (16 − 30Hz),
alpha (8 − 16Hz), theta (4 − 8Hz), and delta (0.03 − 4Hz)
respectively. Considering the effectiveness of db-4 wavelet in
increased SNR and decoding performance in our prior works
[12], [46], [65] and its use in other decoding studies [25],
we implemented this denoising and decomposing step prior
to decoding. The use of wavelets to generate distinct MEG
brainwaves has been shown previously [67]–[69].

The root mean square (RMS) value across the 1 s time seg-
ments of interest was extracted from the decomposed signals
for each of the frequency bands (high-gamma, gamma, beta,
alpha, theta, and delta). This resulted in an 1176-dimensional
feature vector (196 sensors × 6 frequencies) for one trial
per segment. The use of the RMS features was also moti-
vated by our prior work and other decoding studies [20],
[25], [46], [65]. Previously, we had observed that among all
the statistical features (mean, median, standard, deviation,
quartiles, tertiles), RMS was the only feature, which was
significantly different across the 5 phrases (1-way ANOVA,
posthoc Tukey test: p < 0.05). Since we considered only 60
trials per phrase per subject for decoding, the input feature
matrix corresponding to each phrase was 1176 × 60. The
motivation for this study to reduce the number of sensors and
thereby the dimension can be appreciated from the dimension
of the feature matrix where the feature size is much higher
than the sample size (1176 > 300 (60 trials × 5 phrases)).

B. CLASSIFIER
Considering the high-dimensionality of the input features,
we chose a support vector machine (SVM) classifier for the
decoding task. In contrast to neural networks, SVMs depend
only on the data points near the separation boundary (support
vectors), hence, they can be preferable for smaller datasets
with large feature dimensions [69]. The classification was
performed with a 5-fold cross-validation (CV) strategy using
a 2nd order polynomial kernel. The choice of this 2nd order
kernel was motivated from our prior work [45], [70] which
found that this kernel performs optimally compared to other
kernels (radial basis function (RBF), sigmoid, 3rd and 4th

order polynomial) for this MEG data. C parameter tells the
SVM optimization how much is needed to avoid misclassi-
fying each training example. Tuning of this C parameter was
performed for each classification task but did not provide any

significant improvement and was fixed to unity. The input to
the classifier was the 1176-dimensional RMS feature vectors
with 60 trials per phrase. The 5-fold CV strategy divided the
data into 5 equal folds (12 trials per phrase per fold) and used
4 folds (48 trials per phrase) for training and 1-fold (12 trials
per phrase) for validation/test. Five subsequent training and
validations were performed such that each fold was validated
once. The average accuracy across the 5 folds was taken as the
final performance. The feature dimension of 1176 is when all
sensors were used to find the baseline accuracy.

FIGURE 3. Forward sensor selection algorithm: This step-wise selection
algorithm selects the most optimal set of sensors starting from 1 to 50,
one by one in each step. First, the algorithm selects the first optimal
sensor (O1) which results in best CV accuracy when the SVM was trained
with each sensor as input for 196 times (total number of sensors = 196).
Then with O1 fixed the SVM was trained for each pair of sensors to find
the pair (O1 and O2) giving the best CV accuracy. Then with O1 and O2
fixed, it was trained with all possible sets of 3 sensors and so on until the
accuracy converged with the maximum bound of up to a set of 50 optimal
sensors. Please note the O1, O2. . . can be any sensor from 1 to 196 but all
are different from each other.

C. DECODING WITH ALL, LEFT, AND RIGHT SENSORS
As a baseline, first, we trained the SVM with the features
extracted from all the gradiometer sensors to classify the
phrases during imagination and articulation. The input feature
dimension for All’’ was 1176. Next, for understanding the
laterality in neural speech decoding we only took the sensors
from the left hemisphere in MEG coordinates and trained the
SVM classifier and repeated for right hemisphere sensors.
The input feature dimension for ‘‘Left’’ and ‘‘Right’’ sensors
decoding was 588. Same 5-fold cross-validation strategy and
hyperparameters (e.g. C= 1, Kernel= 2nd order polynomial,
etc.) as mentioned in the previous sections were used for the
training of the classifier.

D. FORWARD SELECTION ALGORITHM FOR OPTIMAL
SENSOR SET SELECTION
The forward selection algorithm was designed in a step-wise
manner (FIGURE 3) such that it adds one sensor to the
optimal set in each step starting from the sensor giving the
best CV classification accuracy in decoding the 5 phrases.
In the first step of the forward-selection algorithm, the SVM
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FIGURE 4. The architecture of the stacked-sparse autoencoder (AE) for
dimension reduction. For training, the input to the AE was the
1176-dimensional (196 sensors × 6 brainwaves) RMS features of 240
training trials (48 trials per phrase × 5 phrases). The encoder-decoder
architecture of this AE was designed such that the encoder first finds the
most significant features in 54 dimensions (equivalent to feature
dimension of 9 sensors: 9 sensors × 6 brainwaves) such that the decoder
can generate the original input feature of 1176 dimension (equivalent to
feature dimension of 196 sensors) from the low-dimensional (54)
embedded features. Both encoder and decoder have 2 hidden layers of a
successively reduced dimension of 600 and 300. After unsupervised
pre-training the autoencoder and fine-tuning the stacked autoencoder
with the training labels via a SoftMax network, the final 54-dimensional
embedded feature was trained with a 2nd order polynomial SVM with a
5-fold CV. Then the 1176 dimensional RMS features of 60 test trials (12
per phrase) were fed to the AE (without the labels) to generate the 54
dimensional test AE features, which were tested with the trained SVM
model to predict the labels of the test phrases.

classifier was first trained and cross-validated with features
from each sensor one at a time as the input, i.e., using a 6-
dimensional feature vector (1 sensor x 6 frequencies). The
sensor giving the best CV accuracy (e.g., O1) was added to
the optimal set. Keeping the first optimal sensor (O1) fixed,
the second step evaluated the performance of the remaining
sensors when paired with O1, i.e., a 12-dimensional feature
vector. The sensor that improved performance the most (O2)
was then added to the optimal set. This process was repeated
in an iterative manner where at each step, a new sensor’s
efficacy was evaluated based on its ability to improve the
classification performance of the previously selected group
of sensors. This step-wise sensor selection process continued
until the optimal set had 50 sensors (O1, O2, . . .O49, O50).
We tested the forward selection algorithm up to 50 optimal
sensors as in our previous work on speech decoding with
principal component analysis (PCA) components of MEG
signals [11], we found that the decoding performance satu-
rated after 50 principal components. The forward selection
algorithm was trained for the imagination and the production
stage separately. Then the optimal set from the pool of 50
sensors was determined until saturation in average accuracy
(across 7 subjects) was achieved.

FIGURE 5. Comparison of decoding accuracies during imagination and
articulation averaged across 7 subjects with All: Using all 196 sensors,
Left: Using sensors on the left hemisphere, Right: Using Sensors on the
right hemisphere. The blue solid line on 20% represents the chance level
accuracy. Error bars indicate standard error (SE) across 7 subjects.

E. AUTOENCODER FOR DIMENSION REDUCTION
We used a stacked-sparse autoencoder for dimension reduc-
tion to encode the high dimensional input features (1176-
dimensional) onto a low-dimensional embedded layer, which
were then used to train the SVM decoder (FIGURE 4).
We stacked 3 pre-trained autoencoders with hidden layer
nodes of 600 (equivalent to feature size of 100 sensors), 300
(equivalent to feature size of 50 sensors), and 54 (equivalent
to feature size of 9 sensors) to form the stacked-autoencoder.
Instead of directly embedding the large dimensional input
feature (dimension = 1176) to a low dimensional embedded
vector (dimension = 54) with one autoencoder, we chose to
introduce two more autoencoders with a subsequent 50% less
number of nodes than the previous layer to represent complex
regions for managing non-linearity in the data. We chose the
dimension of the 3rd hidden layer (embedded layer) based on
the performance of the forward selection algorithm conver-
gence.We adopted a greedy training strategy to first train each
of the autoencoders one by one in an unsupervised manner
and then the autoencoders were stacked and fine-tuned in a
supervised fashion with the corresponding labels. Each of the
three autoencoders usedwas a 2-layer shallow neural network
with the hidden layer as the encoding layer that embedded the
input of the network and the decoding layer with the same size
as the input layer to reconstruct (decode) the input. For exam-
ple, the first autoencoder had an input layer dimension of
1176 (same as the input feature dimension), the hidden layer
dimension of 600, and the output layer dimension was 1176,
the same as the input layer. During the pre-training of the first
autoencoder, the 1176-dimensional input was embedded onto
the hidden layer of 600 nodes by removing the redundancy,
fromwhich the original input was trained to be decoded at the
output layer. Similarly, for the 2nd autoencoder, the 1st hidden
layer of 600 nodes became the input layer which is encoded to
a hidden layer of 300 nodes. Finally, for the 3rd autoencoder,
the information from the 300 nodes were encoded within 54
nodes.
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FIGURE 6. Average decoding performance across 7 subjects with the increasing number of optimal sensors for imagination and production. The solid red
line corresponds to the classification accuracies for decoding spoken phrases as the number of optimal sensor increases and the corresponding standard
deviation is plotted as a pink transparent shadow. The dotted red line represents the accuracy obtained by considering all sensors. Similarly, the black
solid line is for imagined speech decoding accuracy with the gray shadow indicating the standard deviation and dotted black line for imagination
decoding with all sensors. The number of sensors with optimal accuracy and the best accuracy for both imagined and spoken phrase decoding are shown
with arrows.

We pre-trained each autoencoder with a scaled conju-
gate gradient (SCG) optimizer via backpropagation. Logis-
tic sigmoid functions (logsig) were used for both encoder
and decoder transfer functions. L2 norm on the weights and
sparsity constraint on activations were used as regulariza-
tion. The loss function was mean squared error adjusted for
sparse autoencoders (MSEsparse), i.e., mean square error loss
with added L2 norm regularization and sparsity regularization
[71]. We used the default Kullback-Leibler divergence as the
sparsity regularizer which attempts to enforce a constraint on
the sparsity of the output from the hidden layer by adding a
regularization term that takes a large value when the average
activation value of a neuron and its desired value are not close
[71]. Values for the coefficients of L2 weight regularizer,
sparsity regularizer, and desired proportion for sparsity was
decided based on grid search tuning for each encoder and
each subject separately. Commonly, the L2 regularization
factors for different subjects were found to be optimal within
0.001 − 0.004, the sparsity regularization factor was 4, and
the sparsity proportion values were within 0.2 for the first
AE, 0.15 for the second AE, and 0.10 for the third AE. All
the encoders were trained for a maximum number of 400
epochs. After pre-training the three autoencoders, they were
stacked and fine-tuned with a SoftMax layer with respective
labels.

IV. RESULTS
A. DECODING PERFORMANCE WITH ALL, LEFT, AND
RIGHT SENSORS
FIGURE 5 shows the results obtained when decoding with
all sensors as a baseline, left hemisphere only, and right
hemisphere only sensors. During imagination, the average
accuracy with only the left sensors was 41.63%± SE: 8.11%,
and with only the right sensors, it was 45.16% ± SE: 9.39%.
This difference was not significant (2-tail paired t-test, p =
0.48). Similarly, for articulation, the average classification
accuracy with left-only sensors was 66.62% ± SE: 6.30%,
and with right-only sensors, the mean accuracy was 67.83%
± SE: 6.60% across 7 subjects. A 2-tail paired t-test compar-
ison of left and right lateral sensors for articulation decoding
similarly demonstrated no statistically significant difference
(p = 0.46). There was about a 10% decrease in mean
performance from using all sensors to using only left or right
hemisphere sensors, which was statistically significant (1-tail
paired t-test, p = 0.004 for all v. left and p = 0.007 for all v.
right). For imagination decoding, this decrease was minimal
and not significantly lower than using all the sensors (1-tail
paired t-test, p = 0.20 for all v. left and p = 0.44 for all v.
right). The performance with both left- and right only sensors
was also significantly higher than the theoretical chance level
accuracy of 20% (1-tail t-test, p < 0.05).
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FIGURE 7. Tracking the locations of the optimal sensors in the 3D (left) and 2D-axial (right) sensor location space chosen by the forward
selection algorithm for imagination (top) and production (bottom). Axial plots are shown to infer the lateral side (left/right) information. Rank is
shown next to the sensor. The axes coordinates are in cm.

B. OPTIMAL SENSOR SET
We computed the performance of each optimal set starting
from the best sensor through the 50 optimal sensors based
on the forward selection algorithm. The results are shown
in FIGURE 6. The decoding performances using all 196
sensors (feature dimension = 1176), calculated for both
imagination and articulation, are shown as the black and
red dotted lines on the plot respectively. For imagination,
the 5-class average classification accuracy across 7 subjects
with the SVM decoder was 45.46% ± 20.04% and for artic-
ulation, it was 76.62% ± 12.53%. The performances for
articulation decoding were statistically significantly higher
than imagination and the performances for both imagina-
tion and articulation were significantly higher than chance
level (theoretically 20% for a 5− class classification) (1-tail
t-test, p < 0.05).

Accuracy for both imagination and articulation decoding
increased with the increase in the optimal number of sensors
as can be seen in FIGURE 6 from the line plots (red solid
line for articulation and black solid line for imagination).
The standard deviations are plotted in shadows with the
respective colors. For production (solid red line) a decrease
in accuracy can be observed when the optimal number of
sensors increased from 9 to 10 leading to algorithm conver-
gence. However, we continued to evaluate the performance
by adding more optimal sensors until 50 to observe the
pattern. A plateau was observed after the 9th optimal sen-
sor both for imagination and articulation. For articulation,
with 9 optimal sensors, the average decoding accuracy was
81.67% ± 13.75% and for imagination, it was 54.34% ±
19.38%. On average, an increment of 9% for imagination and
5% for articulation was observed with only 9 optimal sensors
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FIGURE 8. Inter-subject variability in the location of optimal sensors shown for 6 subjects for speech imagination (top two rows) and production (bottom
two rows) decoding. The axial view of the sensor map is shown. The axes coordinates are in cm. The sensor locations are based on individual subject’s
head space.
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FIGURE 9. Statistical frequency (Mode) plot of the common sensors across 7 subjects during imagination (a) and articulation (b). a higher size of the
text represents higher mode. The sensors with higher modes are also represented in orange color and at the center of the sensor-name cluster. For
example, for the case of imagination decoding, sensor MEG2322 was common across all the 7 subjects. The location of the sensor can be inferred
from the flattened sensor map with sensor names (c). Orange and blue colored stars (for articulation and imagination respectively) have been put
near the index of the most common sensors for reference. Sensor layout image modified with permission, from user manual ‘‘TriuxTM neo Instruction
for Use, 2020 (MEGIN, LCC).

compared to all 196 sensors. The increment was statistically
significant (1-tail paired t-test, p = 0.03 for articulation
and p = 0.001 for imagination). The maximum accuracy

was with 32 sensors during articulation (85.29% ± 10.53%)
and with 30 sensors for imagination (56.81% ± 20.74%).
As the gain in performance is somewhat minor relative to
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FIGURE 10. Comparison of decoding accuracies during imagination and
articulation averaged across 7 subjects with All: using all 196 sensors, AE:
after dimension reduction with autoencoder. FS-9: with 9 optimal sensors
found with forward selection. FS-Max: with optimal sensors resulting in
maximum average accuracy (30 for imagination and 32 for articulation;
see figure 6) across 7 subjects after forward selection algorithm. The blue
solid line on 20% represents the chance level accuracy. Error bars indicate
standard error (SE) across 7 subjects.

the cost increase associated with the 21 additional sensors,
we considered the 9 sensors as the optimal set.

C. SENSOR LEVEL SPATIAL PATTERNS
The locations of the optimal 9 sensors for one subject both
for imagination and articulation are shown in FIGURE 7.
The optimal sensors are shown in colors with the ranking
shown in the plot. The best sensor, i.e., the sensor resulting
in the best accuracy among all 196 sensors in the first step of
the forward selection algorithm is shown in dark blue color.
The 9th optimal sensor is represented with a dark red color.
Following the change in color with corresponding ranking
numbers, the ranking of the optimal set can be visualized.
From the axial plots, the laterality (left/right) of the sensors
can be inferred. Interestingly, the optimal sensorsweremostly
near the temporal regions of the brain for articulation decod-
ing. However, the location of optimal sensors for speech
imagination decoding was considerably different compared
to articulation decoding with additional preference towards
sensors near the occipital region.

The intersubject variability in the location of optimal sen-
sors can be seen in FIGURE 8. Although there is some
expected variation across subjects [59], the locations in FIG-
URE 8 reflect a somewhat consistent inclusion of temporal
region sensors for articulation and occipital region sensors for
imagination. Sensors both at the left and right hemispheres
were included in the optimal set in contrast to the traditional
understanding of the left hemisphere dominance of the brain
for speech production [72]. The bilateral distributions of
optimal sensors were prominent for both imagination and
articulation decoding across all subjects (FIGURE 7 and 8).

FIGURE 9 provides the cluster of common sensor-names
occurring in the top 50 optimal set across all subjects. Even
though there was large variability in the top 9 optimal sen-
sors, there were common sensors across the 7 subjects in

a larger pool of optimal sensors (50) based on a statistical
frequency (mode) analysis which identified the sensors that
were often repeated across subjects. Higher font size indi-
cates a higher mode. The most common sensors are repre-
sented in orange color at the center. For imagination, the sen-
sors MEG2322 (right parietal-occipital) and MEG0432 (left
temporal-parietal,) were common across all 7 subjects in the
top 50 optimal sensors. The sensors MEG1213 (right frontal)
and MEG0612 (left-frontal) were common to 6 subjects and
so on. The results of the mode analysis on sensors chosen in
the optimal set for articulation decoding was very intriguing.
All the sensors shown in the center with orange color that are
most common across 5− 6 subjects were positioned near the
fronto-temporal region which typically covers Broca’s area.

D. DIMENSION REDUCTION WITH AUTOENCODER
After reducing the dimension from 1176 (of 196 sensors) to
54 (equivalent to 9 sensors) with the stacked-sparse autoen-
coder, the decoding performance increased by about 6% for
articulation and 12% for imagination decoding (FIGURE 10).
The average CV accuracies across 7 subjects, obtained with
the SVM decoder with the autoencoder features with reduced
dimension, were 57.92% ± SE : 8.07% for imagination
and 82.08% ± SE : 4.96% for articulation. These accura-
cies were similar to those obtained with 9 optimal sensors.
Also, this increment in mean performance with AE reduced
features that from using all features (from 196 sensors) was
statistically significant (1-tail paired t-test, p = 0.0005 for
imagination and p = 0.0003 for articulation). Reducing the
dimension of the third hidden layer with steps of 6 below
54 resulted in almost similar but lower accuracy (about 0.4%
decrease for the first 2 steps) and then significantly decreased.

FIGURE 11 shows the dimension reduction performance
of the autoencoder from the feature distribution (t-stochastic
neighborhood estimation, t-SNE) plot [73]). The figure shows
the distribution of train and test features of a subject during
articulation, before and after being run through the autoen-
coder. Each dot in the plot represents a sample/trial and each
color represents a class/phrase. The top two plots are samples
with 1176-dimensional features of train and test respectively
and the bottom 2 plots are the distribution of samples with
reduced dimensions (54) via autoencoder. The samples are
mixed in the original feature space and thus it is difficult
for a decoder to find a boundary between different classes.
However, with the reduced dimension the samples corre-
sponding to different classes are clustered making the task of
the decoder easy and thereby resulting in better performance.

V. DISCUSSION
A. EFFICACY OF THE SENSOR SELECTION STRATEGY
The observation that 9 optimal sensors outperform the origi-
nal 196 sensor system (FIGURE 6) demonstrates the promise
of a reduced number of sensors for neural decoding.We tested
the forward selection algorithm up to 50 optimal sensors
and found that the decoding performance saturated after 9
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FIGURE 11. t-SNE plots of the train and the test features of a subject for articulation before and after dimension reduction with autoencoders. Each color
represents a phrase (class). Each dot in train and test features (shown on top of the plot) is of dimension 1176 and after dimension reduction with AE
(shown in the bottom of the plot), each sample (dot) is of dimension 54 obtained from the embedded layer of the stacked-sparse-AE.

principal components. We chose nine to be our optimal set
of sensors as the performance plateaued after 9 sensors.
Although the maximum accuracy was achieved with about
30 optimal sensors, the increase in accuracy from 9 sensors
to 30 sensors was only 2 − 4%, whereas the additional cost
of those extra 21 sensors could be very high. In addition to
being computationally efficient, a smaller set of sensors can
reduce the cost of a BCI system dramatically. With the new
era of OPM-MEG developments [47], [50], establishing the
optimal placement of a few sensors with improved decoding
performance may have a substantial impact on the feasibility
of speech-BCIs. Based on our results, future, low-cost OPM-
based speech decoders could be developed with as few as
9 sensors at a low cost. After getting the optimal location of
the sensors via the traditional MEG system, on-scalp OPM
sensors can be placed on those locations on a lightweight
helmet for speech-BCI applications. Although to optimally
select the 9 sensors, one still has to start with all the sen-
sors, however, that can be done with a one-off calibration
test before acquiring subject-specific devices. Alternatively,
the used forward selection algorithm can be implemented on
multi-channel dense OPM-MEG arrays to select the location
of few OPM sensors that could potentially result in optimal
decoding performance and a customized sensor set that is
specific to the patient. Verification of these assumptions is
necessary with OPMmeasured data, which will be a next step
of this study.

There are several challenges associated with managing
high-dimensional data. In addition to the computational dif-
ficulties, increasing the dimension of data exponentially
increases the volume of the hypothesis space. This leads to
a sparsely populated space in which it is difficult to draw
decision boundaries. To avoid these challenges, there are a
number of approaches, that aim at reducing the dimensional-
ity of data while minimizing the loss of relevant information.
Dimension reduction can be divided into feature selection
strategies (which attempt to identify an optimal subset of fea-
tures) and feature transformation strategies (which attempt to
learn a transformation to a lower-dimensional space that pre-
serves the most relevant information) [56]. Although feature
transformation strategies are more flexible, and thus some-
times capable of learning more powerful low-dimensional
representations, they lack some of the computational advan-
tages of feature selection strategies as they generally still
require that all of the initial features be calculated to build the
low-dimensional representation. This is particularly relevant
to this topic as dimensionality reduction strategies such as
autoencoders or PCA would still require data from all of the
initial sensors, and would thus be unhelpful in reducing the
bulk or cost of the BCI. Because of this, the main focus of
this paper is the implementation of feature selection strategies
for neural speech decoding. From a machine learning, speech
decoding, and cost perspective, we chose the forward selec-
tion algorithm in this study with the objective of choosing the
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lowest number of sensors, which has not been investigated
before in MEG studies.

The forward selection strategy implemented here takes
the concatenation of information from all the six brainwave
frequencies for extracting features from the sensors. How-
ever, the spatial-spectral dynamics of brain cognition are very
complex and it might be possible that a certain combination
of optimally located sensors and different brainwaves might
result in a better performance than taking all brainwaves
simultaneously. For example, previous decoding studies have
provided the supremacy of theta band dominance in decoding
while speaking various words [74] or higher decoding per-
formance by beta band compared to alpha and theta in clas-
sifying two syllables with EEG [21] and high-gamma band
for speech decoding with ECoG [15]. However, in a recent
MEG study, we showed that the best decoding accuracy can
be achieved still by combining all the brainwaves [70]. Hence,
we chose to take the concatenation of all six brainwaves as
the feature for individual sensors in the current study. Future
studies will be conducted to find the best combination of
sensors with individual or a selection of combined frequency
bands.

B. SPATIAL PATTERNS OF THE OPTIMAL SENSOR SET
We found the 9 optimal sensors for articulation decodingwere
mostly near the temporal regions of the brain (FIGURE 8-
bottom two rows). The effective role of the temporal cortex
for speech processing has been previously shown for both per-
ception and production [75]–[77] suggesting the functional
role of speech areas (Broca’s area, Wernicke’s area, etc.).
Interestingly, we found the optimal sensors to be distributed
across temporal areas of both hemispheres in contrast to the
traditional understanding of speech areas to be located at the
left hemisphere only [72]. However, it is possible that the
sensors might be reflecting the neural activity of the auditory
cortex which is present in both hemispheres and, due to the
field spread effect of MEG, sensors near the auditory cortex
were picked by the algorithm. This also suggests that speech
perception mechanisms during articulation might be con-
tributing to the decoding process. A source reconstruction-
based strategy might provide a clearer view of the spatial
organization of the brain for speech production that is driving
the optimal sensor set selection toward which our future work
is progressing.

Interestingly, some sensors near the occipital regions of the
brain were consistently included in the top 9 optimal sensors
set during imagination decoding (FIGURE 8-top two rows).
It might be possible that the subjects were imagining the pre-
vious visual stimulus, or that (visual) task-related activity gets
incorporated into the neural dynamics related to the specific
task. It is also possible that the visuomotor coordinationmight
be involved in speech imagination during oromotor tasks
[78], [79]. It might be possible to interchange the imagination
and production tasks in the protocol to counterbalance this
effect of task-related effects in half of the subjects during
group subject analysis. The variability in the locations of the

optimal sensors across subjects can be seen in FIGURE 8.
It is also interesting that the optimal sensors for imagination
decoding were distributed across hemispheres, supporting
the existence of bi-hemispheric networks underlying speech
production.

The observation that the optimal sensors obtained for
speech imagination and production decoding are different
suggests that these two tasks are considerably distinct cogni-
tive processes even with the same speech stimuli. The optimal
sensors for spoken speech decoding were mostly concen-
trated around the temporal lobe whereas were distributed
across the entire brain for imagination. The ultimate goal of
a speech-BCI is imagined speech decoding such that it can
be used for ALS or locked-in patients for communication
assistance. It may also be valuable to understand the speech
production decoding analysis as it might provide further
insights into the neurophysiology of speech production. Thus,
extreme care must be taken in selecting the location for
sensors corresponding to these two tasks.

The finding with statistical mode analysis of optimal sen-
sors (Figure 9) could be seen as a direct data-driven repro-
duction of previous studies [80]–[82] implicating Broca’s
region in speech production. Although the variability in sen-
sor groups across subjects is relatively high, the observation
that sensors near Broca’s area are common in the optimal
pool provides certain confidence that in the future a subject-
independent decodingmodel can be developedwith fewOPM
sensors.

The bilateral representation of speech production has been
repeatedly shown in the neuroimaging literature. This sug-
gests a dynamic interaction/connection between the hemi-
spheres [83] involving the bilateral auditory and motor cor-
tices, rather the traditional understanding of speech produc-
tion to be largely dominated by the left hemisphere (for right-
handed speakers). In current neural speech decoding studies
with ECoG, subjects with an electrode grid placed on the left
hemisphere are typically chosen as subjects of interest. This is
justified as it is very difficult to come across epileptic patients
with source localized to both hemispheres. While the decod-
ing results alone are insufficient to delineate a specific mech-
anism for bilateral speech processing, our results suggest that
data from both the hemispheres can be used to maximize a
BCI’s proficiency. Although this study included only right-
handed participants, a future study including an equal number
of left- and right-handed participants may inform more about
the degree to which this spatial decoding method reflects
hemisphere dominance.

C. EFFICACY OF AUTOENCODERS IN DIMENSION
REDUCTION
When developing any neural speech decoding algorithm it
is essential to consider the data that can be acquired for
training, which is typically in the lower order of magnitude
while collecting from the target population. Data modalities
used in BCIs are generally highly complex requiring high-
dimensional feature representations. Thus, developing a good
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decoder using machine learning, in the low data regime
of speech-BCIs, is a major challenge. For a good machine
learning decoder to perform well in this high-dimensional
small sample regime, intelligent techniques must be devel-
oped including artificial data synthesis for increasing sample
size, proper regularization of the decoders to avoid over-
fitting, dimension reduction approaches to reduce the feature
size, or feature selection approaches to select the most mean-
ingful features from the whole feature pool. Here, we imple-
mented both dimensionality reduction and sensor selection
strategy to address this challenge.

Autoencoders (AE) are very effective deep learning tools
for reducing the dimension of high dimensional data to lower-
dimensional coded non-linear features [84]. The stacking
of autoencoders to boost the performance of deep networks
was first shown in [85]. AEs are logically very effective in
sensor level MEG studies as MEG data is typically character-
ized by high-dimensionality due to a large number of chan-
nels. Autoencoders have previously been effectively applied
for dimension reduction of MEG features [60], [61]. Here,
we wanted to ensure that the optimal sensors selected with
the forward selection strategy were at par with deep learning-
based dimension reduction strategies such as the AE used
here. The mean performance obtained with AE selected fea-
tures was similar (< 1%) to the performance obtained with 9
optimal sensors. This provides further confidence that a few
(9) optimal sensors can be selected using a forward selection
algorithm that can be equally effective as using all the gra-
diometer sensors. Further, the efficacy of the autoencoder was
reconfirmed with the t-SNE plots for visualization of feature
distribution. Both training and testing samples were found
to be clustered into five different groups corresponding to
five different phrases after implementing autoencoder based
dimension reduction. The clustering is more prominent in
training samples as these are fine-tuned with corresponding
labels while training the stacked autoencoder. Nevertheless,
the relatively better clustering of autoencoder test features
compared to the original test features can still be seen in the
plot and the efficacy of autoencoders for dimension reduction
can be inferred.

While developing a BCI, it is extremely difficult to collect
a lot of training data from the subjects considering the fatigue
that can be developed while doing a task for a long time.
Specifically, for the ALS population, subjects become tired
easily during the task, considering the higher amount of
motor involvement to compensate for the paralyzed muscles
[86]. Thus, developing deep learning-based decoders on high
dimensional neural data with a small number of training
samples is challenging. Hence, in this study, we used SVM
which is partially unbiased to high-dimension. It might be
true that with a higher sample size, after training the autoen-
coder, a deep network-based decoder could have produced
better performance. However, for an unbiased comparison,
we used the same SVM decoder after both forward selec-
tion algorithm and autoencoder based dimension reduction
strategy.

D. TOWARDS AN OPM-MEG-SPEECH-BCI
An ideal BCI should be accurate, mobile, real-time, and inex-
pensive. Although MEG signals might seem to be the most
effective neural pathway for BCI applications, the current
MEGmachines are not suitable considering the high cost and
immobility. Nevertheless, recent studies on OPMs [48]–[51]
have provided confidence that the neuromagnetic activity can
be effectively leveraged for practical BCI systems. In light of
the findings reported here, it seems that with a few optimal
OPM sensors it is possible to develop a fast speech-BCI
for communication assistance. Also, the OPM-MEG-Speech-
BCI could be low cost (due to fewer (9) sensors), movable
(as OPMs can tolerate head motion), fast (because of direct
decoding), and more accurate (with high decoding accuracy).
A practical speech-BCI typically uses a closed-loop paradigm
in which the prediction of decoding can be fed to the system
as feedback to further improve the decoding efficacy. In this
study, our experiment for MEG sensor selection is an open-
loop decoding paradigm, because our focus is the comparison
of the performances of individual sensors and their combi-
nations. A closed-loop system with potentially human in the
loop paradigm for real-time speech-BCI applications will be
investigated in future studies [87]. In this study, we have only
focused on MEG sensor selection for decoding but, in the
future, we will focus on implementing a closed-loop system
with potentially humans in the loop paradigm for real-time
speech-BCI applications.

It is important to note that our results were based on MEG
gradiometer sensors rather than OPM sensors. Although the
reproduction of these results with OPM sensors is necessary
there are reasons to be optimistic as the quality of OPMs is
improving and signals, albeit slightly noisier, are believed to
be similar to current MEG systems [48]. Moreover, recent
studies have shown by using interference cancellation via a
reference array, OPMs can generate high SNR signals signifi-
cantly better than gradiometers [47]. Furthermore, gradiome-
ters provide higher SNR over magnetometers and it has been
recommended to use gradiometers over magnetometers for
sensor level analysis [64], [88], [89]. Additionally, this study
was performed as a closed-set classification task (5 phrases)
and the sensors included in the optimal set might be different
for an open-set task (any phrase) or a different set of phrases.
Nevertheless, using such a forward selection algorithm to
find the optimal set of sensors could theoretically be applied
to any decoding research including EEG-based classification
studies as well. Validating the location of the sensor selection
with a test-retest paradigm on new data and expanding the
vocabulary of phrases are the future goals of this research.

VI. SUMMARY
In this study, we used a forward selection strategy with
SVM decoders to find that with only 9 optimal sensors a
significantly higher neural speech decoding accuracy can
be achieved thereby showing promise for a future OPM-
MEG-based low-cost speech-BCI. An autoencoder-based
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dimension reduction strategy was used to find the decoding
accuracy which was similar to the accuracy obtained with
the 9 optimal sensors, further reinforcing confidence in the
chosen sensors. Considerable inter-subject variability was
observed in the location of the optimal sensors, however,
fronto-temporal sensors (overlying Broca’s area) were found
to be common in the optimal set across subjects during
articulation decoding. Sensors in the temporal region and
parietal-occipital regions were selected in the optimal set
for articulation and imagination decoding, respectively. The
bilateral distribution of optimal sensors indicates bilateral
neural activity during speech is prominent and necessary for
decoding. This study only included healthy subjects’ data
collected with a SQUID-MEG system, hence, further investi-
gation on ALS subject’s data with OPM sensors is necessary
to confirm the reliability of this strategy for developing the
future OPM-MEG- speech-BCIs.
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