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ABSTRACT For the satellite attitude control system with actuator and sensor fault, the paper proposes a
neural network based robust state and fault estimation method. Compared with the traditional model-based
approach that relies on the accurate model of the system, we train the recurrent neural network with the inputs
and outputs of the current attitude control system to achieve the purpose of modeling and improving the
accuracy of the model. Then, through the expansion of the system state vectors, the neural state space model
is transformed into a generalized nonlinear system without sensor fault terms. Furthermore, a combination
of the generalized unknown input observer scheme with the robust H∞ linear parameter-varying (LPV)
approach is developed to estimate the system state and actuator faults simultaneously. According to Lyapunov
theory, the stability analysis of observer is considered by transforming the dynamic error into the discrete
time polytopic LPV form. Finally, some tests are performed on the satellite attitude control system to validate
the effectiveness of the proposed method.

INDEX TERMS Fault estimation, recurrent neural network, satellite attitude control system, unknown input
observer, Lyapunov theory.

I. INTRODUCTION
Satellite is a complex equipment which integrates technolo-
gies of different area including optics, electricity, mechanical
and so on. Due to long-termworking in the space environment
of weightlessness, large temperature difference and strong
radiation, its components are prone to fault. Among them,
the fault rate of attitude control system (ACS) is higher
than other satellite subsystems [1], [2]. As one of the most
important subsystems of satellite, the fault of ACS will
lead to the reduction of control accuracy and instability of
closed-loop control. In severe cases, it will shorten the life of
the satellite or even interrupt the space mission.

Since the 1990s, with the improvement of satellite
complexity and reliability requirement, engineers have pro-
foundly researched in nonlinear system fault detection and
isolation (FDI) [3]–[5]. They have a common point of view
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that a fast detection of small abrupt or incipient faults can
prevent the system more serious fault. For such a reason,
numerous efforts were focused on developing efficient and
robust fault detection methods and fruitful results can be
found in the literatures. Wang et al. [6] achieved the
dynamic event-triggered fault detection for a class of discrete-
time systems by zonotopic residual evaluation. An integral-
based event-triggered condition and fault detection filter
coordinated design method was provided in [7]. A mixed
H − /H∞ fault detection observer design criterion was
developed for LPV system in finite frequency domain in [8].
However, the problems of fault estimation and identification
were marginalized.

The final goal of fault diagnosis is to ensure the system can
operate effectively even if faults occurring [9]–[12]. In order
to realize the fast and accurate fault-tolerant control (FTC) of
satellite, it is necessary to obtain the fault value and change
trend of ACS. Thus, it is of great practical significance to
propose an effective fault estimation method.
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In the past ten years, many experts and scholars have
done a series of research on the fault estimation of ACS of
satellite and made some progress. Yi et al. [13] proposed
an indirect approach for fault diagnosis and fault-tolerant
control in the satellite ACSwith sampled-data measurements.
By considering the fault term as an auxiliary state vector,
a state augmented observer was designed to estimate the
system state and fault. Jia et al. [14] and Cheng et al. [15]
addressed the problem of integrated fault reconstruction and
fault-tolerant control in satellite ACS subject to actuator
faults via an integrated design of the observer and the fault-
tolerant controller. A data-driven explicit state space based
fault detection, isolation and estimation filter was proposed
and developed in [16]. The estimation errors can be effec-
tively compensated by using the input-output measurements
and the estimated system Markov parameters. Gao et al. [17]
proposed an integrated robust fault diagnosis method of
satellite ACS based on nonlinear adaptive unknown input
observer (UIO). It can reconstruct the isolated actuator
fault by adaptive technology. For sensors, a robust fault
reconstruction method based on reduced order sliding mode
observer was proposed and applied to the fault reconstruction
of satellite gyro [18]. Zhang et al. [19] researched the
problem of observer based sliding mode fault tolerant control
of satellite. In the presence of space disturbance torque,
a proportional learning observer (PLO) was designed to
estimate the fault of satellite flywheel.

It should be noted that most of the satellite fault diagnosis
methods in the literatures are for actuator fault, while the
research on sensor fault is relatively less. Because from the
perspective of the FTC, we usually focus on fault diagnosis
of actuators in the control process. However, the ACS consists
of plant, actuators and sensors. The occurrence of sensor fault
will also affect the efficiency of FTC to a certain extent [20].
Moreover, it is generally assumed that the faults do not occur
at the same time i.e. only one kind of fault occurs. Therefore,
it is still valuable to study fault estimation for simultaneous
faults.

At present, observer-based approaches, especially UIO,
are particularly attractive in fault estimation. It follows
from the fact that such a method allows reconstruction
of the system state and unknown inputs on basis of the
model and the measurements of the system inputs and
outputs. In addition, UIO has characteristics of robustness
because it is designed to reduce the influence of model
uncertainty, thereby the reliability of fault diagnosis is
improved [21], [22]. Unfortunately, the main disadvantage
of UIO and other observer-based approaches follows from
the fact that the analytical model of the diagnosed system
is required, which is often impractical for satellites or deep
space detectors.

In order to solve the above problems, the paper proposes
a design method of UIO based on artificial neural network
(ANN), which can realize the fault estimation of actuator
and sensor simultaneously. The reason for the decision to
use ANN is that they have some good properties, especially

the modelling of complex nonlinear dynamic systems,
parallel processing, as well as generalization and adaptively
features [23]–[27]. However, the main weakness of the ANN
is that it cannot guarantee the disturbances decoupling and
convergence to the origin. Thus, the combination of the
ANN modelling ability and LPV technique is introduced
to design a robust fault detection and estimation scheme,
so that the influence of disturbances is minimized in the H∞
sense [28], [29]. Firstly, the recurrent neural network (RNN)
is trained to represent the state space model of the current
satellite by using the input and output signals of the satellite
ACS in orbit. Then, for actuator and sensor faults in the
system, the neural state space model is transformed into
a generalized nonlinear system without sensor fault by
extending the state vectors. Finally, the UIO which can
estimate the system state and actuator fault simultaneously
is designed for the RNN-based generalized system. In the
design process of observer, the dynamic error is transformed
into LPV form to prove the stability through Lyapunov.While
guarantying observer convergence, a specified disturbance
attenuation level is achieved with respect to the state and fault
estimation errors. The contributions of this article include:
1) providing a novel observer synthesis procedure which
is based on the concept of the UIO for the ACS actuator
and sensor fault detection and estimation; 2) Overcoming
the disadvantage of observer-based approaches that need
analytical model through the RNN identifying system; and
3) Guaranteeing system convergence and robustness via
combination of the RNN and LPV technique.

The paper is organized in the following parts. Section 2
presents RNN-based neural state space model and a method
of the model transforming into a generalized nonlinear
system. Section 3 describes the design procedure of the
robust UIO using H∞ framework for the actuator and sensor
faults estimation. Section 4 shows a simulation example
of the proposed approach in the actuator and sensor faults
estimation of satellite ACS. Finally, Section 5 presents the
conclusion.

II. RNN-BASED NEURAL STATE SPACE MODEL
The RNN provides a general identification model in the
restricted sense that they can approximate uniformly any
MIMO nonlinear dynamic system over a finite-time inter-
val [30], [31]. The general class of discrete-time state space
neural network considered in this work consists of three
layers, as depicted in Fig. 1.

A discrete-time nonlinear neural state space model repre-
sented by proposed RNN is given as

x∗(k + 1) = A∗x∗(k)+ Bu(k)+ A0σ (E∗0x
∗(k))

y(k) = C∗x∗(k) (1)

where x∗(k) ∈ Rn, y(k) ∈ Rp,u(k) ∈ Rm denote the system
state, output and input, respectively. C∗ is measurement
matrix. A∗,A0,B and E∗0 are real valued matrices of
appropriate dimensions. They represent the weights which
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FIGURE 1. The structure of state space neural network.

will be adjusted during the training stage of RNN. The
nonlinear activation function σ (·) is taken as a continuous,
differentiable and bounded function.

Consider the following state spacemodel that both contains
actuator fault and sensor fault

x∗(k + 1)=A∗x∗(k)+Bu(k)+g(x∗(k))+Df a(k)+Wω(k)

y(k)=C∗x∗(k)+ Ff s(k) (2)

where g(x∗(k)) = A0σ (E∗0x
∗(k)), f a(k) ∈ Rq, f s(k) ∈ Rs

stand for the actuator fault and sensor fault, respectively. And
D,F are the matrices of appropriate dimensions. Without
loss of generality, we assume C∗ is row full rank and D,F
are column full rank. Moreover, ω(k) ∈ l2 is an exogenous
disturbance vector with W ∈ Rn×m being its distribution
matrix while

l2=
{
w ∈ Rm

| ‖w‖l2 <∞
}
, ‖w‖l2=

(
∞∑
k=0

‖ω(k)‖l2

)1/2

(3)

In order to estimate sensor fault, the following extended
vectors are introduced.

x(k) =
[
x∗(k)T f s(k)

T
]T
, E =

[
In 0n×s

]
,

A =
[
A∗ 0n×s

]
, E0 = E∗0 · E, C =

[
C∗ F

]
.

It is obviously that x∗(k) = Ex(k). In this way, the model
(2) can be rewritten as:

Ex(k + 1) = Ax(k)+ Bu(k)+ h(x(k))+ Df a(k)+Wω(k)

y(k) = Cx(k) (4)

where h(x(k)) = A0σ (E0x(k)). Note that F is column full
rank, we have rank

[
ET CT ]T

= n+s i.e. matrix
[
ET CT ]T

is column full rank. Therefore, there is a row full rank matrix[
T N

]
∈ R(n+s)×(n+p) such that

[
T N

] [
ET CT ]T

= In+s,
namely

TE+ NC = In+s (5)

The model (4) can be further written as:

x(k + 1) = TAx(k)+ Ny(k + 1)+ TBu(k)+ Th(x(k))

+TDf a(k)+ TWω(k)

y(k) = Cx(k) (6)

After the above processing, the original model (2) is
transformed into the model (6) without sensor fault term.
Hence, an observer is designed for model (6) to estimate
system state and actuator fault simultaneously, which can
estimate the state, sensor fault and actuator fault of satellite
ACS.

III. UIO DESIGN FOR FAULTS ESTIMATION
The main purpose of this section is to provide a detailed
design procedure of the robust UIO that can be used to detect
and estimate actuator fault and sensor fault. In other words,
the main function of the observer is to provide information
about actuator fault and sensor fault.

Firstly, assuming the system is observable and the follow-
ing rank condition is satisfied:

rank(CTD) = rank(D) = q (7)

Substituting (6) into y(k+1) = Cx(k+1), it can be shown
that:

f a(k) = H
[
(Ip − CN)y(k + 1)− CTAx(k)− CTBu(k)

− CTh(x(k))− CTWω(k)] (8)

Under the assumption (7), matrix H is possible calculated
by

H = (CTD)+ =
[
(CTD)TCTD

]−1
(CTD)T (9)

Finally, by substituting (8) into (6), it can be shown that:

x(k + 1) = Āx(k)+B̄u(k)+Gh(x(k))+L̄y(k+1)+W̄ω(k)

(10)

where, Ā = GA, B̄ = GB, L̄ = (N−TDHCN+TDH), W̄ =
GW , G = (T − TDHCT ). In order to estimate the state x̂(k)
and fault f̂ a(k) of the system, the unknown input observer
structure is designed as follows:

x̂(k + 1) = Āx̂(k)+ B̄u(k)+ Gh(x̂(k))

+ L̄y(k + 1)+ ka(y(k)− Cx̂(k)) (11)

Consequently, the estimation of actuator fault is

f̂ a(k) = H
[
(Ip − CN)y(k + 1)− CTAx̂(k)

− CTBu(k)− CTh(x̂(k))
]

(12)

Note that the proposed observer can be presented in the
form of a neural network that is given in Fig. 2.

According to (11), the state estimation dynamic error is
given by

e(k + 1) = x(k+1)−x̂(k+1)=A1e(k)+Ḡs(k)+W̄ω(k)

(13)

where A1 = Ā− kaC, s(k) = h(x(k))− h(x̂(k)), W̄ = GW .
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FIGURE 2. Neural network-based observer.

Similarly, the fault estimation dynamic error ef (k) can be
defined as

ef (k) = f a(k)− f̂ a(k) = −HCT (Ae(k)+ s(k)+Wω(k))

(14)

Note that both e(k+1) and ef (k) are nonlinear with respect
to e(k). In order to transform them into LPV form, this article
proposes the following solutions.

First, it is assumed that vector α depends on vector of
measurable signal ρ ∈ Rl referred to scheduling signal,
according to

α = κ(ρ) (15)

where κ : Rs
→ Rr is continuous mapping. Let us define

a convex polytope as a convex hull of a finite number of
matrices N i

Co {N i, i = 1, . . . , r} ,

{
r∑
i=1

αiN i,

r∑
i=1

αi=1, αi ≥ 0

}
(16)

The time varying parameter α varies in a polytope 2,
which is assumed to be a set of vertices v1, . . . vr that is

α ∈ 2 = Co {v1, . . . , vr } (17)

Therefore, we can convert dynamic error (13) and (14) into
polytopic LPV form. Now, define the following time varying
parameter:

αi =


σ (E∗i0 x

∗(k))

E∗i0 x
∗(k)

E∗i0 x
∗(k) 6= 0

1 E∗i0 x
∗(k) = 0

(18)

where 1 ≤ i ≤ r denotes ith row of a respective matrix.
Then (2) can be written as:

x∗(k + 1) = A∗x∗(k)+ Bu(k)+ A02dE∗0x
∗(k) (19)

with 2d ∈ Rr×r is a diagonal matrix that contains the
variable parameters of the LPV model:

2d =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...

0 0 · · · αr

 (20)

According to the above derivation, we can get

h(x(k)) =
r∑
i=1

αiAi0E
i
0x(k) (21)

Then the state estimation dynamic error (13) can be
transformed into the following equation:

e(k + 1)= (Ã(α)−kaC)e(k)+W̄ω(k)=A2(α)e(k)+W̄ω(k)

(22)

where

Ã(α) = G(A+
r∑
i=1

αiAi0E
i
0) (23)

Similarly, the actuator fault estimation dynamic error (14)
can be rewritten as

ef (k) = −HCT (A3(α)e(k)+Wω(k))

A3(α) = A+
r∑
i=1

αiAi0E
i
0 (24)

The objective of further discussion is to design the
observer (11) and (12) in such a way that the state estimation
dynamic error e(k) is asymptotically convergent and the
following upper bound is guaranteed:∥∥ef (k)∥∥l2 ≤ ε ‖w‖l2 (25)

where ε > 0 is a prescribed disturbance attenuation level. On
the contrary to themethod proposed in the existing literatures,
ε should be achieved with respect to the fault estimation error
rather than the state estimation error.
Lemma 1: The following statements are equivalent:
(1) There exists X > 0 such that

VTXV −W < 0 (26)

(2) There exists X > 0 such that[
−W VTUT

UV X − U − UT

]
< 0 (27)

The subsequent theorem summarizes themain result of this
section:
Theorem 1: For a prescribed disturbance attenuation level

µ > 0 for the fault estimation error, the H∞ observer (11),
(12) design problem for the model (6) is solvable if there exist
matrices P > 0, U and N̄ such that the following constraints
are satisfied:AT3 (α)H1A3(α)− P AT3 (α)H1W AT2 (α)U

T

WTH1A3(α) WTH1W−µ2I W̄
T
UT

UA2(α) UW̄ P−U−UT

<0

(28)
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with

ka = U−1N̄ (29)

UA2(α) = UÃ(α)− N̄C (30)

where H1 = TTCTHTHCT .
Proof: The problem of robust UIO observer design is to

determine the gain matrix ka such that

lim
k→∞

e(k) = 0 for ω(k) = 0 (31)∥∥ef (k)∥∥l2 ≤ ε ‖ω‖l2 for ω(k) 6= 0, e0 = 0 (32)

In this article, it is sufficient to find a Lyapunov function
V (k) for k = 0, . . . ,∞ such that

1V (k)+ eTf (k)ef (k)− µ
2ωT (k)ω(k) < 0 (33)

where 1V (k) = V (k + 1) − V (k), µ > 0. On one hand,
if ω(k) = 0, then (33) boils down to

1V (k)+ eTf (k)ef (k) < 0 (34)

Hence 1V (k) < 0, which lead to (31). On the other hand,
if ω(k) 6= 0, then (33) yields

J =
∞∑
k=1

(1V (k)+eTf (k)ef (k)−µ
2ωT (k)ω(k)) < 0 (35)

which can be written as

J = −V (0)+
∞∑
k=1

eTf (k)ef (k))− µ
2
∞∑
k=1

ωT (k)ω(k) (36)

Knowing that V (0) = 0 for e(0) = 0, (36) leads to (32)
with ε = µ. Since the general idea of designing the robust
observer is given, the following Lyapunov function is given:

V (k) = eT (k)Pe(k), P > 0 (37)

As a consequence:

1V (k)+ eTf (k)ef (k)− µ
2ωT (k)ω(k)

= eT (k)
[
AT2 (α)PA2(α)+ AT3 (α)H1A3(α)− P

]
e(k)

+ eT (k)
[
AT2 (α)PW̄ + A

T
3 (α)H1W

]
ω(k)

+ωT (k)
[
W̄

T
PW̄ +WTH1W − µ2I

]
ω(k)

+ωT (k)
[
W̄

T
PA2(α)+WTH1A3(α)

]
e(k) < 0 (38)

By defining

ε(k) =
[
eT (k) ωT (k)

]T (39)

(38) can be equivalent to

1V (k)+eTf (k)ef (k) − µ
2ωT (k)ω(k) = εT (k)4ε(k) < 0

(40)

where4 is given by the equation (41), as shown at the bottom
of the next page.

FIGURE 3. Block diagram of observer design procedure.

FIGURE 4. (a) Actual output and network output for ϕ; (b) Actual output
and network output for θ ; (c) Actual output and network output for ψ .

Furthermore, the matrix (41) can be written as:[
AT2 (α)
W̄

T

]
P
[
A2(α) W̄

]
+

[
AT3 (α)H1A3(α)− P AT3 (α)H1W

WTH1A3(α) WTH1W − µ2I

]
(42)
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FIGURE 5. Evolution of 9(k).

According to Lemma 1, relation (40) is equivalent toAT3 (α)H1A3(α)− P AT3 (α)H1W AT2 (α)U
T

WTH1A3(α) WTH1W − µ2I W̄
T
UT

UA2(α) UW̄ P−U−UT

<0

(43)

which completes the proof.

Obviously, A+
r∑
i=1
αiAi0E

i
0 can be expressed as the convex

sum of matrices. Therefore, the problem comes down to
solving a set of LMIsAT3i(α)H1A3i(α)− P AT3i(α)H1W AT2i(α)U

T

WTH1A3i(α) WTH1W − µ2I W̄
T
UT

UA2i(α) UW̄ P−U−UT

<0,

i = 1, · · · , r (44)

Finally, the observer design problem can be reduced to the
following minimization task

µ∗ = min
µ>0,P>0,U,N̄

µ (45)

The design procedure of the actuator and sensor fault
observer is summarized as shown in the Fig. 3.

IV. FAULT DIAGNOSIS OF THE SATELLITE ACS
In order to make a further explanation of above design proce-
dure and verify the effectiveness of the proposed observer,
we perform a simulation on the satellite ACS. A typical
three-axis stable satellite is given by [32]–[34], the satellite
orbit angular velocity w0 = 0.0012rad/s and the moment
of inertial matrix Jm = diag {18.73, 20.77, 23.63} kg · m2.
Considering the scene of small angle change of satellite
attitude, the attitude angle

[
ϕ θ ψ

]T and angular velocity[
ϕ̇ θ̇ ψ̇

]T are selected as system state variables. The
simulation model is built in MATLAB/Simulink, and the

FIGURE 6. Evolution of
∥∥e(k)

∥∥.

disturbance matrix is assumed as

W =


0 0 0
0 0 0
0 0 0
0.5 0 0
0 0.5 0
0 0 0.5

 .

At the beginning of the development, the neural state space
model of the satellite ACS has to be obtained according to
the proposed methodology. The RNN inputs are the input
flow to the satellite system and the outputs are attitude angles
ϕ, θ, ψ . Training data are acquired from the open loop control
system simulated by sine function with the sampling time
Tp = 0.01s. Each set consists of 1500 samples. In this way,
training data can represent plant dynamics pretty well.

Training of the neural state space model is carried
out off-line for the maximum of 200 iterations using
Levenberg–Marquardt algorithm while the actual process
stopping after 70 iterations. It is clear that the satellite attitude
angles need to be measurable for the process of network
training and the matrix C∗ is not the part of the proposed
RNN, so C∗ needn’t to be updated. At the same time, above
constraint C∗ is a row full rank matrix. It is reasonably
assumed thatC∗ is a fixed-valuematrixC∗ =

[
Ip 0p×(n−p)

]
.

The model (1) is able to fit the nonlinear behavior of the
system by a proper selection of the model structure (the
number of nonlinear units represented by the number of row
r of E∗0). We consider the numbers of neurons in nonlinear
layer varying from 3 to 8 and carry out experimental training.
Through the trials, the optimal structure is found with r = 4
showing the best performance in simulations. As a result of
a training process, the following matrices of the neural state
space model were obtained A∗,B,A0 and E∗0, as shown at the
bottom of the 8th page.

Fig. 4 shows the actual outputs of the satellite attitude
system and the estimation outputs from the neural network

4 =

[
AT2 (α)PA2(α)+ AT3 (α)H1A3(α)− P AT2 (α)PW̄ + A

T
3 (α)H1W

W̄
T
PA2(α)+WTH1A3(α) W̄

T
PW̄ +WTH1W − µ2I

]
(41)
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FIGURE 7. Comparison of the real system state with state estimated by UIO and PIO. (a) Angle ϕ and its estimation; (b) Angle of θ and its
estimation; (c) Angle of ψ and its estimation; (d) Angular velocity ϕ̇ and its estimation; (e) Angular velocity θ̇ and its estimation; (f) Angular
velocity ψ̇ and its estimation.

model. As it can be seen, the proposed neural state space
model has an appropriate approximation property and can
reflect the real system with relatively high accuracy.

Assume that actuator fault occurs in θ and ψ channels,
and sensor fault occurs in ϕ channel. For the fault estimation
purposes, we choose

fs = cos(kTp) (46)

and

fa=

{
0, if k<1000 (i.e. no actuator fault)
0.005(kTp−10), if 10000 ≤k (i.e. actuator fault)

(47)

From the above known matrices, it can be calculated that
the matrices T and N are respectively

T =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0


, N=



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0


.

According to the procedure of the UIO design for the
actuator and sensor faults described above, the following
values are obtained by solving the LMIs conditions (28), (29),
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(30) using the LMI-toolbox in MATLAB

µ = 0.4852, ka =



−0.0509 −0.1212 0.1967
0.0110 0.0688 −0.1039
−0.055 −0.3440 0.5196
0.0014 0.0252 −0.0296
0.0001 0.0002 −0.0011
0.0052 0.0278 −0.0444
0.0509 0.1212 −0.1967


.

The initial conditions for the model (6) and the observer
are:

x(0) = [0.0847 −0.1635 0.1248 −0.0416

0.0484 −0.0556 0.05]T

and

x̂(0) =
[
0 0 0 0 0 0 0

]T
,

while the input is the ACS feedback control signal with kp =
0.5I3, kd = 6I3.

First, let us consider the case x̂(0) = x(0) when for
e(0) = 0. Fig. 5 clearly shows that9(k) < 0 has always been
negative, where9(k) = 1V (k)+eTf (k)ef (k)−µ

2ωT (k)ω(k)
so the condition (32) is satisfied. Then, it is assumed that
ω(k) = 0 and x̂(0) 6= x(0). Fig. 6 clearly indicates that
e(k)→ 0 as k increases i.e. (31) is satisfied as well.

Fig. 7 shows the corresponding tracking performance for
system’s attitude angle and angular velocity respectively in
case of ω(k) 6= 0 and x̂(0) 6= x(0). In order to show

FIGURE 8. Comparison of the real system fault with fault estimated by
UIO and PIO. (a) Actuator fault f a and its estimation; (b) sensor fault f s
and its estimation.

the performance of the proposed approach, the system state
estimation results obtained by the traditional proportional

A∗ =



−0.1016 −0.1211 0.1966 −0.3097 −0.7852 −0.4013
−0.0027 −0.0036 0.0087 −0.0003 0.0011 0.0074
−0.1148 −0.3585 0.5422 0.0342 0.0668 −0.0304
0.0027 0.0252 −0.0296 0.0041 −0.0078 −0.0036
0.0001 0.0002 −0.0011 −0.0018 0.0072 −0.0008
0.0103 0.0278 −0.0444 0.0035 −0.0101 0.0020


,

B =



1.1482 −0.4831 −0.9096
0.8168 0.3115 −0.9415
1.1022 −0.1673 −0.7521
−0.2629 0.0148 0.0790
−0.0686 −0.1907 0.0785
−0.0908 0.0145 −0.1047


,

A0 =



−0.0265 −0.0219 −0.0271 −0.0106
0.0003 −0.0101 −0.0097 −0.0067
−0.0254 −0.0362 −0.0374 −0.0159
−0.0012 0.0061 0.0005 −0.0001
−0.0019 −0.0019 −0.0012 0.0070
−0.0056 0.0047 0.0049 0.0058


,

E∗0 =


0.0023 0.0124 0.0114 0.0054 0.0024 −0.0008
0.0138 0.0101 −0.0118 0.0043 0.0057 −0.0005
0.0052 0.0075 −0.0052 0.0031 −0.0013 0.0053
0.0136 0.0040 −0.0070 −0.0042 −0.0089 −0.0054

 .
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integral observer (PIO) is also presented in Fig. 7. Note that
the upper left of the figure brings up the zoomed part of the
initial values.

In the same demonstration method. Fig. 8 presents the
actuator and sensor fault values of satellite ACS and their
estimated values via PIO and UIO. It is shown clearly
in the figures, despite the presence of faults and disturbance,
the proposed and traditional methods are both able to estimate
the system state and different faults when two types of fault
occur at the same time. However, the robust UIO shows the
better performance than PIO. It has lower overshoot and faster
convergence.

V. CONCLUSION
For the condition that the precise model of ACS cannot
be obtained, a robust UIO design method based on RNN
is proposed which can estimate the system state, actuator
fault and sensor fault simultaneously. Firstly, the RNN is
trained through system input and output to obtain weight
matrices. With capability of generalization, the neural state
space can be adaptive to the minor changes of real system.
Then, we can expand the state vectors of the system to
transform the neural state space model into a generalized
nonlinear system without sensor fault term. Furthermore,
a combination of the generalized observer scheme with
the robust H∞ LPV approach is developed to enhance
the robustness of fault diagnosis. This method enables the
observer to simul-taneously estimate state and actuator fault.
Besides it can minimize the effect of exogenous disturbances.
In the design process, the dynamic error is transformed
into the discrete time polytopic LPV form, and the stability
condition of the observer is analyzed by Lyapunov theory.
Finally, the effectiveness of the proposedmethod is illustrated
through simulations to solve the fault and state estimation
for the ACS. The natural extension of the proposed approach
is to design FTC strategy according to the obtained fault
estimation results.
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