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ABSTRACT Reconstruction of complex geological surface is widely used in oil and gas exploration, geolog-
ical modeling, geological structure analysis, and other fields. It is an important basis for data visualization
and visual analysis in these fields. The complexity of geological structures, the inaccuracy and sparsity
of seismic interpretation data, and the lack of tectonic morphological information can lead to uncertainty in
geological surface reconstruction. The existing geological surface uncertainty characterization and uncertain
reconstruction methods have a shortcoming in balancing the interpolation error of high-confidence samples
andmodel structure risk. Based on support vector regression (SVR), amethodwith confidence constraints for
uncertainty characterization and the modeling of geological surfaces is proposed in this article. The proposed
method minimizes the structural risk by adding a regularization term representing the model complexity,
integrates high-confidence samples, such as drilling data, based on confidence constraints, and utilizes well
path points by assigning appropriate inequality constraints to the corresponding prediction points. The results
based on a real-world fault data set show that the uncertainty envelopes and fault realizations generated by the
proposed method are constrained by well observations and well paths, effectively reducing the uncertainty.

INDEX TERMS Confidence, envelope, SVR, uncertainty.

I. INTRODUCTION
In the field of petroleum exploration, geological surfaces are
reconstructed based on drilling data, seismic interpretation
data, and various constraints representing regional geological
knowledge [1]. Such reconstructions are the basis for estab-
lishing sequence and reservoir models. A three-dimension
structural model based on geological surface reconstruction
can reflect the spatial distribution and shape of geological
interfaces/objects, such as horizons and faults, and play vital
roles in understanding underground structures, performing
reservoir prediction and planning drilling processes.

However, due to the complexity of geological structures,
the inaccuracy and sparsity of seismic interpretation data,
the lack of tectonic and morphological information, and the
improper selection of reconstruction algorithms, there is often
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significant uncertainty in geological surface reconstruction.
This uncertainty makes it extremely difficult to construct
real geological surface from seismic interpretation data and
well observations [2]. Additionally, uncertainty can have a
negative impact on structural analysis, reserve calculations
and drilling strategies [3]. Therefore, effectively characteriz-
ing the uncertainty of geological surfaces, strengthening the
research on the uncertainty of geological surface reconstruc-
tion and minimizing this uncertainty are of great significance
in reducing the risks associated with petroleum exploration
and development.

To date, many methods have been proposed to characterize
and model the uncertainty of geological surfaces. [4]–[6]
generated multiple potential realizations to evaluate the
uncertainty by randomly adjusting the parameters that char-
acterize a geological surface. Although methods that perturb
the parameters can be effectively applied to explore the uncer-
tainty of a geological surface, they lose some characteristics
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of the corresponding seismic interpretation data and well
data; thus, greater uncertainty may be introduced. Refer-
ences [2], [3], [7]–[9] treated the location of sample points as
random variables and generated multiple geological surface
realizations by varying the initial values of these variables
or by randomly sampling the distributions of these random
variables. Most of these uncertainty modeling methods are
based on the kriging technique [10] and discrete smooth inter-
polation (DSI) [11]. Neither of these two interpolation meth-
ods uses the structural risk minimization principle. Recently,
a geological surface uncertainty modeling method combining
prior information and a Bayesian reasoning framework has
emerged [12], [13]. This approach integrates additional infor-
mation into the modeling steps and effectively reduces the
uncertainty. However, it is difficult to constrain a geological
surface with dense hard data in the Bayesian framework.

This article uses SVR [14], [15] for geological surface
uncertainty characterization and reconstruction. Compared
to other regression models, SVR adopts the structure risk
minimization principle, thus providing better generalization
ability. Reference [16] noted that when applied to complex
nonlinear systems, the performance of SVR is better than
kriging technique, radial basis function interpolation and
other methods. Recently, [17]–[20] incorporated the concept
of support vector interval regression into uncertainty analysis.
In addition, multioutput SVR [21]–[23] is also a common
uncertainty analysis method. The above uncertainty analy-
sis methods based on SVR regard sample points with high
confidence as points in insensitive band or outliers; thus,
they cannot effectively utilize the information associated with
these sample points. In fact, the effective integration of high-
confidence sample points is an important issue in uncertainty
characterization/modeling and can effectively reduce uncer-
tainty.

In this context, this article proposes a method for uncer-
tainty representation and the reconstruction of geological
surface based on SVR with confidence constraints. This
method uses two nonparallel functions to identify the lower
and upper envelopes that characterize the uncertainty of the
studied geological surface and restrict the location and shape
of the subsequent simulated geological surface realizations.
By adding fuzzy contact constraints [9] representing the
confidence of the sample points output to the SVR model,
the integration of high-confidence sample points, such as
drilling data, can be performed. The well path points can be
integrated by specifying an appropriate inequality constraint
for the corresponding prediction points. In addition, based
on classical ε-SVR, this article generates multiple geological
surface realizations to explore the uncertainty of the data by
treating the generated envelopes as the boundary constraints
and randomly sampling the prior distribution of the sample
point output.

II. BACKGROUND
A concise description of ε-SVR is given in this section.
Suppose that the training set is denoted by (A,Y), where

A ∈ Rn×l denotes the input sample matrix with row vec-
tors Ai = (Ai1,Ai2, · · · ,Ail), i = 1, 2, · · · , n represent-
ing the input of the ith training sample, n is the number
of the sample points, and l is the dimension of the input.
Y = (y1; y2; · · · ; yn) denotes the output sampling value
vector of the training samples, where yi ∈ R, i = 1, 2, · · · , n.

SVR first maps the data x ∈ Rl into feature space H via
a nonlinear function ϕ : Rl

→ H. In feature space H, SVR
seeks to estimate a regression function

y = f (x) = ϕT (x)w+ b, (1)

where w ∈ Rl and b ∈ R. To tolerate a small error in fitting
the given data, the ε-insensitive loss function

Lε(f ) =
n∑
i=1

|yi − f (Ai)|ε, (2)

that measures empirical risk is used, where the following
relation holds:

|yi − f (Ai)|ε =

{
|yi − f (Ai)| − ε if |yi − f (Ai)| > ε

0 otherwise.

(3)

The ε-insensitive loss function sets an insensitive band
around the sample data, within which errors are ignored.
Because SVR implements the structural risk minimization
principle by introducing a regularization term 1

2 ‖w‖
2 that

characterizes the complexity of the model, SVR yields excel-
lent generalization performance. Moreover, 1

2 ‖w‖
2 main-

tains the flatness of the regression function. SVR can be
expressed as the following constraint optimization problem:

min
w,b,ξi,ξ∗i

1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i )

s.t.


yi − ϕ(Ai)w−b ≤ ε + ξi
ϕ(Ai)w+ b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, 2, · · · , n,

(4)

where ξi, ξ∗i , i = 1, 2, · · · , n are slack variables that measure
the error, and C > 0 is a parameter determining the trade-off
between the closeness of the solution to the training points
and its smoothness. A large C generates a model with high
complexity and low training error, and a small C results in a
simple SVR structure with higher training error.

Introducing the Lagrange multipliers λi and λ∗i on the
constraints, the dual problem of Eq. (4) is as follows:

min
λi,λ
∗
i

L =
1
2

n∑
i=1

n∑
j=1

(λi − λ∗i )(λj − λ
∗
j )〈ϕ(Ai), ϕ(Aj)〉

+ ε

n∑
i=1

(λi + λ∗i )−
n∑
i=1

(λi − λ∗i )yi

s.t.


n∑
i=1

(λi − λ∗i ) = 0

0 ≤ λi ≤ C, i = 1, 2, · · · , n
0 ≤ λ∗i ≤ C, i = 1, 2, · · · , n.

(5)
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By solving the above problems, the appropriate regression
function can be obtained.

According to the Mercer theorem [24], the inner product in
H can be represented by a kernel function, that is, k(Ai,Aj) =
〈ϕ(Ai), ϕ(Aj)〉 = ϕ(Ai)ϕT (Aj), instead of defining ϕ explic-
itly. Common kernel functions for regression are as follows:
k(Ai,Aj) = 〈ϕ(Ai), ϕ(Aj)〉 (linear)
k(Ai,Aj) = (〈ϕ(Ai), ϕ(Aj)〉 + 1)d (d-degree polynomial)

k(Ai,Aj) = exp(−‖Ai−Aj‖
2

2σ 2
) (Gaussian)

III. METHODS
Due to the characteristics of SVR, the current uncertainty
modeling methods based on SVR regard sample points with
high confidence as points in insensitive band or outliers; thus,
the information associated with those points cannot be effec-
tively utilized. Seismic interpretation data and well data are
often used in geologic surface uncertainty characterization
and reconstruction. Although well data are rare, they play a
vital role in reducing the uncertainty of the geological surface.
Here, two types of well data are used: well paths and drilling
data.Well path points fall on awell path that does not intersect
the studied geological surface, and drilling data are observa-
tions of the geological surface in a well. To effectively inte-
grate well data, this article propose a confidence-constrained
support vector interval regression (CCSVIR) model that is
used to generate envelopes representing the uncertainty of
geological surface. Based on this framework, the uncertain
reconstruction of geological surface can be performed.

A. CCSVIR FOR CHARACTERIZING GEOLOGICAL
SURFACE UNCERTAINTY
The uncertainty in the location of a geological surface is
represented by uncertainty envelopes. The envelope defined
by two surfaces is used to specify the specific region around
the studied geological surface, and it restricts the positions
of the geological surface realizations [3], [25]. Therefore,
in CCSVIR, the objective is to find two functions ϕT (x)w+b
and ϕT (x)u + d , such that the uncertainty envelopes can be
expressed as follows:

fup(x) = (ϕT (x)w+ b)+ (ϕT (x)u+ d), (6)

fbl(x) = (ϕT (x)w+ b)− (ϕT (x)u+ d). (7)

Here, ϕT (x)w + b and ϕT (x)u + d are called the center and
radius functions, respectively.

Suppose that S = {(Ai, yi) | i = 1, 2, · · · , n} is the train-
ing sample set of seismic interpretation data and drilling data,
whereAi ∈ R2 is the input, and yi ∈ R is the output sampling
value of Ai. Typically, the output of a sample point is inaccu-
rate and has a certain distribution8i. The fuzzy information,
which suggests that each sample output is approximately
equal to the sampling value, can be expressed as the following
chance constraint:

Pr {yi − δ ≤ ϕ(Ai)w+ b ≤ yi + δ} ≥ αi, i = 1, · · · , n,

(8)

where δ is a pregiven positive number and 0 ≤ αi ≤ 1 is a
predetermined confidence. δ and αi depend on the reliability
of the output sampling value of the training sample. The
higher the reliability is, the smaller δ is, and the greater the
confidence of αi. If the output sampling value of the training
sample is accurate, then δ = 0 and αi = 1. Reference [9]
noted that if the output of training samples displays a sym-
metrical distribution 8i, then Eq. (8) can be converted to a
deterministic interval constraint

y2i ≤ ϕ(Ai)w+ b ≤ y1i, i = 1, · · · , n, (9)

where y2i = sup
{
k | k = 8−1i

(
1−β
2

)}
, y1i = 2 yi − y2i,

and β is a probability value that is very close to 1. [y2i, y1i]
is called the uncertainty interval of the sample output, and
(δ, αi, β) are the parameters of the uncertainty interval. The
closer β is to 1, the less likely it is for the output of sample
points to fall outside the uncertainty interval. In geological
surface uncertainty characterization, the uncertainty interval
of the sample output should be within the envelopes to the
greatest extent possible, as shown in the following relations:

(ϕ(Ai)w+ b)+ (ϕ(Ai)u+ d) ≥ y1i − ξi, i = 1, · · · , n,

(10)

(ϕ(Ai)w+ b)− (ϕ(Ai)u+ d) ≤ y2i + ξ∗i , i = 1, · · · , n.

(11)

The slack variables ξi and ξ∗i are used to capture the
error of the uncertainty interval outside the envelopes.
If y1i = y2i = yi, the above two constraints represent the
parameter-insensitive loss function in the v-SVIRN model
proposed by [19].

When performing uncertainty characterization and recon-
structing geological surface, although the locations of geolog-
ical surfaces are uncertain, such processes are usually subject
to certain restrictions. For example, the position of a horizon
is limited by the positions of the horizons below and above it.
Therefore, the output of a sample point has a lower bound lbi
and an upper bound ubi. [lbi, ubi] is called the bound interval
of a sample point output. The size of the bound interval of a
high-confidence sample point is usually very small.

In addition, a geological surface is usually constrained
along well paths. These constraints make the simulated
surface more reasonable and realistic. The well path
points represent location known to be on a particu-
lar side of the studied geological surface [3]. Now let
B = (A1;A2; · · · ;An;A

path
1 ; Apath

2 ; · · · ;A
path
m ), where

Apath
i , i = 1, · · · ,m are the inputs of the well paths. If the

outputs of the well path points are ypathi , i = 1, · · · ,m,
then a certain inequality constraint is added to the output for
the predicted points corresponding to the well path points to
ensure that the position of the geological surface is correctly
predicted. For example, if the well path points are located at
the footwall of a fault, then the following Eq. holds:

(ϕ(Apath
i )w+ b)− (ϕ(Apath

i )u+ d) ≥ ypathi , i = 1, · · · ,m.

(12)
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If the well path point is located at the hanging wall of a fault,
then the following relation is valid:

(ϕ(Apath
i )w+ b)+ (ϕ(Apath

i )u+ d) ≤ ypathi , i = 1, · · · ,m.

(13)

In summary, the following requirements should be applied
when determining uncertainty envelopes fup(x) and fbl(x)
based on CCSVIR:

1) The envelopes should contain the points
(Bi, y1i), i = 1, · · · , n and
(Bi, y2i), i = 1, · · · , n to the greatest extent possible:

(ϕ(Bi)w+ b)+ (ϕ(Bi)u+ d) ≥ y1i − ξi,

i = 1, · · · , n, (14)

(ϕ(Bi)w+ b)− (ϕ(Bi)u+ d) ≤ y2i + ξ∗i ,

i = 1, · · · , n. (15)

2) The envelopes should be within the bound interval of
the training sample point outputs and on the correct side
of the well path points:

(ϕ(Bi)w+ b)+ (ϕ(Bi)u+ d) ≤ ubi,

i = 1, · · · , n+ m, (16)

(ϕ(Bi)w+ b)− (ϕ(Bi)u+ d) ≥ lbi,

i = 1, · · · , n+ m. (17)

If the well path point is on the upper or right
side of the geological surface, then the following
applies:

ubn+i = ypathi , lbn+i = −∞, i = 1, · · · ,m. (18)

If the well path point is on the lower or left
side of the geological surface, then the following
applies:

lbn+i = ypathi , ubn+i = +∞, i = 1, · · · ,m. (19)

3) The upper envelope should be above or to the right of
the lower envelope, that is, fup(x) ≥ fbl(x), and the
following applies:

(ϕ(Bi)u+ d) ≥ 0, i = 1, · · · , n+ m. (20)

Near a sample point with high confidence, (ϕ(Bi)u +
d) may be a negative number very close to 0 due
to the accuracy of the computation. In such cases,
an unreasonable situation may occur in which the
upper envelope is below or left of the lower enve-
lope, that is, the radius function is negative (as shown
in Fig. 3). To avoid this situation, Eq. (20) can be
replaced with

(ϕ(Bi)u+ d) ≥ γ, i = 1, · · · , n+ m, (21)

where γ is a small positive number.

Therefore, the CCSVIR model used to characterize the
uncertainty of a geological surface can be expressed using
the follow quadratic programming problem (QPP):

min
w,u,b,d,ξi,ξ∗i

1
2
‖w‖2 +

1
2
‖u‖2 + C

n∑
i=1

(ξi + ξ∗i )

s.t.



(ϕ(Bi)w+ b)+ (ϕ(Bi)u+ d) ≥ y1i − ξi,
i = 1, · · · , n

(ϕ(Bi)w+ b)− (ϕ(Bi)u+ d) ≤ y2i + ξ∗i ,
i = 1, · · · , n

(ϕ(Bi)w+ b)+ (ϕ(Bi)u+ d) ≤ ubi,
i = 1, · · · , n+ m

(ϕ(Bi)w+ b)− (ϕ(Bi)u+ d) ≥ lbi,
i = 1, · · · , n+ m

(ϕ(Bi)u+ d) ≥ γ,
i = 1, · · · , n+ m

ξi, ξ
∗
i ≥ 0,
i = 1, · · · , n,

(22)

where 1
2 ‖w‖

2
+

1
2 ‖u‖

2 describes the CCSVIR complexity.
CCSVIR adopts the structure risk minimization principle,
which states that to obtain a small risk, the trade-off between
the model complexity and training error should be controlled
by the parameter C>0, which is selected in advance. To solve
Eq. (22), the dual QPP of CCSVIR must be obtained.
Theorem 1: The dual problem of CCSVIR is

max L = −
1
2

n∑
i=1

n∑
j=1

λ−1iλ
−

1jKij −
n∑
i=1

n+m∑
j=1

λ−1iλ
−

2jKij

−
1
2

n+m∑
i=1

n+m∑
j=1

λ−2iλ
−

2jKij −
1
2

n∑
i=1

n∑
j=1

λ+1iλ
+

1jKij

+

n∑
i=1

n+m∑
j=1

λ+1iλ
+

2jKij −
1
2

n+m∑
i=1

n+m∑
j=1

λ+2iλ
+

2jKij

−

n∑
i=1

n+m∑
j=1

λ+1iλ3jKij +
n+m∑
i=1

n+m∑
j=1

λ+2iλ3jKij

−
1
2

n+m∑
i=1

n+m∑
j=1

λ3iλ3jKij +
n∑
i=1

λ1iy1i −
n∑
i=1

λ∗1iy2i

+

n+m∑
i=1

λ2ilbi −
n+m∑
i=1

λ∗2iubi +
n+m∑
i=1

λ3iγ

s.t.



n∑
i=1

λ−1i +

n+m∑
i=1

λ−2i = 0

n∑
i=1

λ+1i −

n+m∑
i=1

λ+2i +

n+m∑
i=1

λ3i = 0

0 ≤ λ1i ≤ C, i = 1, · · · , n
0 ≤ λ∗1i ≤ C, i = 1, · · · , n
λ2i ≥ 0, λ∗2i ≥ 0, λ3i ≥ 0, i = 1, · · · , n+ m,

(23)
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where λ−1i = λ1i − λ
∗

1i, λ
+

1i = λ1i + λ
∗

1i, λ
−

2i = λ2i − λ
∗

2i,
λ+2i = λ2i + λ

∗

2i, and Kij = k(Bi,Bj) = 〈ϕ(Bi), ϕ(Bj)〉. The
proof of Theorem 1 is given in Appendix.

The dual problem (23) is a convex optimization problem,
and it has a global optimal solution. However, the optimal
objective function value of the dual problem is the lower
bound of that of the primal problem. The proof process of
the following theorem shows that the objective function value
of (22) is the same as that of (23). Therefore, under the strong
duality theorem [26], w and u corresponding to the optimal
solution of the dual (23) are the optimal solutions of the
primal (22).
Theorem 2: If λ̄1 = (λ̄11, λ̄12, · · · , λ̄1n)T , λ̄

∗

1 =

(λ̄∗11, λ̄
∗

12, · · · , λ̄
∗

1n)
T , λ̄2 = (λ̄21, λ̄22, · · · , λ̄2,n+m)T , λ̄

∗

2 =

(λ̄∗21, λ̄
∗

22, · · · , λ̄
∗

2,n+m)
T , and λ̄3 = (λ̄31, λ̄32, · · · , λ̄3,n+m)T

are optimal solutions of (23), then the optimal solution of the
primal problem (22) with respect tow and u can be expressed
as follows:

w̄ =
n∑
i=1

λ̄−1iϕ
T (Bi)+

n+m∑
i=1

λ̄−2iϕ
T (Bi), (24)

ū =
n∑
i=1

λ̄+1iϕ
T (Bi)−

n+m∑
i=1

λ̄+2iϕ
T (Bi)+

n+m∑
i=1

λ̄3iϕ
T (Bi), (25)

where λ̄−1i = λ̄1i − λ̄
∗

1i, λ̄
+

1i = λ̄1i + λ̄
∗

1i, λ̄
−

2i = λ̄2i − λ̄
∗

2i,
and λ̄+2i = λ̄2i + λ̄

∗

2i. For some λ̄1i, λ̄∗1j ∈ (0,C), the optimal
solution of CCSVIR (22) with respect to b and d can be
computed as follows:

b̄ =
1
2
(y1i + y2j − ϕ(Bi)w̄− ϕ(Bj)w̄− ϕ(Bi)ū+ ϕ(Bj)ū),

(26)

d̄ =
1
2
(y1i − y2j − ϕ(Bi)w̄+ ϕ(Bj)w̄− ϕ(Bi)ū− ϕ(Bj)ū).

(27)

The proof of Theorem 2 is given in Appendix A.
Theorem 2 shows that the upper and lower envelopes con-

structed by the proposed CCSVIR method are as follows:

fup(x) = (
n∑
i=1

λ̄−1ik(Bi, x
T )+

n+m∑
i=1

λ̄−2ik(Bi, x
T )+ b̄)

+ (
n∑
i=1

λ̄+1ik(Bi, x
T )−

n+m∑
i=1

λ̄+2ik(Bi, x
T )

+

n+m∑
i=1

λ̄3ik(Bi, xT )+ d̄), (28)

fbl(x) = (
n∑
i=1

λ̄−1ik(Bi, x
T )+

n+m∑
i=1

λ̄−2ik(Bi, x
T )+ b̄)

− (
n∑
i=1

λ̄+1ik(Bi, x
T )−

n+m∑
i=1

λ̄+2ik(Bi, x
T )

+

n+m∑
i=1

λ̄3ik(Bi, xT )+ d̄). (29)

The envelopes generated by CCSVIR can effectively char-
acterize the uncertainty of the geological surface and divide
the simulation space of the geological surface into two sub-
spaces, thus restricting the location and shape of the subse-
quent simulated geological surface realizations.

B. UNCERTAIN RECONSTRUCTION OF
GEOLOGICAL SURFACES
A model is proposed for the uncertain reconstruction of
geological surface based on classical ε-SVR. This model
treats the envelopes generated by CCSVIR as the boundary
constraints, which keeps the multiple realizations of the geo-
logical surface within the envelopes and constrained by well
paths and drilling data.

For seismic interpretation data and drilling data points,
y∗i is randomly selected from the distribution of 8i of the
training sample output. (Bi, y∗i ), i = 1, · · · , n represents
the training samples used in the uncertain reconstruction of
a geological surface. The goal of uncertain reconstruction is
to find a surface g(x) = ϕT (x)v+e that is fitted to the training
sample points (Bi, y∗i ), i = 1, · · · , n andwithin the envelopes
generated by CCSVIR. Therefore, themodel for the uncertain
reconstruction of geological surface is as follows:

min
v,e,ξi,ξ∗i

1
2
‖v‖2 + C

n∑
i=1

(ξi + ξ∗i )

s.t.



y∗i − ϕ(Bi)v−e ≤ ε + ξi, i = 1, · · · , n
ϕ(Bi)v+ e− y∗i ≤ ε + ξ

∗
i , i = 1, · · · , n

ϕ(Bi)v+ e ≤ fup(Bi), i = 1, · · · , n+ m
ϕ(Bi)v+ e ≥ fbl(Bi), i = 1, · · · , n+ m
ξi, ξ

∗
i ≥ 0, i = 1, · · · , n,

(30)

where fup and fbl are the upper and lower envelopes intro-
duced in Section 3.1, respectively. The model complexity
is characterized by 1

2 ‖v‖
2. The positive slack variables ξi

and ξ∗i are responsible for penalizing errors greater than ε.
Eq. (30) employs the structural risk minimization principle.
By introducing the Lagrangian multiplier technique, the dual
problem for (30) can be obtained as follows:

min L =
1
2

n∑
i=1

n∑
j=1

λ−1iλ
−

1jKij +
n∑
i=1

n+m∑
j=1

λ−1iλ
−

2jKij

+
1
2

n+m∑
i=1

n+m∑
j=1

λ−2iλ
−

2jKij −
n∑
i=1

λ−1iy
∗
i +

n∑
i=1

λ+1iε

−

n+m∑
i=1

λ2ifbl(Bi)+
n+m∑
i=1

λ∗2ifup(Bi)

s.t.



n∑
i=1

λ−1i +

n+m∑
i=1

λ−2i = 0

0 ≤ λ1i ≤ C, i = 1, · · · , n
0 ≤ λ∗1i ≤ C, i = 1, · · · , n
λ2i ≥ 0, λ∗2i ≥ 0, i = 1, · · · , n+ m.

(31)
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FIGURE 1. Initial envelopes (purple) generated from only 799 fault points and a fault realization (orange) obtained from the average of the upper and
lower envelopes. (a) The transparency of the fault realization is set to 1, and that of the envelopes is set to 0.3. (b) The transparency setting is
opposite that in (a). (c) Horizontal intersection.

FIGURE 2. Updated model with four added well path points (red dots). (a) The fault envelopes (turquoise, transparency is set to 0.3) and a fault
realization (orange, transparency is set to 1). (b) The transparency setting is opposite that in (a). (c) Horizontal intersection, the purple lines
represent the initial envelopes.

The above dual problem is a convex optimization problem
with a global optimal solution. The optimal solution of (30)
can be obtained by the optimal solution of (31) according to
Theorem 3.
Theorem 3: Suppose λ̄1 = (λ̄11, λ̄12, · · · , λ̄1n)T , λ̄

∗

1 =

(λ̄∗11, λ̄
∗

12, · · · , λ̄
∗

1n)
T , λ̄2 = (λ̄21, λ̄22, · · · , λ̄2,n+m)T , and

λ̄
∗

2 = (λ̄∗21, λ̄
∗

22, · · · , λ̄
∗

2,n+m)
T are optimal solutions of the

dual problem (31). In this case, the optimal solution of (30)
with respect to v and e can be expressed as follows:

v̄ =
n∑
i=1

λ̄−1iϕ
T (Bi)+

n+m∑
i=1

λ̄−2iϕ
T (Bi), (32)

ē =

{
y∗i − ϕ(Bi)v̄− ε for λ̄1i ∈ (0,C)
y∗i − ϕ(Bi)v̄+ ε for λ̄∗1i ∈ (0,C).

(33)

The proof of Theorem 3 is similar to the proof of Theorem 2.
Theorem 3 shows that the geological surface realization

fitted to the random sample points (Bi, y∗i ), i = 1, · · · , n is
as follows:

g(x) =
n∑
i=1

λ̄−1ik(Bi, x
T )+

n+m∑
i=1

λ̄−2ik(Bi, x
T )+ ē. (34)

By randomly selecting different y∗i values from the distribu-
tion of 8i, multiple geological surface realizations can be

FIGURE 3. Due to the accuracy of the computations, the upper envelope
is below or to the left of the lower envelope (as shown in the red area).

obtained, thus effectively exploring the uncertainty space of
the data.

IV. EXPERIMENTS AND RESULTS
To investigate the effectiveness of the proposed algorithms
in this article, they are applied to a real fault data set,
which consists of 15 fault sticks (containing 799 discrete
points) obtained by seismic interpretation, 4 well path points
and 2 drilling data points. Because the x-coordinates of
the 799 fault points are uncertain, the x-coordinates xi,
i = 1, · · · , 801 of these fault points and drilling data points
are taken as the output sampling values. It is assumed that
the output of sample points follows a normal distribution,
with mean xi, i = 1, · · · , 801. The bound interval length of
the fault points is set to 460 m, and the parameters (δ, αi, β)
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FIGURE 4. Updated envelopes and a fault realization with four added well path points (red dots) and two added drilling data points (black dot). (a) The
transparency of the envelopes (turquoise) and the fault realization (orange) is set to 0.3 and 1, respectively. (b) The transparency setting is opposite
that in (a). (c) Horizontal intersection, where the initial envelopes are indicated by the purple lines.

FIGURE 5. Multiple fault realizations (burlywood, transparency is set to 1) generated by Eq. (30) with envelopes (turquoise, transparency is set to 0.3)
generated by CCSVIR as the boundary constraints. The fault realizations corresponding to the 2nd, 15th, 50th, 85th and 98th quantiles of the distribution
of the output are shown in (a), (b), (c), (d) and (e), respectively. (f) Horizontal intersection.

of the fault point are (85, 0.8, 0.999). Here, the given length
of the bound interval and the parameter δ of the uncertainty
interval of the fault points are several times larger than the
actual values to provide clear results. In addition, a Gaussian
kernel is used in the following experiments.

Fig. 1 shows the initial fault envelopes generated by
CCSVIR from only 799 fault points. The parameters
(C, σ, γ ) of CCSVIR are chosen to be (200, 1200, 0). There
are no high-confidence training data, such as drilling data
points. Therefore, ϕ(Bi)u+ d is not a negative number close
to zero, and γ is set to zero. The initial envelopes generated
by CCSVIR are shown in purple. The fault realization which

shown in orange is obtained from the average of the upper
and lower envelopes (the fault realizations in both Fig. 2 and
Fig. 4 are obtained in this way).

Then, four well path points are added to the model. The
parameters (C, σ, γ ) are the same as before. Fig. 2 shows the
updated envelopes where four well path points are added with
red dots. The updated model shows that the well path points
can partly reduce the uncertainty.

Finally, two drilling data points were added to study the
influence of drilling data on the uncertainty of the geolog-
ical surface. The parameters of the uncertainty interval of
drilling data points are set to (4.5, 0.98, 0.999). As discussed
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in Section 3.1, the addition of drilling data points may result
in an unreasonable situation in which the upper envelope is
below or to the left of the lower envelope. To avoid this situa-
tion, the parameter γ must be set to a small positive number.
Fig. 4 shows the updated envelopes where the well path points
(red dot) and the drilling data points (black dot) are added,
with the parameters (C, σ, γ ) are set to (200, 1200, 5.5) and
the bound interval length of the drilling data points is set to
5.5m. The results show that the drilling data points are impor-
tant for reducing the uncertainty. Moreover, the proposed
CCSVIR method can effectively characterize uncertainty of
geological surface and integrate various modeling data.

Fig. 5 shows the multiple fault realizations generated by
the proposed uncertain reconstruction model (Eq. (30)) with
the envelopes generated in Fig. 4 as the boundary con-
straints. The parameters (C, σ, ε) of Eq. (30) are chosen to
be (200, 1200, 30). As illustrated by the results, the pro-
posed uncertain reconstruction method yields plausible fault
realizations considering all the modeling data and without
bullseye effects near the drilling data points.

V. CONCLUSION
Uncertainty characterization and the uncertain reconstruction
of geological surfaces play increasingly important roles in
oil and gas exploration because they provide context for risk
analysis.Most existingmethods are based on probability field
simulations and traditional interpolation methods, and their
generalization ability is poor. The method proposed in this
article employs the structural riskminimization principle, and
it surpasses existing methods in terms of generalization capa-
bility. The proposed method effectively integrates seismic
interpretation data and well data by introducing confidence
and boundary constraints. Thus, the generated envelopes and
geological surface realizations are constrained by drilling
data points and along well paths. Moreover, because of the
characteristics of the SVR approach, the resulting uncertainty
envelopes and geological surface realizations of the devel-
oped methods are not affected by outliers. In the future, more
constraints that characterize geological rules, such as length
and curvature, can be added to the model to minimize uncer-
tainty and obtain more realistic and reasonable geological
surfaces.

The methods proposed in this article provide an effective
way of applying machine learning algorithms to the uncer-
tainty characterization and modeling of geological surfaces.
However, the proposed model contains multiple types of
constraints, which results in a long training time. In the
future, CCSVIR and the uncertain reconstruction model
can be decomposed into two smaller QPPs to reduce the
training time. In addition, the resulting envelopes and geo-
logical surface realizations are affected by the selection
of hyperparameters. This article mainly introduces a new
method for characterizing and modeling the uncertainty of
geological surface; thus, the introduction to the selection
of parameters is basic and will be explored more in the
future.

APPENDIX A
A. PROOF OF THEOREM 1
Proof: Introduce the Lagrangemultipliers λ1i, λ∗1i, λ2i, λ

∗

2i,

λ3i, ηi and η∗i to construct the Lagrange function of primal
problem (22) as follows.

L =
1
2
‖w‖2 +

1
2
‖u‖2 + C

n∑
i=1

(ξi + ξ∗i )

+

n∑
i=1

λ1i(y1i − ξi − ϕ(Bi)w−b− ϕ(Bi)u− d)

+

n∑
i=1

λ∗1i(−y2i − ξ
∗
i + ϕ(Bi)w+ b− ϕ(Bi)u− d)

+

n+m∑
i=1

λ2i(lbi − ϕ(Bi)w− b+ ϕ(Bi)u+ d)

+

n+m∑
i=1

λ∗2i(−ubi + ϕ(Bi)w+ b+ ϕ(Bi)u+ d)

+

n+m∑
i=1

λ3i(γ − ϕ(Bi)u− d)−
n∑
i=1

ηiξi −

n∑
i=1

η∗i ξ
∗
i .

(35)

The dual variables in (35)must satisfy λ1i, λ∗1i, λ2i, λ
∗

2i, λ3i,

ηi, η
∗
i ≥ 0. The Lagrangian function L has a saddle point,

which is obtained by maximizing of L with respect to the
dual variables λ1i, λ∗1i, λ2i, λ

∗

2i, λ3i, ηi, η
∗
i and minimizing of

L with respect to the primal variables (w, b,u, d). In order to
obtain the optimal solution, the partial derivatives of L with
respect to (w, b,u, d, ξ , ξ∗) must vanish. Then

∂L
∂w
= w−

n∑
i=1

λ−1iϕ
T (Bi)−

n+m∑
i=1

λ−2iϕ
T (Bi) = 0

⇒ w =
n∑
i=1

λ−1iϕ
T (Bi)+

n+m∑
i=1

λ−2iϕ
T (Bi), (36)

∂L
∂u
= u−

n∑
i=1

λ+1iϕ
T (Bi)+

n+m∑
i=1

λ+2iϕ
T (Bi)

−

n+m∑
i=1

λ3iϕ
T (Bi) = 0

⇒ u =
n∑
i=1

λ+1iϕ
T (Bi)−

n+m∑
i=1

λ+2iϕ
T (Bi)

+

n+m∑
i=1

λ3iϕ
T (Bi), (37)

∂L
∂b
= −

n∑
i=1

λ−1i −

n+m∑
i=1

λ−2i = 0, (38)

∂L
∂d
= −

n∑
i=1

λ+1i +

n+m∑
i=1

λ+2i −

n+m∑
i=1

λ3i = 0, (39)
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∂L
∂ξi
= C − λ1i − ηi = 0

⇒ λ1i = C − ηi ⇒ 0 ≤ λ1i ≤ C, i = 1, · · · , n,

(40)
∂L
∂ξ∗i
= C − λ∗1i − η

∗
i = 0

⇒ λ∗1i = C − η∗i ⇒ 0 ≤ λ∗1i ≤ C, i = 1, · · · , n.

(41)

Substituting Eqs. (36)-(41) into (35), the following Eq. can
be obtained.

L = −
1
2

n∑
i=1

n∑
j=1

λ−1iλ
−

1jKij −
n∑
i=1

n+m∑
j=1

λ−1iλ
−

2jKij

−
1
2

n+m∑
i=1

n+m∑
j=1

λ−2iλ
−

2jKij −
1
2

n∑
i=1

n∑
j=1

λ+1iλ
+

1jKij

+

n∑
i=1

n+m∑
j=1

λ+1iλ
+

2jKij −
1
2

n+m∑
i=1

n+m∑
j=1

λ+2iλ
+

2jKij

−

n∑
i=1

n+m∑
j=1

λ+1iλ3jKij +
n+m∑
i=1

n+m∑
j=1

λ+2iλ3jKij

−
1
2

n+m∑
i=1

n+m∑
j=1

λ3iλ3jKij +
n∑
i=1

λ1iy1i −
n∑
i=1

λ∗1iy2i

+

n+m∑
i=1

λ2ilbi −
n+m∑
i=1

λ∗2iubi +
n+m∑
i=1

λ3iγ. (42)

Therefore, the dual Qpp of CCSVIR is Eqs. (23).

B. PROOF OF THEOREM 2
Proof: Since λ̄1, λ̄

∗

1, λ̄2, λ̄
∗

2, λ̄3 is an optimal solution
of (23), according to Karush–Kuhn–Tucker conditions,
there exists Lagrangian multipliers b̄, d̄, r̄i, r̄∗i , ξ̄i, ξ̄

∗
i ,

(i = 1, · · · , n) and s̄i, s̄∗i , t̄i, (i = 1, · · · , n+ m), such that

∂Ldual
∂λ̄1i

= ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

 n∑
j=1

λ̄+1jϕ
T (Bj)−

n+m∑
j=1

λ̄+2jϕ
T (Bj)

+

n+m∑
j=1

λ̄3jϕ
T (Bj)

− y1i + b̄+ d̄ − r̄i
+ ξ̄i = 0, (i = 1, · · · , n), (43)

∂Ldual
∂λ̄∗1i

= −ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

 n∑
j=1

λ̄+1jϕ
T (Bj)−

n+m∑
j=1

λ̄+2jϕ
T (Bj)

+

n+m∑
j=1

λ̄3jϕ
T (Bj)

+ y2i − b̄+ d̄ − r̄∗i
+ ξ̄∗i = 0, (i = 1, · · · , n), (44)

∂Ldual
∂λ̄2i

= ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

− n∑
j=1

λ̄+1jϕ
T (Bj)+

n+m∑
j=1

λ̄+2jϕ
T (Bj)

−

n+m∑
j=1

λ̄3jϕ
T (Bj)

− lbi + b̄− d̄ − s̄i = 0,

(i = 1, · · · , n+ m), (45)

∂Ldual
∂λ̄∗2i

= −ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

− n∑
j=1

λ̄+1jϕ
T (Bj)+

n+m∑
j=1

λ̄+2jϕ
T (Bj)

−

n+m∑
j=1

λ̄3jϕ
T (Bj)

+ ubi − b̄− d̄ − s̄∗i = 0,

(i = 1, · · · , n+ m), (46)

∂Ldual
∂λ̄3i

= ϕ(Bi)

 n∑
j=1

λ̄+1jϕ
T (Bj)−

n+m∑
j=1

λ̄+2jϕ
T (Bj)

+

n+m∑
j=1

λ̄3jϕ
T (Bj)

− γ + d̄ − t̄i = 0,

(i = 1, · · · , n+ m), (47)

b̄ 6= 0, d̄ 6= 0, (48)

r̄i ≥ 0, r̄∗i ≥ 0, (i = 1, · · · , n), (49)

s̄i ≥ 0, s̄∗i ≥ 0, (i = 1, · · · , n+ m), (50)

t̄i ≥ 0, (i = 1, · · · , n+ m), (51)

ξ̄i ≥ 0, ξ̄∗i ≥ 0, (i = 1, · · · , n), (52)

r̄iλ̄1i = 0, r̄∗i λ̄
∗

1i = 0, ξ̄i(λ̄1i − C) = 0, ξ̄∗i (λ̄
∗

1i − C) = 0,

s̄iλ̄2i = 0, s̄∗i λ̄
∗

2i = 0, t̄iλ̄3i = 0, (53)
n∑
i=1

λ̄−1i +

n+m∑
i=1

λ̄−2i

= 0,
n∑
i=1

λ̄+1i −

n+m∑
i=1

λ̄+2i +

n+m∑
i=1

λ̄3i = 0, (54)

0 ≤ λ̄1i ≤ C, 0 ≤ λ̄∗1i ≤ C, λ̄2i ≥ 0, λ̄∗2i ≥ 0, λ̄3i ≥ 0.

(55)

Let

w̄ =
n∑
i=1

λ̄−1iϕ
T (Bi)+

n+m∑
i=1

λ̄−2iϕ
T (Bi), (56)
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ū =
n∑
i=1

λ̄+1iϕ
T (Bi)−

n+m∑
i=1

λ̄+2iϕ
T (Bi)+

n+m∑
i=1

λ̄3iϕ
T (Bi). (57)

From Eqs. (43)-(44) and (49), the following inequalities can
be obtained.

ϕ(Bi)w̄+ ϕ(Bi)ū− y1i + b̄+ d̄ + ξ̄i = r̄i ≥ 0,

(i = 1, · · · , n), (58)

−ϕ(Bi)w̄+ ϕ(Bi)ū+ y2i − b̄+ d̄ + ξ̄i
∗
= r̄∗i ≥ 0,

(i = 1, · · · , n), (59)

that is

(ϕ(Bi)w̄+ b̄)+ (ϕ(Bi)ū+ d̄) ≥ y1i − ξ̄i, (i = 1, · · · , n),

(60)

(ϕ(Bi)w̄+ b̄)− (ϕ(Bi)ū+ d̄) ≤ y2i + ξ̄i
∗
, (i = 1, · · · , n).

(61)

From Eqs. (45), (46) and (50), the following inequalities can
be obtained.

ϕ(Bi)w̄− ϕ(Bi)ū− lbi + b̄− d̄ = s̄i ≥ 0,

(i = 1, · · · , n+ m), (62)

−ϕ(Bi)w̄− ϕ(Bi)ū+ ubi − b̄− d̄ = s̄∗i ≥ 0,

(i = 1, · · · , n+ m), (63)

that is

(ϕ(Bi)w̄+ b̄)− (ϕ(Bi)ū+ d̄) ≥ lbi, (i = 1, · · · , n+ m),

(64)

(ϕ(Bi)w̄+ b̄)+ (ϕ(Bi)ū+ d̄) ≤ ubi, (i = 1, · · · , n+ m).

(65)

From Eqs. (47) and (51), the following inequality can be
obtained.

ϕ(Bi)ū− γ + d̄ = t̄i ≥ 0, (i = 1, · · · , n+ m), (66)

that is

ϕ(Bi)ū+ d̄ ≥ γ, (i = 1, · · · , n+ m). (67)

According to formulas (52), (60), (61), (64), (65)
and (67), (w̄, b̄, ū, d̄, ξ̄ , ξ̄∗) (where ξ̄ = (ξ̄1, ξ̄2, · · · , ξ̄n)T ,
ξ̄∗ = (ξ̄∗1 , ξ̄

∗

2 , · · · , ξ̄
∗
n )
T ) meet all the constraints of the

CCSVIR (24). Therefore, it is a feasible solution. Fur-
thermore, according to formulas (43)-(47) and (53-54), the
following Eq. can be obtained.

1
2
‖w̄‖2 +

1
2
‖ū‖2 + C

n∑
i=1

(ξ̄i + ξ̄∗i )

=
1
2
‖w̄‖2 +

1
2
‖ū‖2 + C

n∑
i=1

(ξ̄i + ξ̄∗i )

−

n∑
i=1

λ̄1i

{
ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)



+ϕ(Bi)

 n∑
j=1

λ̄+1jϕ
T (Bj)−

n+m∑
j=1

λ̄+2jϕ
T (Bj)

+

n+m∑
j=1

λ̄3jϕ
T (Bj)

− y1i + b̄+ d̄ − r̄i + ξ̄i}

−

n∑
i=1

λ̄∗1i

{
− ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

 n∑
j=1

λ̄+1jϕ
T (Bj)−

n+m∑
j=1

λ̄+2jϕ
T (Bj)

+

n+m∑
j=1

λ̄3jϕ
T (Bj)

+ y2i − b̄+ d̄ − r̄∗i + ξ̄∗i }

−

n+m∑
i=1

λ̄2i

{
ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

− n∑
j=1

λ̄+1jϕ
T (Bj)+

n+m∑
j=1

λ̄+2jϕ
T (Bj)

−

n+m∑
j=1

λ̄3jϕ
T (Bj)

− lbi + b̄− d̄ − s̄i}

−

n+m∑
i=1

λ̄∗2i

{
− ϕ(Bi)

 n∑
j=1

λ̄−1jϕ
T (Bj)+

n+m∑
j=1

λ̄−2jϕ
T (Bj)


+ϕ(Bi)

− n∑
j=1

λ̄+1jϕ
T (Bj)+

n+m∑
j=1

λ̄+2jϕ
T (Bj)

−

n+m∑
j=1

λ̄3jϕ
T (Bj)

+ ubi − b̄− d̄ − s̄∗i }

−

n+m∑
i=1

λ̄3i

{
ϕ(Bi)

 n∑
j=1

λ̄+1jϕ
T (Bj)−

n+m∑
j=1

λ̄+2jϕ
T (Bj)

+

n+m∑
j=1

λ̄3jϕ
T (Bj)

− γ + d̄ − t̄i}

= −
1
2

n∑
i=1

n∑
j=1

λ̄−1iλ̄
−

1jKij −
n∑
i=1

n+m∑
j=1

λ̄−1iλ̄
−

2jKij

−
1
2

n+m∑
i=1

n+m∑
j=1

λ̄−2iλ̄
−

2jKij −
1
2

n∑
i=1

n∑
j=1

λ̄+1iλ̄
+

1jKij

+

n∑
i=1

n+m∑
j=1

λ̄+1iλ̄
+

2jKij −
1
2

n+m∑
i=1

n+m∑
j=1

λ̄+2iλ̄
+

2jKij

−

n∑
i=1

n+m∑
j=1

λ̄+1iλ̄3jKij +
n+m∑
i=1

n+m∑
j=1

λ̄+2iλ̄3jKij

−
1
2

n+m∑
i=1

n+m∑
j=1

λ̄3iλ̄3jKij +
n∑
i=1

λ̄1iy1i −
n∑
i=1

λ̄∗1iy2i

+

n+m∑
i=1

λ̄2ilbi −
n+m∑
i=1

λ̄∗2iubi +
n+m∑
i=1

λ̄3iγ. (68)
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That is, the function value of (22) is the same as that
of (23). Therefore, under the strong duality theorem [26]),
(w̄, ū) is an optimal solution of the primal problem (22) with
respect to (w,u). In addition, according to (53), for some λ̄1i,
λ̄∗1j ∈ (0,C), r̄i = r̄∗j = 0, ξ̄i = ξ̄∗j = 0. Moreover according
to Eqs. (58), (59), the following Eqs. can be obtained.

ϕ(Bi)w̄+ ϕ(Bi)ū− y1i + b̄+ d̄ = 0, (69)
−ϕ(Bj)w̄+ ϕ(Bj)ū+ y2j − b̄+ d̄ = 0. (70)

Hence, b̄ and d̄ can be computed as follows:

b̄ =
1
2
(y1i + y2j − ϕ(Bi)w̄− ϕ(Bj)w̄− ϕ(Bi)ū+ ϕ(Bj)ū),

(71)

d̄ =
1
2
(y1i − y2j − ϕ(Bi)w̄+ ϕ(Bj)w̄− ϕ(Bi)ū− ϕ(Bj)ū).

(72)
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