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ABSTRACT Wide beam is necessary for ensuring the main lobe direction in a mobile communication
scenario. A small dynamic range ratio (DRR) of excitations is crucial for simple-array and energy-saving
design. The power gain pattern synthesis (PGPS) problem is aimed to maximize the minimum power
gain in the wide main lobe and solving the PGPS problem can form a wide beam. To control the DRR,
an upper bound constraint of DRR is imposed on the PGPS problem. The new problem is concave
and can’t be solved effectively by the conventional convex optimization method. We convert the DRR
constraint into a group of stricter inequalities and transform the concave constraints to be convex with some
convex approximations. The general PGPS problem with DRR constraints can be solved by the successive
convex approximation (SCA) technique. The weights obtained by the proposed method can converge to the
stationary point and we present the convergence proofs. Simulation results show that the proposed algorithm
has better performance on increasing the minimum power gain in the main lobe (PGML) and suppressing
the sidelobe level (SLL). Meanwhile, the DRR of excitations can be controlled below a given upper bound.

INDEX TERMS Adaptive beamforming, array pattern synthesis, successive convex approximation, power
gain optimization, wide main lobe beam, dynamic range ratio.

I. INTRODUCTION
Array antenna has been widely used in many fields such
as sonar, radar, speech processing, and navigation to wire-
less communications because of its flexible beamforming
ability [1]–[6]. Pattern synthesis is a process to obtain
the required antenna radiation pattern and could improve
the performance of the array antenna. Many methods of
pattern synthesis have been proposed, which can be classi-
fied as global search algorithms [7]–[9], deterministic algo-
rithms [10]–[12], and optimization algorithms [13], [14].
Recently, forming the desired power gain pattern, which is
the pattern describing the power gain level in the concerned
angular, has been widely concerned [16]. However, in these
pattern synthesis problems, theDRRof the optimizedweights
is uncontrollable and sometimes too large. Reducing the DRR
of excitations has practical significance due to the small DRR
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of excitations helping to control the mutual coupling between
antennas, reduce the output power loss, and simplify the
design of the feeding network [13], [17].

Forming a wide beam is a typical application of array
pattern synthesis in many scenarios, for example, receiving
satellite multimedia signals when antennas are installed on
the roof of moving vehicles [18], [19]. In this scenario,
considering the vehicles would move when communicating
with the satellite, a wide beam can ensure the main lobe
pointing at the satellite to receive signals all the time. The
power of the signal of interest (SOI) from the satellite would
greatly reduce caused by channel fading and multipath effect,
therefore the power gain of the receiving array antenna espe-
cially in the main lobe region should be as large as possible.
The conventional methods to form wide beam are based
on shaped beam pattern synthesis (SBPS) [20]–[23], which
optimizes the array weights to generate a power gain pattern
approximating to the predetermined beam shape. However,
these methods based on the SBPS problem can’t obtain the
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optimal power gain pattern in the main lobe. Paper [16]
proposed an algorithm based on the PGPS problem, which
forms the power gain pattern by maximizing the minimum
PGML. This method can obtain a larger minimum PGML
than the method based on the SBPS problem. But it cannot
ensure the acquirement of the optimal solution.

The task of array pattern synthesis with a reduced DRR
is to design the excitations to generate a desired power gain
pattern while controlling the DRR of the excitations [24].
However, because the DRR constraint is non-convex, it is
difficult to obtain good control on DRR for the conventional
convex optimization method. A simple approach described
in [25], [26] is to eliminate antennas with small weights. But
it may not be able to limit the DRR to the desired threshold
and may distort the power pattern. Paper [24] focuses on
minimizing the DRR of excitations in the array pattern syn-
thesis problem by introducing the ADMM method [27], but
it can’t guarantee the maximum-minimum PGML if applied
in the PGPS problem. Paper [28] extends the semidefinite
relaxation method (SDR) to be capable of synthesizing lin-
early polarized shaped patterns with accurate control of SLL
and DRR of the excitation distribution for arbitrary antenna
arrays when considering the mutual coupling. But SDR has
high computational complexity. Reference [29] discussed the
DRR control scheme while adding a maximum desired DRR
constraint in the PGPS problem proposed in [16]. But this
method only considers the upper bound constraint of exci-
tations and replace smaller excitations by the lower bound
expected at each iteration, it will destroy the optimal power
gain pattern in the main lobe region. It’s worth noting that
when the upper bound of DRR is infinity, the method in [16]
can be seen as a special case of the method in [29].

In this paper, primary and secondary contributions are
presented. The primary contribution solves the general PGPS
problem by an iterative method based on the SCA tech-
nique [30]. The method can obtain the stationary point of this
non-convex problem. While as described in [16] and [29],
the existing method cannot ensure the acquirement of the
optimal solution or the stationary point. The secondary con-
tribution is that the proposedmethod can precisely control the
DRR of excitations in the PGPS problem. Note that existing
methods can only roughly control the DRR and may reduce
the efficiency in the practical system. The work presents a
novel algorithm, which has better performance on increasing
the minimum PGML and suppressing SLL compared with
existing methods.

The rest of this paper is organized as follows: The
general PGPS problem with DRR constraint is described
in Sec.II. The new iterative algorithm based on the SCA
technique is presented in Sec.III. Simulation analysis and
results are shown in Sec.IV. And in Sec.V, conclusions are
presented.

II. PROBLEM FORMULATION
In this section, we formulate the general PGPS problem with
the DRR constraint when the mutual coupling exists.

A. PGPS PROBLEM
Considering a uniformly linear antenna array with M
isotropic elements. The element spacing is half-wavelength.
Considering the mutual coupling influence, we can express
the far-field synthesis electric field of the array antenna in
direction θ as follows:

E(θ ) = ωHCa(θ) (1)

where ω is the complex weights of array antenna, C is the
mutual couplingmatrix and a(θ) = [1,ejk1d[sin(θ)−sin(θc)], . . . ,
ejk(M−1)d[sin(θ)−sin(θc)]]T . In steering vector a(θ ), k is the
wavenumber of the received electromagnetic wave, d is
the spacing of elements equals to half-wavelength, θ is the
grazing angle with respect to the normal direction of the array
antenna, and θc is the angle of the central direction in the
predetermined main lobe region.

The PGPS problem proposed in [16] is formulated as (2).
The desired main lobe region is represented by 2ML . And it
can be extended directly to themultidimensional or arbitrarily
distributed array antenna.

max
ω,G

G

s.t.
ωHAθω
ωHAω

≥ G, θ ∈ 2ML

ωHAθω
ωHAω

≤ ρG, θ ∈ 2SL (2)

where A = C
∫ π

2
−
π
2
a(θ)aH (θ )cos(θ) dθCH is a constant

matrix and Aθ = Ca(θ)aH (θ )CH . 2SL represents the
sidelobe region and ρ denotes the sidelobe suppression
ratio (SLSR).

Several solutions are adopted to improve the isolation
between the antenna elements in a two-element antenna
array such as the defected ground structures, electromagnetic
bandgap structures, polarization converters, and metamateri-
als [32]. If the mutual coupling could be ignored, the mutual
coupling matrix will be a unit matrix I . While if the mutual
coupling couldn’t be ignored, we can obtain the coupling
matrix from the normalized impedance matrix Z [31].

C = Z−1 (3)

B. THE GENERAL PGPS PROBLEM WITH DRR
CONSTRAINT
In the feeding network, the magnitude of array weights can be
adjusted by the attenuator. The adjustment range of attenua-
tors is limited by the control bit. In the PGPS problem (2),
the DRR of array weights is uncontrollable. Low DRR of
excitations will simplify the design of the feeding network.
Hence, a DRR upper bound constraint is imposed on the
problem (2). It can be written as:

DRR(ω) =
max{|ω1|, . . . , |ωM |}

min{|ω1|, . . . , |ωM |}
=
‖ω‖∞

‖ω‖−∞
≤ D (4)

where |·| denotes the modulus of a complex number, ‖·‖∞
denotes `∞ and ‖·‖−∞ denotes `−∞. D is the predetermined
upper bound of DRR.
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Introduce the constraint (4) into the PGPS problem (2),
the general PGPS problem with DRR constraint can be writ-
ten as follows:

max
ω,G

G

s.t.
ωHAθω
ωHAω

≥ G, θ ∈ 2ML

ωHAθω
ωHAω

≤ ρG, θ ∈ 2SL

‖ω‖∞

‖ω‖−∞
≤ D (5)

Note that when D = ∞, the problem (2) can be seen as
a special case of problem (5). The new PGPS problem (5) is
more practical and general. But it is concave and difficult to
be solved by the conventional convex optimization method.

III. METHOD FOR PGPS PROBLEMS VIA SCA
A. SUCCESSIVE CONVEX APPROXIMATON TECHNIQUE
Considering a general non-convex problem as follows:

min
ω

g0(ω)

s.t. gi(ω) ≤ 0, i = 1, 2, . . . , n (6)

where g0(ω) is a convex objective function, and the con-
straint function gi(ω) could be non-convex. Therefore, it is
difficult to solve the problem (6) directly by traditional con-
vex optimization methods. SCA technique solves the prob-
lem (6) by replacing the non-convex constraint functions
with a series of convex approximation gi(ω) ≈ fi(ω,ωt ),
where ωt is the feasible solution of problem (6). Then the
approximated problem can be solved easily by the con-
ventional convex optimization method. It turns out that the
solutions of this series of approximations converge to a
point satisfying the KKT conditions of the original problem
if these approximations could satisfy the following three
requirements [33]:

• gi(ω) ≤ fi(ω,ωt ) for all ω
• gi(ωt ) = fi(ωt ,ωt )
•

∂gi(ω)
∂ωm
|ω=ωt =

∂fi(ω,ωt )
∂ωm

|ω=ωt ,m = 1, . . . ,M

B. METHOD FOR GENERAL PGPS PROBLEM WITH DRR
CONSTRAINT
The general PGPS problem (5) is concave due to the
power gain constraints function and DRR constraint function.
In general, a globally optimal solution of a non-convex prob-
lem cannot be obtained effectively and efficiently. Obtain-
ing a stationary point is the classic goal for dealing with
a non-convex problem [15]. We can reformulate problem
(5) in a general way which is to maximize the minimum
value of the numerator in the main lobe when restrict-
ing the denominator to be a constant c [16]. According
to the equation Aθ = a(θ )aH (θ ), and together with the
fact that maximizing a variable G equals to minimizing
−G, the problem (5) can be rewritten as an equivalent

problem.

min
ω,G

−
√
G

s.t. − |ωHCa(θ )| ≥
√
cG, θ ∈ 2ML

ωHAθω ≤ ρcG, θ ∈ 2SL

ωHAω = c
‖ω‖∞

‖ω‖−∞
≤ D (7)

According to the DRR definition, it is known that D ≥ 1
and the magnitude of excitations are non-negative. Based on
these two properties, the DRR constraint can be reformulated
as:

‖ω‖∞ − D‖ω‖−∞ ≤ 0 (8)

We could get two non-convex constraint functions:

g1(ω) = −|ωHa(θ )|

g2(ω) =


‖ω‖∞
‖ω‖∞
. . .

‖ω‖∞

−

D|ω1|

D|ω2|

. . .

D|ωM |

 (9)

By using the Cauchy-Schwarz inequality and introduc-
ing the auxiliary variable ωt . The convex approximations of
g1(ω) and g2(ω) can be written as:

f1(ω,ωt ) = −
Re{ωHCa(θ)aH (θ )CHωt }

|aH (θ )ωt |

f2(ω,ωt ) =


‖ω‖∞
‖ω‖∞
. . .

‖ω‖∞

−

DRe{ω1ωt,1}

|ωt,1|

DRe{ω2ωt,2}
|ωt,2|

. . .

DRe{ωMωt,M }
|ωt,M |

 (10)

where Re{·} denotes the real part of a complex number and
ωm denotes the m-th element in vector ω.
Problem (7) can be reformulated as a convex approximate

problem (11) by replacing g1(ω) with f1(ω,ωt ) and g2(ω)
with f2(ω,ωt ). And we replace the

√
G with G0 and

√
c wth

c0 in problem (7).

min
ω,G0

−G0

s.t. −
Re{ωHCa(θ)aH (θ )CHωt }

|aH (θ )CHωt |
≥ c0 G0, θ ∈ 2ML

ωHAθω ≤ ρc20 G
2
0, θ ∈ 2SL

ωHAω = c20


‖ω‖∞
‖ω‖∞
. . .

‖ω‖∞

−


D
Re{ω1ωt,1}

|ωt,1|

D
Re{ω2ωt,2}

|ωt,2|
. . .

D
Re{ωMωt,M }
|ωt,M |


� 0 (11)

Due to the condition θ ∈ 2ML , the problem (11) involves
semi-infinite constraints. An effective method to deal with

VOLUME 8, 2020 181809



F. Yang et al.: PGPS via SCA Technique

this issue is approximating these semi-infinite constraints by
discretizing the main lobe region2ML [34]. The more precise
the discrete angle is, the more accurate solution will be, but
the greater amount of computation. The uniform discrete
method is used to reformulate the problem as (12), where
21 = [2M1 , . . . ,2ML ] and22 = [2S1 , . . . ,2SQ ]. L =

2ML
φ

and Q = 2SL
φ

, φ is the stepsize when discretizing 2ML and
2SL .

min
ω,G0

−G0

s.t. −
Re{ωHCa(θ )aH (θ )CHωt }

|aH (θ )CHωt |
≥ c0 G0, θ ∈ 21

ωHAθω ≤ ρc20 G
2
0, θ ∈ 22

ωHAω = c20
‖ω‖∞
‖ω‖∞
. . .

‖ω‖∞

−

DRe{ω1ωt,1}

|ωt,1|

DRe{ω2ωt,2}
|ωt,2|

. . .

DRe{ωMωt,M }
|ωt,M |

 � 0 (12)

Problem (12) is a convex problem and can be solved by
the CVX toolbox. The general PGPS problem (5) can be
solved by solving the approximated problem (12) iteratively
via the SCA technique. The steps of the proposed algorithm
which call SCA-DRR is described in ALGORITHM 1,
where pd = 1 ∈ CL , Ni is the number of iterations, and
B = [Ca(21), . . . ,Ca(2L)] ∈ CM×L .

Algorithm 1 SCA-DRR

1: Initialize ωt = (BBH )−1Bpd , Ni, D and c0 = 1
2: Calculate A
3: while Ni > 0 do
4: Obatainωi: solving the problem (12) by CVX toolbox;

5: Update ωt : ωt = ωi;
6: Update Ni: Ni = Ni − 1;
7: end while

C. CONVERGENCE ANALYSIS
If the convex approximations f1(ω,ω) and f2(ω,ωt ) satisfy
the three requirements aforementioned in the SEC.III.A,
the weights obtained by SCA-DRR will converge to a point
that satisfying the KKT conditions of the problem (7). KKT
is the necessary condition of optimal solutions to non-convex
problems. And Problem (7) is the equivalent problem of the
original problem (5). Therefore, if we could give a proof
that f1(ω,ω) and f2(ω,ωt ) satisfy the three requirements,
the weights obtained by the proposed algorithmwill converge
to the stationary point of the original problem (5).

Considering the property of Cauchy-Schwarz inequality,
it is easy to prove the following two requirements:

g1(ω) ≤ f1(ω,ωt ), g1(ωt ) ≤ f1(ωt ,ωt )

g2(ω) ≤ f2(ω,ωt ), g2(ωt ) ≤ f2(ωt ,ωt ) (13)

TABLE 1. Performance index (C = I and ρ = ∞).

What’s more, if ωt 6= 0, g2(ω) and f2(ω,ωt ) will be differ-
entiable. In problem (12), it is obvious that ωt 6= 0. To prove
the following equations:

∂g1(ω)
∂ωm

|ω=ωt =
∂f1(ω,ωt )
∂ωm

|ω=ωt

∂g2(ω)
∂ωm

|ω=ωt =
∂f2(ω,ωt )
∂ωm

|ω=ωt (14)

It can be converted to prove the following equation:

∂|xHv|
∂x
|x=xt =

∂
Re{xH vvH xt }
|vH xt |

∂x
|x=xt (15)

where x, xt , v ∈ CN are N -dimension vector, both xt and v
are constant vectors. We can rewrite the vHxt as follows:

vHxt = |vHxt |ejβ (16)

where β is the phase of vHxt . It can be derived that:

∂|xHv|
∂x
|x=xt =

∂
Re{xH vvH xt }
|vH xt |

∂x
|x=xt = vejβ (17)

Hence, the proposed method could obtain a stationary point
of general PGPS problem (5).

D. COMPUTATIONAL COMPLEXITY
Regarding the computational complexity, ωHAω can be
decomposed by Cholesky factorization as ‖Lω‖2. Prob-
lem (12) can be regarded as an SOCP problem. It is shown
in [35] that to solve an SOCP problem by the interior point
method needs

√
Nc iterations, where Nc is the number of the

second-order cone in the problem. The complexity in each
iteration of the SOCP problem is O(γ

∑
i qi) where γ is the

dimension of optimization variable and qi is the dimension of
the i-th second-order cone. So the computational complexity
of ALGORITHM 1 is O(NiM3N 1.5

c ) where Ni is the number
of iterations.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, we validate the advantage and effectiveness
of the proposed algorithm by comparing it with the method
proposed in [29] which named ITER-DRR. When D = ∞,
the method described in [16] can be regarded as a special case
of ITER-DRR. In all numerical simulations, an uniformly
distributed ULA with 22 isotropic elements is considered.
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FIGURE 1. Power gain pattern and objective function value obtained by two algorithms with different D. (C = I and ρ = ∞).

FIGURE 2. Minimum PGML and DRR obtained by two algorithms with different D at various main lobe. (C = I and ρ = ∞).

The specific parameters for ITER-DRR is α = 0.2 and
σ = 0.01.
Assuming that mutual coupling is too small and could be

ignored, the mutual coupling matrix should be C = I in
simulations.

In Fig.1 and TABLE 1, the simulation results are obtained
by SCA-DRR and ITER-DRR with differentD. It is seen that
the minimum PGML obtained by SCA-DRR is larger than
ITER-DRR about 0.02dB when D = ∞ and 0.38dB when
D = 5 respectively. The proposed algorithm could obtain a
larger minimum PGML. The SLL obtained by SCA-DRR has
been reduced 0.68dB and 0.8dB compared with ITER-DRR
whenD = ∞ andD = 5. From TABLE 1, the obtained DRR
of SCA-DRR approaches to the predefined upper bound,
while the obtained DRR of ITER-DRR is at most 3.82 less
than the upper bound. Seen from Fig.1.(b), the objective
function value of SCA-DRR is larger than ITER-DRR when

D = ∞. It is illustrated that our method could obtain a better
solution. WhenD = 5, the objective function value of PGPS-
ITER-DRRwill be larger than the proposed algorithm, but the
minimum PGML is worse. It is because that the constraint of
DRR in SCA-DRR is stricter than ITER-DRR and replacing
the small excitationswith the expected lower boundwill bring
pattern distortion.

In Fig.2, the minimum PGML and the DRR of 200 Monte
Carlo experiments which obtained by SCA-DRR and ITER-
DRR with different D when scanning the main lobe from
[−90◦,−70◦] to [70◦,90◦] are plotted. As seen in Fig.3.(a),
SCA-DRR has a stable performance on minimum PGML
because the difference among the minimum PGML is always
less than 0.27dB when D is different, while the ITER-DRR
has a serious performance degradation more than 3dB when
D = 5 and main lobe = [−30◦,−10◦]. SCA-DRR with
D = ∞ has the largest minimum PGML in all cases, and
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FIGURE 3. Performance index obtained by two algorithm when D is different. (C = I and ρ = 0.01).

TABLE 2. Performance index (C = I and ρ = 0.01).

the ITER-DRR with D = 5 has the worst performance in
some main lobe regions such as [−80◦,−60◦]. Besides, from
Fig.2.(b), the obtained DRR of SCA-DRR can be controlled
precisely and approach the given upper bound, while the DRR
of ITER-DRR is less than the given upper bound at least 2.
In the general PGPS problem, controlling the obtained DRR
precisely will improve the performance on minimum PGML.

In order to assess the effectiveness of SCA-DRR when
controlling the DRR and SLL together, the sidelobe level
constraint is considered in simulations. The simulation results
are shown in Fig.3 and TABLE 2. The distance between the
main lobe 2ML and the side lobe 2SL is 5◦ and ρ = 0.01
(SLSR = 20dB). The performance on minimum PGML of
SCA-DRR is about 0.017dB better than ITER-DRR when
D = ∞ and 0.139dB better when D = 5. The performance
on SLL of SCA-DRR is 1.79dB better than ITER-DRR when
D = ∞. The SLSR obtained by SCA-DRR is 20.0000dB and
20.0077dB when D = ∞ and D = 5 respectively, while the
SLSR obtained by ITER-DRR is not achieved to 20dB in the
cases ofD = 5.When controlling the DRR and SLL together,
SCA-DRR could ensure to obtain the optimal weights which
will generate the power gain pattern with the desired SLSR
and larger minimum PGML.

FIGURE 4. Computing time versus array element number. (C = I , ρ = ∞
and D = 5).

In Fig.4, the computing time of 200 Monte Carlo experi-
ments obtained by SCA-DRR and ITER-DRR with different
array element number is plotted. It can be seen that the
computational complexity of the two algorithms is on the
same order of magnitude. ITER-DRR is at most 2s less than
SCA-DRR in all cases while SCA-DRR has better perfor-
mance. The proposed method is a low-complexity algorithm
and can be applied in large-scale array antenna.

When the mutual coupling effect exists, the mutual cou-
pling matrix should be C = Z−1. We obtain the impedance
matrix of the antenna from the High Frequency Structure
Simulator (HFSS) software. And HFSS is employed in the
following simulations.

The simulation results are shown in Fig.5 and TABLE 3
when considering the mutual coupling effect. The perfor-
mance of both SCA-DRR and ITER-DRR has been degraded
because of the mutual coupling. When D = ∞, the min
PGML of SCA-DRR is smaller than ITER-DRR about
0.05dB and the SLL is larger about 0.9dB. While the
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FIGURE 5. Power gain pattern and objective function value obtained by two algorithm with different D. (C = Z−1 and ρ = 0.01).

TABLE 3. Performance index (C = Z−1 and ρ = 0.01).

mean PGML of SCA-DRR is better than ITER-DRR about
0.06dB. When D = 5, the performance of ITER-DRR has
a serious degradation. The min PGML and SLL of ITER-
DRR are 2.4165dBi and −2.8672dBi respectively, while
the min PGML and SLL of SCA-DRR are 7.6846dBi and
−4.6456dBi. But the SLSR obtained by two algorithms
doesn’t meet the preset requirement which is 20dB.

V. CONCLUSION
In this paper, we proposed an iterative method based on the
SCA technique to solve the general PGPS problem with the
DRR constraint. We convert the DRR constraint into a group
of stricter inequalities and transform the concave constraints
to be convex with some convex approximations. Then the
general PGPS problem can be solved iteratively by the pro-
posed algorithm called SCA-DRR. The proposed method
could ensure to obtain the stationary point of the original
non-convex PGPS problem. Simulations results illustrate the
proposed algorithm has a better performance on increasing
theminimumPGML and suppressing the SLL compared with
the existing method ITER-DRR proposed in [16] and [29].
Meanwhile, the DRR can be controlled precisely below
a given upper bound. And the proposed method has low
computation complexity. When the mutual coupling exists,
the mutual coupling will degrade the algorithm performance.

Our proposed method has a better performance than the exist-
ing method ITER-DRR when considering mutual coupling.
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