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ABSTRACT To construct an accurate and stable approach for water inflow forecasting, a series of advanced
and effective techniques, such as variational mode decomposition (VMD), outlier robust extreme learning
machine (ORELM) and multi-objective grey wolf optimizer (MOGWO), are appropriately integrated into
this study. Considering that the influence of themode number on the VMDdecomposition effectiveness, such
an argument is determined by observing the converged centre frequency distribution among the components.
Then the characteristic items of water inflow series are extracted by VMD, thus obtaining a series of sub-
components. Afterwards, ORELM is applied to predict each component, where the parameters of ORELM
are optimized by MOGWO with multi-objective functions including forecasting accuracy and stability.
Correspondingly, the aggregation of all components’ prediction values is considered as the final results.
The experimental results obtained by performing eight various models on real-time data demonstrate that
the supplementary modules achieve positive effects on the improvement of prediction accuracy, where the
proposed model implements an average performance promotion of 48.43% compared with the contrastive
models.

INDEX TERMS Water inflow prediction, variational mode decomposition, centre frequency distribution,
outlier robust extreme learning machine, multi-objective grey wolf optimizer.

I. INTRODUCTION
The precise water inflow prediction for deep mine has
received widespread focus in the past few decades, which
plays a vital role in designing sound mine drainage system
and practical arrangements for water prevention [1].

A brief classification for the existing water inflow predic-
tion approaches can be claimed as analytical methods, numer-
ical simulations and data-based uncertainty models. A series
of empirical formulas based on Dupuit formula and Theis
formula have been developed in past decades, which describe
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the relationship between the water inflow and the different
factors, such as groundwater influence radius, surrounding
groundwater level and permeability coefficient of surround-
ing rock [2]. However, the anisotropy of rock mass and
changes in the seepage field are generally neglected among
the above process, since the hydrogeological conditions are
idealized. For the numerical simulations, which focus on
estimation modelling by finite element methods applying the
permeability coefficient, recharge intensity and mechanical
parameters, have been widely investigated among the past
decades. Oda [3] proposed an equivalent model by coupling
the seepage field, stress field of the rock mass and combin-
ing the stress tensor method with the permeability tensor.
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Besides, Molinero et al. [4] realized the numerical solution of
the nonlinear water flow equation with step iterative process.
It can be confident that the numerical simulations consider
the complex conditions of studying hell comprehensively,
such as the coexistence of laminar turbulence and so on.
However, the above methods require high computational
resources, due to the redundant parameters, thus resulting
in time-consuming. Different from the above two types of
models, the data-based uncertainty models applying machine
learning, deep learning networks and the relevant stochas-
tic process methods can achieve water inflow prediction
without comprehensive hydrogeological conditions of target
areas. Considering such a prediction task as the data-based
time series forecasting, the implementation of the data-based
uncertainty models do not impose too strict requirements
on the quantity and quality of data, which can be directly
performed on the water inflow series without structural char-
acteristics of aquifer media and aquifer flow in the target area.
For instance, Wang et al. [5] developed a GM(1, 1) metabolic
model for the estimation of the spring discharge, where the
results indicate that the predicted spring flow values can well-
converged to the actual values. Kong-A-Siou et al. [6] applied
a neural network (NN) with a recurrent multilayer perceptron
to predict the water table levels, where the assessments of
the proposed model demonstrate that the accurate estimations
for maximal drawdown can be effectively generated by the
neural model. Deng et al. [7] developed a feed forward back
propagation neural network (FBNN) model to predict the
final velocity of single bubbles in still water, where the coef-
ficient of determination value of the final velocity prediction
model was 0.83. Additionally, Li et al. [8] and Goyal et al. [9]
developed the gaussian process regression model (GPR) and
support vector regression (SVR) for water inflow predic-
tion, respectively. Chen et al. [10] applied the GPR model
to handle the mapping relationship between outflow of the
upstream reservoir and inflow of the downstream reservoir,
where the the simulation results illustrate that the smaller
mean absolute deviation can be obtained by the developed
GPR model. Liu et al. [11] proposed three novel hybrid
wind speed forecasting models based on multi-decomposing
strategy and extreme learning machine (ELM), where ELM
is performed as the predictor for subseries prediction. The
above simulation results illustrate that the nonlinear estima-
tion methods, such as NN, GPR, SVR, etc., can achieve
satisfied estimation results for the nonlinear inflow series.
However, the forecasting performance of NN and SVR are
restricted by the inherent parameters and the dataset scale
significantly [12]. For this purpose, extreme learningmachine
(ELM) is developed based on the regular single-hidden layer
feed-forward network (SLFN) [13], which takes into account
both training speed and generalization performance. Consid-
ering that the forecasting stability of normal ELM is affected
by the outliers existed in datasets, Zhang and Luo [14]
introduced the l1-norm into ELM for enhancing the predic-
tion robustness, which is defined as outlier-robust extreme

learning machine (ORELM). To our knowledge, such an
advanced estimation model has not been investigated in the
field of water inflow forecasting. Hence, the efficiency and
effectiveness of ORELM applied for water inflow forecasting
will be testified in this study.

To obtain better performance of the aforementioned
nonlinear methods, scholars pay attention to the field of
parameter optimization, which contributes to enhancing the
forecasting robustness and accuracy. Among the optimiza-
tion strategies, intelligent optimization algorithms including
genetic algorithm (GA), particle swarm optimization (PSO),
grey wolf optimizer (GWO) and so on, have been widely
investigated in past decades [15]–[17]. However, the objec-
tive function used in the previous studies is the forecast-
ing error indicator, guaranteeing the forecasting accuracy
virtually, while the prediction stability is neglected. There-
fore, the multi-objective optimization methods developed
based on intelligent optimization algorithms are employed
to balance the forecasting accuracy and stability simultane-
ously [18]–[20]. Given this, multi-objective grey wolf opti-
mizer (MOGWO) equipped with unique leadership mech-
anism is selected to achieve parameter optimization for
ORELM in this study, which selects the indicators in the
aspects of accuracy and stability, namely root-mean-square
error (RMSE) and standard deviation, as the objective func-
tions in the optimization process.

It is worth noting that in the field of time series forecasting,
the data preprocessing strategies play a vital role in further
improving the forecasting performance. Among the strate-
gies, feature selection based on the filter method has received
widespread focus due to the characteristic of easy realization.
The central idea of above feature selection is to decompose
the one-dimensional time series into multiple components,
thus extracting the tendency item with better smoothness.
Adarsh and Janga Reddy [21] adopted the multivariate empir-
ical mode decomposition (MEMD) to perform the multiscale
characterization of hydroclimatic time series, where the fore-
casting accuracy is significantly improved. Nazir et al. [22]
compared the improvements achieved by the combined mod-
els adopting empirical mode decomposition (EMD), ensem-
ble empirical mode decomposition (EEMD) and variational
mode decomposition (VMD), where the evaluations for the
results illustrate that the VMD-based model possesses higher
prediction previous. For the well-investigated decomposition
approaches including EMD, EEMD and VMD, the modal-
aliasing that is existed in EMD and is modified by EEMD to
some extent may pose a challenge of accurate prediction for
the decomposed components. By contrast, VMD implements
the separation of components effectively by determining the
correlation frequency band with the variational model, over-
coming the modal-aliasing problem. Nevertheless, the mode
number of VMD need to be predetermined based on the
frequency scales of signals. In contrast, such frequency con-
ditions of the actual water inflow data are typically unknown.
Hence, by the observation of the centre frequency distribution
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with different mode numbers, the optimal mode number of
VMD can be obtained [23]. For this purpose, VMD coupling
the determination approach for the above mode number is
employed to obtain the characteristic components of thewater
inflow series in this study.

In summary, a novel data-based hybrid model for water
inflow prediction is developed by integrating VMD, ORELM
andMOGWO-based multi-objective parameter optimization,
where the main contributions and innovations of our study are
summarized as below:
1) The mode number of VMD is successfully determined

for the water inflow series by observing the converged
centre frequency distributions with mode numbers in cer-
tain boundaries. Subsequently, VMDwith the appropriate
argument is performed on the inflow series, extracting the
characteristic components for decreasing the prediction
difficulty.

2) Four benchmark functions for evaluating multi-objective
optimization algorithms are employed to compare the
optimization capabilities of multi-objective ant lion opti-
mizer (MOALO), multi-objective multi-universe opti-
mization (MOMVO) andMOGWO. The visualizations of
the optimized Pareto optimal solutions and actual ones are
depicted for the intuitive observation.

3) To balance the accuracy and stability of the com-
bined water inflow forecasting model simultaneously,
the parameters of ORELM for each decomposed com-
ponent are optimized by MOGWO with two objective
functions, i.e., RMSE and standard deviation of prediction
errors.

4) Comprehensive evaluations for all the experimental mod-
els in the aspects of forecasting accuracy, correlation to
the actual values and differences among the experimen-
tal models are carried out for evaluating the forecasting
performance of the proposed model reasonably and sci-
entifically.
Furthermore, the theoretical foundation of VMD, ORELM

and MOGWO are introduced in Section II. In Section III,
the support strategies employed in the proposed model are
explained in sequence, where the evaluation for MOGWO
is performed. Section IV describes the study dataset, experi-
mental design and contrastive assessments, respectively. The
conclusions are drawn out in Section V.

II. MATERIALS AND METHODS
A. VARIATIONAL MODE DECOMPOSITION
Considering that variational mode decomposition (VMD) is a
self-adaptive, completely non-recursive modal variation and
signal processing technique, it possesses solid mathemati-
cal theory and superior decomposition performance com-
pared with empirical mode decomposition (EMD) [24]. Each
decomposed band-limited mode is compressed around the
centre pulsation determined by the decomposition. For the
given signal f , the primary procedures of VMD can be sum-
marized as follows:

1) CONSTRUCTING VARIATIONAL PROBLEM
The unilateral frequency spectrum corresponding to mode
uk , can be obtained by applying the Hilbert transform to
deduce a correlation analysis signal [25]. Then the obtained
spectrum is transferred to the baseband by regulating the
mixed exponents to the estimated central frequencies, after
which the bandwidth can be estimated based on theH1 Gauss
smoothness of the demodulated signal [26]. Correspondingly,
the constrained variational problem can be defined as below:

min{uk },{ωk }

{
K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk = f (1)

where δ(t) denotes the Dirac distribution, uk and ωk indicate
the sets of modes and centre pulsations, respectively [24].

2) SOLVING THE VARIATIONAL PROBLEM
Then the quadratic penalty term and Lagrange multiplier
are applied to convert the above constrained problem into a
dual unconstrained problem [24], where the redefined uncon-
strained problem is expressed as below:

L ({uk} , {ωk} , λ)

= α

K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

)
× uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
K∑
k=1

uk (t)

∥∥∥∥∥
2

+

〈
λ(t), f (t)−

K∑
k=1

uk (t)

〉
(2)

Subsequently, alternate direction method of multipliers
(ADMM) is employed to solve the above unconstrained prob-
lem. By seeking out the saddle points of the Lagrangian
expression based on the iteration of un+1k , ωn+1k and λn+1.
Hence, the solutions of uk and ωk can be obtained as follows:

ûn+1k (ω) =

f̂ (ω)−
∑
i6=k

ûi(ω)+
λ̂(ω)
2

1+ 2α(ω − α)
(3)

ωn+1k =

∫
∞

0 ω
∣∣ûk (ω)∣∣2dω∫

∞

0

∣∣ûk (ω)∣∣2dω (4)

λ̂n+1(ω) = λ̂n(ω)+ τ

(
f̂ (ω)−

∑
k

ûn+1k (ω)

)
(5)

where ûn+1k , ûi(ω), f̂ (ω) and λ̂(ω) are the Fourier transform
results of un+1k , ui(t), f (t) and λ(t) one by one.

B. OUTLIER-ROBUST EXTREME LEARNING MACHINE
On the basis of single-hidden-layer feedforward network
(SLFN), a unique network structure applying random inher-
ent network parameters is proposed by Huang et al. [13],
which is defined as extreme learning machine (ELM). To fur-
ther enhance the generalization performance and robustness
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to outlier points a novel version of ELM, namely outlier
robust ELM (ORELM), is proposed by Zhang and Luo [14].
To obtain a convex relaxation objective function, l1 and
l2-norm are employed for the training error and output
weight, respectively, which is expressed as below:

min
β
‖e‖1 +

1
C
‖β‖22 s.t.y−Hβ = e (6)

where C is the regularization parameter and H denotes
the hidden layer output matrix. For the constrained con-
vex optimization problem constructed in (6), the augmented
Lagrangian function can be deduced to obtain the solutions,
which is defined as follows:

Lµ(e, β, λ) = ‖e‖1 +
1
C
‖β‖22 + λ

T (y−Hβ − e)

+
µ

2
‖y−Hβ − e‖22 (7)

where µ represents a penalty parameter defined as 2N/ ‖y‖1,
λ indicates the Lagrange multiplier vector. Then the optimal
solutions can be deduced by minimizing those above aug-
mented Lagrangian function, where the specific process can
be found in [27], [28].

C. MULTI-OBJECTIVE GREY WOLF OPTIMIZER
Grey wolf optimizer (GWO) proposed by Mirjalili et al. [29]
is a novel population-based meta-heuristics, which mimics
the behaviours of grey wolves in terms of leadership and
hunting mechanisms. Among the algorithm, four groups of
grey wolves, namely alpha, beta, delta, and omega wolves,
are separated according to the pack acknowledge of various
wolves. To achieve multi-objective optimization based on
GWO, the archive component and a leader selection strat-
egy are introduced into the normal GWO, thus performing
multi-objective grey wolf optimizer (MOGWO) effectively.
Therefore, the principal mechanisms of MOGWO can be
summarized as follows [20]:

1) ENCIRCLING BEHAVIOR
Besides the social leadership mentioned above, the encircling
behaviour among the hunting process is simulated with the
formulations blow:

ED =
∣∣∣ EC · −→Xp(t)− EX ∣∣∣

EC = 2 · Er1 (8)
EX (t + 1) =

−→
Xp(t)− EA · ED

EA = 2Ea · Er2 − Ea (9)

where EC and EA are coefficient vectors that generate random
values in the intervals of [0, 2] and [−1, 1], a is the linear
decreasing factor in the scoped of [0, 2], r1 and r2 are random
values in [0, 1], EXp and EX denote the position vectors of the
prey and searching wolf, respectively.

2) HUNTING BEHAVIOR
For the obtained three best solutions, i.e., α, β and δ wolves,
the positions of such wolves are updated with the formulas to

simulate the hunting behaviour.

EX1 = EXα − EA1
(∣∣∣ EC1 · EXα − EX

∣∣∣) (10)

EX2 = EXβ − EA2
(∣∣∣ EC2 · EXβ − EX

∣∣∣) (11)

EX3 = EXδ − EA3
(∣∣∣ EC3 · EXδ − EX

∣∣∣) (12)

EX (t + 1) =
EX1 + EX2 + EX3

3
(13)

3) EXPLOITATION AND EXPLORATION
To achieve a better balance between the searching and conver-
gence phases, an adaptive strategy controlling the transition
from exploitation to exploration in the course of the optimiza-
tion process is introduced in MOGWO, which is guaranteed
by the status of EA. Specifically, the search agents will tend
against the grey for better simulation of the natural behaviours
of wolves. In contrast, the search agents will converge toward
the grey. It is worth noting that EC is generated randomly
among the phases between the beginning and end of the
iteration to obtain a better global searching capability [29].

4) ARCHIVE
The archive is introduced to the normal GWO frame for the
storage and retrieval of the non-dominated Pareto optimal
solutions. Considering the Dominant relationship between
the new member and the archive residences, the status of the
archive can be updated. Additionally, the grid mechanism is
performed to re-arrange the segmentation of objective space,
thus enhancing the variety of the approximate Pareto optimal
frontier [20].

5) LEADER SELECTION MECHANISM
Based on a roulette-wheel approach, the leader selection
mechanism is introduced to handle the difficulty of com-
paring the solutions obtained so far. Besides, the probability
for each hypercube defined in the roulette-wheel approach is
expressed as follows [20]:

Pi =
c
Ni

(14)

III. STRUCTURE OF THE PROPOSED MODEL
A. SELECT APPROPRIATE MODE NUMBER FOR VMD
Similar to the relevant decomposition approaches, such as
empirical mode decomposition (EMD) and complete ensem-
ble EMD with adaptive noise (CEEMDAN), the unidi-
mensional time series can be decomposed into a set of
components. However, the number of decomposed compo-
nents are adaptively controlled in EMD and CEEMDAN,
while the mode number should be pre-given for VMD [24].
For the time series including wind speed, water inflow and
so on, whose frequency scales are difficult to determine
in advance due to the characteristics of randomness, inter-
mittence and volatility, the mode number of VMD will
be difficult to determine. Following the previous literature
[23], [30]–[32], the mode number of VMD is predetermined
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FIGURE 1. Center frequency distribution with K = 3.

FIGURE 2. Center frequency distribution with K = 4.

by the subjective experience of scholars and optimized by
swarm intelligence algorithms, which are not adaptive to
different data as well as being time-consuming when adopt-
ing the iterative based algorithm. By observing the cen-
tre frequency distribution of each component with various
mode number K , it can be seen that the centre frequencies
of adjacent components will be convergent as the value of
K increases, thus resulting in mode mixing problem [23].
Hence, to select an appropriate mode number of VMD,
the visualizations of the centre frequency distribution for each
decomposed component with K = 3, K = 4 and K = 5
are expressed in Fig. 1-Fig. 3. It can be seen from Fig. 2
that the iterative curves of the components start to converge
on each other when K > 4, which illustrates that excessive

FIGURE 3. Center frequency distribution with K = 5.

decomposition has occurred. Therefore, the mode number K
is set to 3 for the collected water inflow series in this study.

B. PARAMETER OPTIMIZATION FOR ORELM
BASED ON MOGWO
1) EVALUATION FOR MOGWO
In this section, four typical benchmark functions illustrated
in Table 1 are employed to visually testify the superior-
ity of MOGWO [33] . Meanwhile, two newly developed
multi-objective optimizers including multi-objective ant lion
optimizer (MOALO) [34] and multi-objective multi-universe
optimization (MOMVO) [35], are carried out for contrastive
experiments. Additionally, the maximum iteration number,
the number of searching agents and the archive capacity
of above three algorithms are set to 100, 100 and 100 in
sequence. The Pareto optimal solutions of the functions men-
tioned above deduced by all the optimizers are demonstrated
in Fig. 4-Fig. 7. It can be claimed that the obtained Pareto
optimal fronts of all the algorithms are distributed to the
true Pareto optimal front. At the same time, there exist
more Pareto optimal solutions obtained by MOGWO. Hence,
the stability and superiority of MOGWO performing on these
problems (ZDT1 with linear PF, ZDT1, ZDT 2 and ZDT3)
can be verified from the quantitative results.

2) PARAMETER OPTIMIZATION
As mentioned in reference [36], [37], the forecasting perfor-
mance of the newly constructed ORELM model is affected
by the inherent parameters, such as the regularization coef-
ficient and the number of hidden. To implement stable pre-
diction results, parameter optimization for predictors has
been received widespread attention, where various swarm
intelligence optimization algorithms are employed to opti-
mize the parameters with single-objective function [38], [39].
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TABLE 1. Benchmark functions.

FIGURE 4. Pareto optimal solutions for ZDT1 with linear front.

FIGURE 5. Pareto optimal solutions for ZDT1.

However, the forecasting stability of the approaches is
neglected in the above optimization process, which is compa-
rably essential for the construction of the forecasting model.
For this purpose, the newly developed MOGWO is employed
to achieve multi-objective optimization for ORELM in terms
of forecasting accuracy and stability, where the indicators,
namely root-mean-square error (RMSE) and standard devi-
ation (STD) of the forecasting error, are employed as the
objective functions. The detailed definitions of such two

indexes are illustrated in formulas (15) and (16), respectively.

RMSE =

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2 (15)

STD =

√√√√ 1
N

N∑
i=1

(ei − ēi)2

ei = yi − ŷi (16)
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FIGURE 6. Pareto optimal solutions for ZDT2.

FIGURE 7. Pareto optimal solutions for ZDT3.

where yi and ŷi denote the actual value and the predicted
value, ēi is the mean value of ei, respectively. Specifically,
the pseudocode of aforementioned objective optimization for
ORELM is depicted in Algorithm 1.

C. STUDY AREA AND DATA
The second coal mine of Yangquan Coal Mine is a large
modern coal mine located in Yangquan, Shanxi, northern
China. Its reconnaissance and exploration began in the 1950s
and officially went into production onMay 1, 1951. The main
minable coal seams include No. 3 coal seam in the Shanxi
group and No. 8, No. 12 and No. 15 coal seam in the Taiyuan
group of the Carboniferous. The water source mainly comes
from the confined aquifer of the fractured sandstone between
coal seams, where the collected water inflow data is exhibited
in Fig. 9. Besides, the water inflow sequence data is divided
into three parts with the splitting ratio of 3:1:1, namely the
training, validation and testing sets, where the training and
validation sets are employed for the parameter optimization,
playing the roles of model construction and model selection,
respectively.

D. SPECIFIC FRAMEWORK SEQUENCES OF THE
PROPOSED APPROACH
In summary, the integrated framework of the proposed fore-
casting approach is depicted in Fig. 10, while the specific
procedures are summarized below:

Step 1: Split the collected water inflow series into the train-
ing, validation and testing parts.

Step 2: Select an optimal mode number of VMD based
on the observation of converged centre frequency
distributions.

Step 3: Obtain the optimal parameters of ORELM adopting
MOGWO-based multi-objective optimization on the
training and validation sets.

Step 4: Integrate the predicted components into the final pre-
diction series of the actual testing sets.

IV. EXPERIMENTAL DESIGN
A. EXPERIMENTAL DESCRIPTION
1) CONTRASTIVE MODELS
To achieve sufficient verification for the proposed hybrid
forecasting method, several benchmark prediction models
and the decomposition-based combined models are devel-
oped for contrastive assessments. Support vector regression
(SVR), back propagation neural network (BPNN), long short
term memory (LSTM) network and ORELM implementing
water inflow prediction with the original data are adopted
as benchmark models, which can further reveal the improve-
ments obtained by the proposed model. Besides, two adaptive
decomposition techniques, namely EMD and CEEMDAN,
are combined with ORELM verify the superiority of
VMD, where the parameters of ORELM are determined by
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FIGURE 8. Location of the study area.

FIGURE 9. Raw water inflow data.

grid searching. Likewise, VMD is composited with the grid
searching-basedORELM, thus evaluating the effectiveness of
VMD and the MOGWO-based parameter optimization.

Additionally, the parameter setting for the above contrast
models and the proposed one will be recommended in this
part. Among the contrastive models, the hyper-parameters
including the regularization coefficient C , kernel parameter
δ and the number of hidden layer neurons within SVR and
ORELM are determined by grid searching in the scope of
[2−10, 210], [2−8, 28] and [10, 100]. For BPNN and LSTM
network, the number of hidden layer for them is set as 1,

while the number of the hidden layer neurons are determined
to 32 according to the trial-and-error procedure [40], [41].
Moreover, the key parameters of CEEMDAN including the
maximum number of sifting iterations, standard deviation of
the added white noise, and the number of realizations are
preset as 5000, 500 and 0.2 following the previous investi-
gations [42], [43]. For the proposed model, the arguments
of MOGWO, such as searching agents, maximum iteration
and archive size are set as 100, 50 and 100, while the bound-
aries of the parameters within ORELM are [0.01, 1000] and
[10, 100], respectively.
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FIGURE 10. Flow chart of the proposed model.

Specifically, the decomposed components obtained
by EMD, CEEMDAN and VMD are illustrated in
Fig. 11-Fig. 13, respectively. It can be observed from Fig. 11
that there exist modal-aliasing problem among components,
which has been weakened in the diagrams of CEEMDAN.
Furthermore, as depicted in Fig. 12, VMDpossesses a smaller
number of components, which contributes to training the
combined model with less time-consuming.

2) EVALUATION METRICS
To achieve adequate assessment for the experimental models,
mean absolute error (MAE), RMSE, mean absolute percent-
age error (MAPE), correlation coefficient (R2) and Nash-
Sutcliffe efficiency coefficient (CE) are employed to reveal
the forecasting accuracy and the differences between the
proposed approach and the contrastive ones [44]. The detailed
description of above five indicators are presented in Table 2,
where yi, ŷi and ȳi denote the actual value, the predicted value
and the mean value of yi. Furthermore, the simple decreasing

FIGURE 11. Decomposed components applying EMD.

of metrics RMSE, MAE andMAPE is adopted to observe the
differences between two models, where the specific formula
is expressed as (17). Additionally, Diebold-Mariano (DM)
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Algorithm 1 Optimized ORELM Based on MOGWO
Fitness Function:

min

{
f1 =

√
1
n

∑n
i=1

(
yi − ŷi

)2
f2 = std

(
yi − ŷi

)
Parameters: maxIter : maximum iteration number

N : number of gray wolves
Fi: fitness value of i-th gray wolves
Xi: position of i-th gray wolves
t: current iteration
d : dimension of the problem
a: linear factor decreasing from 2 to 0 with the iterations
A and C : coefficient vectors

1: Initialize the vector {Xi|i = 1, 2, . . . ,N }, a, A and C .
2: for i : 1 ≤ i ≤ N do

Calculate the fitness values Fi for each search agent.
3: end for
4: Seek out the non-dominated solutions and initialize the

archive with them
5: Xα = SelectLeader(archive)
6: Remove the alpha wolf from the archive temporarily to

avoid selecting the same leader
7: Xβ = SelectLeader(archive)
8: Remove the beta wolf from the archive temporarily to

avoid selecting the same leader
9: Xδ = SelectLeader(archive)

10: Re-add the alpha and beta wolves to the archive
11: t = 1
12: while t < maxIter do
13: for i : 1 ≤ i ≤ N do

Update the position of current search agent by for-
mulas (10), (11) and (12).

14: end for
15: Update the arguments of a, A, and C
16: Calculate the objective values of all search agents
17: Seek out the non-dominated solutions
18: Update the archive based on the non-dominant solu-

tion obtained so far
19: end while
20: return Archive
21: Obtain the optimal parameters for ORELM.

test [45] and grey relational analysis (GRA) [46] are carried
out for further assessment.

PMetric =
Metrica −Metricb

Metrica
× 100% (17)

where Metric represents RMSE, MAE or MAPE, Metrica
and Metricb denote the metric values of model a and b,
respectively.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) EXPERIMENT 1
In experiment 1, SVR, BPNN, LSTM network and ORELM
are performed on the collected dataset without decomposition

FIGURE 12. Decomposed components applying CEEMDAN.

FIGURE 13. Decomposed components applying VMD.

methods, which is designed to reveal the performance
gap among ORELM and the remaining approaches. The
evaluation results of all the single models are presented
in Table 3. It can be found that ORELM achieves minimum
values of RMSE, MAE and MAPE, i.e., 36.6539

(
m3/s

)
,

21.6489
(
m3/s

)
and 0.2294 (%). Hence, it can be certain that

ORELM possesses strong generalization performance and
the capability of processing outlier points. However, there
exist small differences between ORELM and the remaining
models, which indicates that it is difficult to achieve water
inflow forecasting without data preprocessing.

2) EXPERIMENT 2
In this part, EMD, CEEMDAN and VMD are combined with
ORELM to construct EMD-ORELM, CEEMDAN-ORELM
and VMD-ORELM, respectively. Following the comparisons
of evaluation results obtained by ORELM, EMD-ORELM,
CEEMDAN-ORELM, VMD-ORELM and the proposed
approach, the effectiveness and necessity of adopting decom-
position techniques could be intuitively demonstrated. The
specific evaluation indicators of ORELM and above com-
bined models are presented in Table 4. It can be seen that
the combined mode applying EMD, CEEMDAN and VMD
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TABLE 2. Evaluation metrics.

TABLE 3. Metrics RMSE, MAE and MAPE of single models.

TABLE 4. Metrics RMSE, MAE and MAPE of combined models.

obtain the significant improvements of forecasting accuracy
compared with ORELM. For instance, the metrics RMSE,
MAE and MAPE of EMD-ORELM are 26.5276

(
m3/s

)
,

19.4596
(
m3/s

)
and 0.1963 (%), which achieve an average

metric decreasing rate of 17.39% compared with ORELM.
Likewise, the metric decreasing rates of RMSE, MAE
and MAPE obtained by CEEMDAN-ORELM and VMD-
ORELM are 32.93%, 18.51%, 28.26% and 54.05%, 49.44%,
52.21%, respectively. It can be found that the performance
promotion of VMD-based model is more significant com-
pared with EMD-ORELM and CEEMDAN-ORELM, thus
demonstrating the superiority of VMD. Further compar-
ing the results of VMD-ORELM and the proposed model,
the metric RMSE of above two models are 16.843

(
m3/s

)
and 13.4975

(
m3/s

)
, respectively. Hence, the experimental

results illustrate that the MOGWO-based parameter opti-
mization can contribute to further improving the forecasting
performance. In addition, the histograms of RMSE, MAE
and MAPE are presented in Fig. 14 and Fig. 15, respectively.
It can be seen that the proposed model obtains the minimum
values among all the experimental models, thus verifying the
effectiveness of VMD and MOGWO-based multi-objective
parameter optimization.

3) DIFFERENCE ANALYSES
To further reveal the performance promotion achieved by
the proposed model, the comprehensive difference analyses

FIGURE 14. Histogram of metrics MAE and RMSE.

FIGURE 15. Histogram of metrics MAPE.

TABLE 5. Metrics R2, CE and GRA of all the models.

will be carried out in this section. To begin with, the met-
rics R2, CE and GRA of all the forecasting approaches
are presented in Table 5, which can intuitively account the
correlation between the actual values and the prediction
results of each model. As expressed in Table 5, the proposed
model are maximum values among the experimental models,
which indicates that the forecasting results of the proposed
model can converge the actual values better. Hence, afore-
inferred conclusions can be obtained here further. Further-
more, the histograms of indexes R2 and CE are depicted
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TABLE 6. Evaluation of the performance promotion for the proposed model.

FIGURE 16. Histogram of metrics R2 and CE.

FIGURE 17. Fitting curves and the corresponding error areas diagrams of
all the experimental models.

in Fig. 16, from which the conclusion obtained above can be
intuitively observed here.

Additionally, the DM-test values and the ratios of per-
formance improvement by comparing the proposed model
with the contrastive ones are exhibited in Table 6. Compared
with all the single models, the MAPE values of the pro-
posed model are decreased by 58.72%, 58.58%, 57.18% and
56.02%, respectively. Besides, the averaged reduction of all
the indexes achieved by the proposed model are 38.02%,
33.37% and 31.76%, respectively. In addition, it can be seen
from the column illustrating the DM-test values that the null
hypothesis can be accepted at the 5% significance level, indi-
cating that the proposedmodel achieves a significant diversity
with the significance level of 95%. Additionally, it can be
observed from Fig. 17 and Fig. 18 that the VMD-based hybrid
models can obtain the fitting curves that are approximate
to the actual values, while the proposed model is superior
to VMD-ORELM significantly. Meanwhile, the error curves
of all the experimental models illustrate that the proposed
approach achieves smoother fluctuations as well as distribut-
ing the forecasting error points approximately to zero points
better. Hence, following the intuitive visualization results

FIGURE 18. Diagrams of error curves for all the experimental models.

FIGURE 19. Taylor diagram for all the experimental models.

depicted in Fig. 17 and Fig. 18, it can be concluded that
both forecasting accuracy and stability can be obtained by
the proposed composite approach based on multi-objective
parameter optimization. As demonstrated in Fig. 19, Taylor
diagram [47] visualizing three statistics information simulta-
neously depicts that the proposed model can better approxi-
mate the observation point.

V. CONCLUSION
A novel forecasting structure applying VMD, ORELM and
MOGWO-based multi-objective parameter optimization is
developed in this study to achieve accurate water inflow
prediction. The application of VMD contributes to improving
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the forecasting performance significantly, where the mode
number of VMD is determined by the observation of centre
frequency distribution with different mode numbers. Besides,
MOGWO is performed to achieve multiple parameter opti-
mization for ORELM, considering the prediction accuracy
and stability simultaneously. Furthermore, the following con-
clusions can be drawn out according to the above evaluation
analyses:

1) The appropriate mode number of VMD can be effectively
determined by observing the converged center frequency
distribution under various mode numbers. Compared with
EMD and CEEMDAN, VMD possesses better decom-
position effectiveness, thus making the combined mod-
els applying VMD possess exceptional prediction results.
Therefore, the application of VMD-based feature selec-
tion technique plays a vital role in significantly enhancing
the forecasting accuracy.

2) The visible results of performing MOGWO on four com-
monly employed benchmark functions demonstrated that
MOGWO introducing the unique leadership mechanism
could obtain more Pareto optimal solutions, indicating
that MOGWO possesses better optimization ability com-
pared with the relevant competitors.

3) Accurate and stable forecasting results can be obtained
by the proposed model based on ORELM optimized
by MOGWO considering two objective functions.
Comprehensive evaluation measurements for all the
experimental models illustrated the superiority of the
application of VMD, ORELM andmulti-objective param-
eter optimization. Hence, the proposed hybrid model can
be an effective technique for water inflow forecasting,
to improve fore- casting performance with higher accu-
racy and stability.
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