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ABSTRACT This article proposes a new scrolling-text detection method that uses directional coherence
for frame rate up-conversion (FRUC). Most previous methods use either gradient information or motion
vector (MV) distribution of the frame for scrolling-text detection. Edges can be generated by non-text
components and the number of MVs to determine the scrolling-text decreases in each row of the frame.
Thus, they incorrectly detect the non-text regions as scrolling-text and cannot accurately detect the start or
end of text scrolling at the frame boundary. The proposedmethod overcomes these problems using coherence
values of edge directions for each pixel and scrolling-text-aware refinement processes. The key idea of the
proposedmethod is to use the directional coherence of edge directions and use texture patterns analysis-based
refinement to improve the accuracy of the scrolling-text detection. For refinement processes, the proposed
method extracts texture patterns as bit codes. Then, it computes the diversity of the texture patterns around
the detected text edges. In addition, the proposed method extracts the representative value of the MV for the
detected region to correct the regions falsely detected as the scrolling-text. With these refinement processes,
the proposed method can also accurately detect the start or end of text scrolling at the frame boundary. In the
experimental results, the proposed method increased the average F1 score to 0.504 (a 131.25% improvement)
compared with previous methods. The average computation time per pixel of the proposed method also
decreased to 18.571 µs (an 80.80% reduction) compared with previous methods.

INDEX TERMS Frame rate up-conversion, coherence of edge directions, scrolling-text detection, motion
estimation.

I. INTRODUCTION
Frame rate up-conversion (FRUC) is a technique that
increases the frame rate of videos by inserting interpolated
frames between two consecutive frames [1]–[4]. Interpolated
frames are generated using motion vectors (MVs) between
two consecutive frames. FRUC has been used for film-to-
video conversion to increase the frame rate of films [5]. It is
also used in liquid crystal displays (LCDs) [6] to reduce
motion blur and TV standard conversion with different frame
rates [7]. Because the fps of the input frame is varies, FRUC
is an essential technique for display systems with a predeter-
mined fps.

FRUC consists of two primary steps [1]–[4]: motion esti-
mation (ME) and motion-compensated interpolation (MCI).
ME calculates MVs of an object between two consecutive
frames and corrects the outliers in a set of MVs. MCI
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produces a new interpolated frame between two original
frames using the calculated MVs. ME is the most important
of the FRUC steps because FRUC performance is highly
dependent on the accuracy of the MVs calculated by the ME.
FRUC can generate interpolated frames with artifacts in the
regions where MV is not accurately measured. Many cases
exist in which conventional FRUC cannot generate accurate
MVs. In these cases, conventional FRUC often fails to extract
accurate MVs in the scrolling-text regions. Artifacts in the
scrolling-text regions are easier to recognize than artifacts
in other regions (Fig. 1). This is because the scrolling-text
provides vital information to the viewers. It is also easily
recognized by the human eye compared with other regions.
Therefore, the scrolling-text detection process is essential for
FRUC to perform correction of the MVs in the scrolling-text
regions to improve the quality of interpolated frames.

Generally, scrolling-text detection method consists of the
following steps. In the first step, it generates a text map.
Most previous methods use the edge magnitude of pixels
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FIGURE 1. Comparison of interpolated frames: (a) interpolated frame
with artifacts in the scrolling-text region (FRUC without scrolling-text
detection) and (b) interpolated frame without artifacts in the
scrolling-text region (FRUC with the proposed method). 
Love from Star
SBS.

and motion information in consecutive frames to quantify the
scrolling-text position in the video contents. Existing edge
detection methods [8]–[13] are widely used to extract the
edge magnitude of pixels. In the second step, it refines the
text map to determine the final scrolling-text regions.

In this article, we propose a directional coherence-based
scrolling-text detection method for FRUC. It generates a text
map using the calculated directional coherence values for
each pixel in the frame. We exploit directional coherence
values to estimate the degree of coherency of gradient orienta-
tions. Our method generates an initial scrolling-text map by
calculating the difference between the current and previous
text maps. Then, the proposed method refines the initial
scrolling-text map by analyzing the text edge density and
Local Directional Texture Pattern (LDTP) [14] of the detected
initial scrolling-text map. The mixture of edge direction and
texture patterns is used to determine the candidate regions
as the scrolling-text regions. Furthermore, we use the MV
distribution-based refinement method to correct the regions
falsely detected as the scrolling-text regions. The three con-
tributions of this article are as follows:

1) The proposedmethod uses a directional coherence con-
cept to detect the text edges. The use of directional
coherence can distinguish the text edges from highly-
textured regions or uniformly-textured (flat) regions.

2) We use a scrolling-text-aware refinement process,
which is based on the texture patterns analysis,
to improve the accuracy of the scrolling-text detection.
Based on the observation that the luminance variation
around the text pixels is large, the proposed method can
detect the scrolling-text regions using the diversity of
the texture patterns.

3) We verified the performance of the proposed method
by comparing the interpolated frames generated by the
conventional FRUC algorithm [15].

The remainder of this article is organized as follows.
Section II shows the brief review of previous methods for text
detection. Section III describes the proposed scrolling-text
detection method. In Section IV, we compared the scrolling-
text detection accuracy of previous methods with that of
the proposed method. Furthermore, Section IV presents a

quality evaluation of the interpolated frames generated by
conventional FRUC. Finally, Section V concludes the paper.

II. RELATED WORK
Text, which are found on natural scenes or video sequences,
can be categorized into two types: static-text and scrolling-
text. Various static-text detection methods in natural scenes
or video sequences have been widely investigated [16]–[20].
To identify text regions, Delaunay triangulation-based text
detectionmethod [16] that uses symmetrical featureswas pro-
posed. It detects the text edges using the fact that text edges
have many parallel edges. Then, this method detects the can-
didate text regions by formingDelaunay triangulation for cor-
ners of the edge map. Ring Radius Transform (RRT)-based
method [17] detects the multi-oriented text in natural scenes.
Histogram Oriented Moment (HOM)-based method [18]
extracts connected components and identifies text compo-
nents using a Support Vector Machine (SVM) classifier.
Then, Recurrent Neural Network (RNN)-based classifier is
used for recognition of text. Fractals-based text detection
method was proposed [19]. It uses fractal properties in the
gradient domain and separates text components from non-text
components. Fourier-Laplacian transform-based text detec-
tion method [20] that includes a verification technique using
Hidden Markov Model (HMM) extracts the candidate text
region. After extracting the text candidate regions, it verifies
the final text regions using the HMM-based classification.
The above existing methods are mainly related to static-text
detection in natural scenes or video sequences. Unlike these
methods, this article focuses on developing the scrolling-text
detection method with emphasis on the FRUC application.

Scrolling-text detection is process of detecting the
scrolling-text from a video to reduce the artifacts that are fre-
quently caused by scrolling-text in FRUC. Several scrolling-
text detection methods have been proposed [21]–[25]. The
edge information-based scrolling-text detection method [21]
detects scrolling-text depicted on the horizontal or vertical
regions of the frame boundary by projecting the edge infor-
mation obtained from a Sobel edge detector [12] on the
horizontal or vertical axis. This method exploits the concept
that scrolling-text regions have a high edge density. It detects
scrolling-text accurately if the scrolling-text exists entirely in
the horizontal or vertical direction on a simple background
of the given frame. However, this method incorrectly detects
highly-textured regions as scrolling-text because the edges
generated by non-text components can be included in the
projection results. Furthermore, it cannot accurately detect
scrolling-text when it begins to scroll from the frame bound-
ary or when it ends scrolling at the frame boundary because
edge density described by the projection for these types of
text is low.

The MV distribution-based scrolling-text detection
method [22] extracts the MVs in each row of the frame
and finds dominant MV directions for each row of the
frame to detect scrolling-text. This method is straightforward
because it only extracts the MV direction in each row of
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the frame boundary and can be applied easily to FRUC.
However, because the number of MVs available to deter-
mine the scrolling-text regions decreases in each row of the
frame boundary, it is difficult to extract the MV direction of
scrolling-text that appears or disappears at the start and end
points in the row region of the frame. Therefore, this method
cannot detect scrolling-text that appears or disappears at the
start or end points of the frame boundary.

An adaptive temporal differential-based detection
method [23] has been proposed to improve the detection accu-
racy of scrolling-text detection. It calculates the difference
between the edge map of the previous and current frames
obtained from a Roberts edge detector [13]. Then, the den-
sities of the edge difference map at the four frame boundary
regions (top, bottom, right, and left) are calculated to detect
the scrolling-text. If the edge density of each frame boundary
region is high, the method determines the detected edges
as scrolling-text in the frame boundary region. This method
provided high performancewhen the background of the entire
horizontal scrolling-text was simple. However, it requires
ten previous frames to calculate the edge difference map of
the current frame. Moreover, because the edge densities for
four frame boundary regions are not high when scrolling-
text appears or disappears at the start or end point of the
frame boundary, this method cannot detect these types of
scrolling-text.

The Histogram Oriented Moments descriptor-based
method [24] for scrolling-text detection identifies the direc-
tion of the edges and detects scrolling-text. The central
concept of this method is that the number of dominant orien-
tations that point towards the centroid of the connected com-
ponents is larger than the number of dominant orientations
that point away from the centroid of the connected compo-
nents. Furthermore, it uses the Combined Local-Global opti-
cal flow method [26] to extract MV information of candidate
scrolling-text regions in two consecutive frames. It detects the
final scrolling-text regions by comparing themotion direction
of the candidate regions with the typical direction in which
scrolling-text flows (horizontal or vertical). This method
demonstrated improved the performance of the scrolling-
text detection compared with previous methods [21]–[23].
However, this method is insufficient for detecting text edges
because text edges exist that do not satisfy the new hypothesis
used in this method [24]. Therefore, it does not provide robust
performance for various types of scrolling-text.

Most recently, a text edge detector method [25] based on
the concept of a region-adaptive threshold has been proposed.
The central concept is that text edges are more likely to exist
in a region with a higher luminance variation. Therefore, this
method increases the probability of determining the given
pixel as a text edge pixel by setting the threshold value for
text edge detection inversely proportional to the luminance
variation for a given region. This method detects the text
edges in the current frame and the previous frame using a
region-adaptive text edge detector. Then, it calculates the
difference between the text edge maps of the previous and

the current frames and detects the final scrolling-text area
using edge density, edge orientation, and MV distribution
analysis of the detected text regions. This method success-
fully detects the scrolling-text that appears or disappears
at the start and end points of the frame boundary and the
entire horizontal scrolling-text compared with previous meth-
ods [21]–[24]. However, the region-adaptive text edge detec-
tor can falsely detect highly-textured regions, which have
sharp edges, as scrolling-text. Consequently, the accuracy of
this method can be further improved.

III. PROPOSED METHOD
The FRUC architecture that uses the proposed scrolling-text
detection method consists of four steps (Fig. 2 (a)):

1) RGB-to-YCbCr conversion: FRUC converts the RGB
color space of the input frames to the YCbCr color
space.

2) ME and MV correction for the scrolling-text region:
The FRUC method [15] extracts the Y image (lumi-
nance) and calculates MVs information of the current
Y image for each block using the previous and current
Y images. Then, FRUC uses the proposed scrolling-
text detection method and performs MV correction on
the scrolling-text regions obtained from the proposed
method to make the initial MVs of the detected region
to the MVs of the scrolling-text if they are different.

3) MCI: The MCI generates the interpolated frame using
the final MVs in the YCbCr color space.

4) YCbCr-to-RGB conversion: The YCbCr color space of
the interpolated frame is converted to the RGB color
space.

The proposed scrolling-text detection method consists of
three steps (Fig. 2 (b)):

1) Generation of the text edge map
2) Generation of the initial scrolling-text map
3) Refinement of the scrolling-text map.

The detailed operations of the proposed method are
described in this section.

A. GENERATION OF THE TEXT EDGE MAP
The purpose of scrolling-text detection is to detect the posi-
tion of text moving horizontally or vertically in the boundary
area of the given frame. For a region with text, the spatial
variation in luminance of the text regions is larger than in
other regions. Furthermore, the text region generally has a
dominant orientation of edges. Based on these observations,
the text regions can be extracted by analyzing the spatial vari-
ation in luminance and the dominant orientation component
of the region. However, the method uses a first-order gradient
that considers the relationship between only two adjacent
pixels, which often detects highly-textured regions as text.

Therefore, we adopt directional coherence to extract
regions with a dominant edge orientation and significant
spatial change in luminance (Fig. 3). We focus on directional
coherence rather than directly using gradient information,
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FIGURE 2. (a) Architecture of FRUC using the proposed scrolling-text detection method and (b) process of the proposed scrolling-text detection method.

Love from Star SBS.

which is unreliable for highly-textured regions. The pat-
terns of direction generated from the center and surrounding
regions can provide a suitable approximation of the underly-
ing image structure, which is coincides with text edges. The
proposed method extracts the text edges using a structure ten-
sor, which efficiently summarizes the dominant orientation
and the energy along this direction based on the local gradient
field, defined as follows:

Tks (i) =

 ∑
j∈Bi

I kx (j)
2

∑
j∈Bi

I kx (j)I
k
y (j)∑

j∈Bi
I kx (j)I

k
y (j)

∑
j∈Bi

I ky (j)
2

 , (1)

whereTks (i) denotes the structure tensormatrix of pixel i at the
k-th frame, and I kx and I kx denote the gradient in the horizontal
and vertical directions at the k-th frame, respectively. Bi
denotes the neighbor region centered at the i-th pixel position.
The block size Bi was set to 5 × 5 pixels experimentally.

The effectiveness of the structure tensor defined in (1)
for our task stems from the fact that the relative discrep-
ancy between two eigenvalues (λ1 ≥ λ2 ≥ 0) of Tk

s (i)
indicates how intensively gradients in the local region are
distributed along the dominant direction (the degree to which
those directions are consistent). Gradients with text edges are
strongly distributed along the dominant direction compared
with uniform or highly-textured regions (Fig. 3). Therefore,
the proposed method defines directional coherence at each
pixel position as follows:

ξ = (λ1 − λ2) . (2)

FIGURE 3. Directional coherence values obtained from original image:
(a) original image and (b) directional coherence values for each pixel
(Note that directional coherence value of the scrolling-text or text region
is much larger than that of flat and highly-textured regions). 
Running
Man SBS.

The value ξ represents the degree of coherence of the
edge directions. Therefore, the larger the ξ value, the
higher the directional coherence. If directional coherence for
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FIGURE 4. Generation of the text map using directional coherence
values: (a) original image and (b) text edge map (Black pixels denote
non-text regions and white pixels denote text regions). 
Secret Garden
SBS.

the (i, j)-th pixel is larger than a threshold value T1, we deter-
mine the (i, j)-th pixel as the text edge, defined as follows:

TMi,j =

{
1, if ξi,j > T1,
0, otherwise,

(3)

where TMi,j denotes the text edge for the (i, j)-th pixel, and
T1 denotes the predefined threshold value, set to 1500 exper-
imentally to maximize the F1 score, which is an evaluation
metric used to measure the accuracy of the scrolling-text
detection. The T1 value in (3) is important role to generate a
robust text edge map. The proposed method uses the concept
of directional coherence to generate a more desirable text
edge map while suppressing textured regions in the given
frame (Fig. 4).

B. GENERATION OF THE INITIAL SCROLLING-TEXT MAP
The proposed method generates an initial scrolling-text map
using the previous and current text maps obtained from the
previous step. Before the generation of the initial scrolling-
text map, because scrolling-text generally exists within the
frame boundary, the result of text map detection in the frame
boundary regions is considered to detect the scrolling-text,
as in previous papers [21]–[25]. A temporal difference exists
between the scrolling-text regions of consecutive frames. The
proposed method captures such difference by comparing the
previous and current text maps.

Accordingly, we calculate the text map difference between
the previous and current frames. By calculating the text
map difference, the proposed method can remove the static
edge regions and preserve the regions with only moving or
scrolling-text pixels. The result of the text edge difference
map for the current and previous frames highlights the gaps
between two different text edges in the scrolling-text regions
(the gaps represent zero points between two text edges
in Fig. 5(a)).

The proposedmethod generates the connected components
of the text edges in the result of the text edge difference
map by performing a hole-filling process [25], which fills the
edges on the gap between two different edges in the result of
text edge difference map. In this process, the hole is the gap
between two different edges in the same row on the result
of the text edge difference map. If the hole is smaller than

FIGURE 5. Generation of the initial scrolling-text map: (a) text maps
difference using the current and the previous frames and (b) result of
hole-filling process. 
Secret Garden SBS.

a predetermined threshold (T2), we fill the edges with the
corresponding gap (Fig. 5 (b)). The threshold value T2 was set
to 32 pixels, as in [25]. The concept of the hole-filling process
is to connect the gaps between two different sets of text so that
the proposed method can detect consecutive scrolling-text as
one block with emphasis on the use of FRUC.

C. REFINEMENT OF THE SCROLLING-TEXT MAP
After generating the initial scrolling-text map, we need
to remove the falsely-detected regions using the proposed
refinement process. The refinement process consists of the
analyses of the connected text edge size, text edge density
and LDTP [14], MV distribution, and text map projection.

For the first refinement, the size of edges containing
scrolling-text is larger than that of other regions. The pro-
posed method uses this concept for the first refinement pro-
cess by removing the scrolling-text region if its length is
shorter than a predefined length (T3). The threshold value T3
was set to 64 empirically by observing the minimum size of
scrolling-text region [25].

For the second refinement, the scrolling-text region gen-
erally has a higher edge density than other regions. Further-
more, it has both various principal directions and a large
luminance difference. Based on these observations, we esti-
mate the text edge density and texture patterns. We use LDTP
analysis [14] to efficiently describe the texture patterns of
the text edges and the luminance variation in the candidate
scrolling-text regions. We compute LDTP by calculating the
principal directional numbers of the neighborhood using the
Kirsch compass masks [27] in eight different directions:

P1dir = argmax
i
{Ci|0 ≤ i ≤ 7} , (4)

where P1dir is the principal directional number, and Ci is the
absolute value of the convolution of the image I , with the i-th
Kirsch compass mask,Mi, defined as follows:

Ci = |I ∗Mi| , (5)

where ‘‘∗’’ denotes convolution operation of the image with
the Kirsch compass mask (filter). Note that ‘‘|. |’’ denotes
absolute operation of multiplication between two variables.
In [14], the absolute value of the eight Kirsch mask’s
responses in computed accordingly. The second directional
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FIGURE 6. Refinement of the scrolling-text map: (a) original image, (b) first refinement result of the scrolling-text map, (c) final refinement result of the
scrolling-text map, and (d) scrolling-text in the detected scrolling-text region. 
Secret Garden SBS.

number P2dir is computed in the same way by extracting
the second maximum response in (4).

For each principal direction, LDTP calculates the lumi-
nance difference between the pixels in the principal direction
as follows:

Dni,j = pni,j − q
n
i,j, (6)

where Dni,j is the n-th difference for the pixel (i, j) in the n-th
principal direction, and pni,j and q

n
i,j are the luminance values

of the principal direction and opposite principal direction
positions among the eight neighborhood pixels with respect
to pixel (i, j), respectively. The method for calculating these
local differences is equivalent to that of thresholding in Local
Binary Pattern (LBP) [28].

In contrast to the binary coding of LBP, LDTP codes
the difference using three levels (negative, equal, and pos-
itive). If Dni,j is larger than a predefined threshold value, ε,
the LDTPmethod encodes a 2 whereas ifDni,j is smaller than–
ε, it encodes a 1. If Dni,j is between the –ε and ε values,
LDTP encodes a 0. By representing these three levels, LDTP
can represent a more distinctive code for the neighborhood.
A threshold value ε was set to 15, as in [14].
Next, we compute the number of different LDTPs to

consider both principal direction and luminance variation
around the text edge pixel. Because LDTP considers Kirsch
compass masks [27] in eight different directions and codes
luminance difference for two principal directions using three
levels, the total number of potentially different LDTPs is
8 × 3 × 3 = 72. The proposed method enlarges the code
length by considering the third principal directional and
luminance difference for more diverse and potential LDTP
representation. The length of the code used in the proposed
method is 8 × 3 × 3 × 3 = 216. Then, we combine
the text edge density and diversity degrees of the LDTPs to
define the candidate region characteristic for use in the second
refinement, as follows:

RCi = TEDi × LDTPi, (7)

where RCi, TEDi, and LDTPi denote the i-th candidate region
characteristic, the text edge density, and degree of differ-
ent LDTPs for the candidate region. The proposed method
removes the i-th candidate regions if its RCi is smaller than

the predefined threshold value T4. The threshold value T4,
was set to 0.08 based on various experimental results.

For the third refinement, the MVs for the scrolling-
text region have the same direction as the typical motion
of scrolling-text. Based on observation, we can eliminate
false detection. The proposed method removes the candidate
scrolling-text regions using the results of the MV distribution
analysis. The MVs of each candidate region are accumulated
in an MV histogram. Then, the proposed method detects the
peak value of theMVhistogram to represent theMVdirection
in the candidate region. The proposed method removes the
candidate region if the motion direction of peak value in MV
histogram for each candidate region is distinctively different
from the typical direction of the scrolling-text (horizontal or
vertical).

For the fourth refinement, we use a projection of the can-
didate regions obtained from the third refinement because
most of scrolling-text is placed horizontally in the video,
the vertically longer candidate regions can be eliminated.
The horizontal projection is performed to accumulate all the
candidate region pixels in each row to form a histogram of
the number of detected pixels. If the number of candidate
region pixels among the pixel rows is small, the detected row
is removed to refine the detected scrolling-text region. Based
on this refinement process, the proposed method can improve
the accuracy of the scrolling-text detection further.

Finally, it is reasonable to consider that a scrolling-text area
is generally rectangular. Consequently, the proposed method
generates each of the remaining candidate areas into the
smallest rectangle by linking four points of the remaining
candidate regions to contain all candidate regions (Fig. 6).

IV. EXPERIMENTAL RESULTS
We conducted experiments to evaluate the performance of the
proposed and the previous scrolling-text detection methods.

First, we visually evaluated the quality of the interpolated
frames generated by FRUC using the proposed and the previ-
ous scrolling-text detection methods.We focus on developing
the scrolling-text method to be used with FRUC. The block
size of 8 × 8 pixels (standard for FRUC applications) and
the search range size (a range in which the search can be
performed around the current block) of 16 pixels are most
widely used in the FRUC applications. Therefore, we set the
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FIGURE 7. Interpolated frames generated using two consecutive frames from JVC sequences generated by: (a) TSTD [21], (b) GSTD [22], (c) HSTD [23],
(d) KSTD [24], (e) LSTD [25], and (f) proposed scrolling-text detection method. 
JVC.

block size of the FRUC to 8 × 8 pixels [1], [29], [30] and
the search range size of the FRUC to 16 pixels [1], [31],
respectively.

Second, we assessed the accuracy of the proposed and the
previous scrolling-text detectionmethods using Precision (P),
Recall (R), and F1 score (F1) [32]–[35]. These evaluation
metrics are defined as follows:

P =
Num(D ∩ GT )

Num(D)
, R =

Num(D ∩ GT )
Num(GT )

,

F1 = 2×
P× R
P+ R

, (8)

where D and GT denote a scrolling-text region detected
by each method and the ground truth rectangle region of
scrolling-text, respectively. Symbol∩ represents the intersec-
tion of two groups. Num(·) denotes the number of pixels in a
group. We evaluated the performance of scrolling-text detec-
tion at the rectangle level to ensure its usefulness with with
FRUC techniques. F1 is an evaluation metric that considers
P and R. The range of F1 is from 0 to 1, where 1 is the best
score.

Third, we measured the computation times of the proposed
and previous scrolling-text detection methods. As the per-
formance of previous methods to compare the performance
of the proposed method, we used five previous methods:
Tsai’s scrolling-text detection (TSTD) [21], Gim’s scrolling-
text detection (GSTD) [22], Hsia’s scrolling-text detection
(HSTD) [23], Khare’s scrolling-text detection (KSTD) [24],

and Lee’s scrolling-text detection (LSTD) [25]. LSTD is the
most state-of-the-art scrolling-text detection method.

For all previous methods, we optimized various param-
eters and set to the values guided by the corresponding
papers [21]–[25]. Various parameters used in the proposed
method were also optimized to values based on various exper-
iments. For the test sequences, we used video sequences
[25] containing various types of scrolling-text: scrolling-text
beginning or ending at the frame boundary, scrolling-text that
occupies the entire row region of the frame boundary, blurry
scrolling-text, and well-distinguished scrolling-text from the
background.

In the first experiment, we visually compared the quality
of the interpolated frames generated by conventional FRUC
[15] using the previous and proposed methods (Figs 7–8).
TSTD [21], GSTD [22], HSTD [23], and KSTD [24] could
not detect the scrolling-text starting at the frame boundary.
Hence, because these methods cannot correct incorrectly-
estimated MVs in the scrolling-text regions, they generate
severe artifacts at the scrolling-text region in the interpolated
frames during FRUC. For LSTD [25], the accuracy of the
scrolling-text detection was higher than those of TSTD [21],
GSTD [22], HSTD [23], and KSTD [24]. However, when
this method was applied to FRUC, it generated artifacts in
the scrolling-text regions (Fig. 7 (e), Fig. 8 (e)). In contrast,
the proposed method was able to detect various types of the
scrolling-text that occupies the entire row region of the frame
boundary (Fig. 7) or that begins to scroll from the frame
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FIGURE 8. Interpolated frames generated using two consecutive frames from Secret Garden 2 sequences generated by: (a) TSTD [21], (b) GSTD [22],
(c) HSTD [23], (d) KSTD [24], (e) LSTD [25], and (f) proposed scrolling-text detection method. 
Secret Garden SBS.

TABLE 1. Comparison of the scrolling-text detection accuracy of the proposed and previous methods using precision, recall, and F1 score.

boundary (Fig. 8). Thus, FRUCwith the proposedmethod can
generate high-quality interpolated frames in the scrolling-text
regions (Fig. 7 (f), Fig. 8 (f)).

In the second experiment, we evaluated the accuracy of
scrolling-text detection of the previous method and the pro-
posed method using P, R, and F1 [32]–[35]. We counted
the number of pixels in the scrolling-text regions and the

number of pixels in ground truths for each video sequence
and calculated F1. TSTD [21], GSTD [22], and HSTD [23]
use edge or MV information of the image for scrolling-
text detection but have difficulty detecting the scrolling-text
that appears or disappears at the start or end point of the
frame boundary. Therefore, these methods [21]–[23] had a
lower F1 than the other methods [24], [25]. KSTD [24] and

VOLUME 8, 2020 182051



H. S. Lee, S. I. Cho: Directional Coherence-Based Scrolling-Text Detection for FRUC

TABLE 2. Average computation time per pixel of the proposed and
previous methods.

LSTD [25] were more accurate at detecting scrolling-text and
preserving a high F1 compared with TSTD [21], GSTD [22],
and HSTD [23].

The proposed method improved the accuracy of the
scrolling-text detection even further when compared with
previous methods [24], [25] (Table 1). F1 of the pro-
posed method was 0.504 (a 131.25% improvement), 0.229
(a 34.78% improvement), 0.210 (a 21.40% improvement),
0.147 (a 19.84% improvement), and 0.032 (a 3.74% improve-
ment) higher than those of TSTD [21], GSTD [22], HSTD
[23], KSTD [24], and LSTD [25]. The improvement was cal-
culated by dividing the increment of F1 (F1 of the proposed
method minus F1 of the previous method) by the original F1
for the previous method. This improvement by the proposed
method could be attributed to the use of directional coher-
ence values for each pixel in the given image to distinguish
text regions from highly-textured regions. Moreover, the pro-
posed method used four types of refinement methods to elim-
inate non-scrolling-text regions from the initial scrolling-text
map. With these refinement processes, the proposed method
could accurately detect the start or end of text scrolling at the
frame boundary.

In the third experiment, we compared the computation time
per pixel (CT [µs]) of the previous and proposed methods.
The proposed method reduced the average CT by 18.571 µs
(an 80.80% reduction) and 4.873 µs (a 52.48% reduction)
compared with the KSTD [24] and LSTD [25], respectively
(Table 2). TSTD [21], GSTD [22], and HSTD [23] are rel-
atively simple methods, so the average CT is fast, but the
F1 score is low when compared with that of the proposed
method.

V. CONCLUSION
In this article, we proposed a new scrolling-text detection
method that uses directional coherence with a scrolling-text-
aware refinement technique for FRUC. The central concept
of the proposed method is to use the directional coherence
of each pixel to distinguish the scrolling-text pixels from
textured regions and use refinement processes to detect text
appearing and disappearing at the start and end points of the
frame boundary.

The proposed method calculates coherence values of edge
directions for each pixel to represent the text map. It generates
an initial scrolling-text map by calculating the difference
between the current and previous text maps. Then, the pro-
posed method refines the initial scrolling-text map by analyz-
ing the texture patterns and MV distribution for the detected

text regions. Furthermore, it uses the text map projection to
enhance the accuracy of the scrolling-text detection.

The benefits of the proposed method were evaluated in
terms of scrolling-text detection accuracy and processing
time on the various video sequences.

The experimental results demonstrated that the average F1
of the proposed method was up to 0.504 (a 131.25% improve-
ment) higher than those of previous methods. The averageCT
of the proposed method was up to 18.571µs lower than those
of the previous methods (an 80.80% reduction). Furthermore,
FRUC using the proposed scrolling-text detection method
could generate the highest-quality interpolated frames for the
scrolling-text regions compared with previous methods.
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