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ABSTRACT Proliferative diabetic retinopathy (PDR) is an advanced diabetic retinopathy stage, char-
acterized by neovascularization, which leads to ocular complications and severe vision loss. However,
the available DR-labeled retinal image datasets have a small representation of images of the severest DR
grades, and thus there is lack of PDR cases for training DR grading models. Additionally, the criteria for
labelling these images in the publicly available datasets is not always clear, with some images which do
not show typical PDR lesions being labeled as PDR due to the presence of photo-coagulation treatment and
laser marks. This problem, together with the datasets’ high class imbalance, leads to a limited variability
of the samples, which the typical data augmentation and class balancing cannot fully mitigate. We propose
a heuristic-based data augmentation scheme based on the synthesis of neovessel (NV)-like structures that
compensates for the lack of PDR cases in DR-labeled datasets. The proposed neovessel generation algorithm
relies on the general knowledge of common location and shape of these structures. NVs are generated and
introduced in pre-existent retinal images which can then be used for enlarging deep neural networks’ training
sets. The data augmentation scheme was tested on multiple datasets, and allows to improve the model’s
capacity to detect NVs.

INDEX TERMS Data augmentation, deep learning, neovascularization, proliferative diabetic retinopathy.

I. INTRODUCTION
Diabetic retinopathy (DR) is a complication of diabetes and
it constitutes a leading cause of blindness worldwide [1],
[2]. In 2030, 552 million people are expected to suffer from
diabetes [3]. The majority of visual loss cases can be pre-
vented with early detection and adequate treatment [4], [5].
The earliest diabetes-related changes in the retina are often
imperceptible and have minimum impact in the vision [6],
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and thus approximately one third of the diabetic patients
have DR but show no symptoms, leading to the progression
of the disease untreated. Contrastingly, proliferative diabetic
retinopathy (PDR) is an advanced stage of DR, leading to
ocular complications and severe vision loss in many devel-
oped countries [7]. PDR is characterized by the appearance
and growth of newly formed vessels, neovessels (NV), on the
retina or optic disc (OD) that extend along the retinal sur-
face or into the vitreous cavity, increasing significantly the
risk of vision loss [7], [8]. There is also a strong correlation
between PDR and uncontrolled systemic disease [7], [9].
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Regular check-ups via DR screening programs are essen-
tial for detecting the disease as early as possible and
determining the adequate treatment. Specialists search for
abnormalities in the retina and classify the severity of the
disease according to the findings. However, the diagnosis
process is prone to errors due to the large number of patients
to be observed, poor image acquisition and variety of lesions
to analyse. Computer-aided diagnosis (CAD) systems can
improve the DR screening pipeline both reducing the bur-
den [10] and providing a second opinion to the ophthalmolo-
gists, reducing diagnosis’ subjectivity [11], [12].

Deep learning has recently allowed for CAD systems to
achieve near-human performance in DR detection. DR grad-
ing, i.e. staging of the pathology according to its severity,
is a more complex task since it requires the identification
and integration of different lesions. Generaly, DR is classi-
fied accordingly to the international DR scale as mild non-
proliferative DR (NPDR) (R1), moderate NPDR (R2), severe
NPDR (R3) or PDR (R4) [1], ordered according to their
risk of progression [13]. Despite the task’s complexity, sev-
eral works have shown promising performance [14]–[16].
Namely, Araújo et al. [16] proposed a model (DR|Graduate)
that not only produces a grade but also an uncertainty asso-
ciated with the prediction and an attention map that explains
the decision. However, the proposed model tends to fail to
detect R4 graded images. One of the problems with the
DR|Graduate learning phase is the association of photo-
coagulation treatment and laser marks to R4. This follows the
training set labels, since training images which do not show
R4 signs, such as NVs and pre-retinal hemorrhages, are still
labeled as R4 due to the presence of photo-coagulationmarks.
The R4 detection problem is further exacerbated by the high
class imbalance in the datasets, since there is a limited vari-
ability of the samples, which the data augmentation and class
balancing scheme were not able to mitigate.

A possible solution to attenuate this R4-labeling and the
class balancing problems is to augment the training data by
generating new synthetic images from a given grade, i.e., with
specific lesions. Several studies have focused on the gener-
ation of artificial eye fundus images [17]–[19], commonly
taking advantage of generative adversarial networks (GANs)
to generate either an image or a portion of an image con-
taining the structures of interest. The majority of the works
use segmented anatomical structures, namely the vasculature,
to guide the generation. For instance, [18] has proposed an
end-to-end adversarial retinal image synthesis that allows to
generate artificial retinal images that are anatomically consis-
tent, which is trained on pairs of retinal images and vessel tree
segmentations. However, the method only generates healthy
images, of size 256 × 256 pixels, which is low given the
common resolution of acquired images. Although the gen-
erated vessels have an overall consistent appearance, they
often present interruptions and width inconsistencies along
the vessels. Indeed, the quality of the generated images may
not be enough when considering the need to distinguish small
structures such as DR lesions.

Other researchers have addressed the non-healthy retinal
image generation. Pujitha and Sivaswamy [20] proposes a
GAN-based method to generate images with hemorrhages.
The method requires vessel tree and lesion binary annota-
tions for training the model. A new retinal image can be
synthesized by providing the model the vessel tree and lesion
(hemorrhage) masks. In the work of [19] the authors incor-
porated style transfer into the framework. They examined
pathological cases, using as style reference images with DR
and other pathologies. However, the results were not con-
sidered acceptable, with retinal images not being properly
replicated.

Despite producing overall plausible retinal images, these
systems present several drawbacks. For instance, they require
training data with pixel-wise annotations, which are costly
to obtain. Also, the training set variability determines the
generation capability of the model [18]. Further, the high
computational requirements often hinder the quality of
the generated images, particularly providing low resolution
images which do not much the higher resolutions in the
retinographs. Additionally, as referred, these works often
rely on the retinal vasculature for image generation and for
evaluating its plausibility. However, the synthesized images
do not present clinically accepted vessel networks [21]. Also,
to our knowledge the generation of pathological images
from a given DR grade, with a given lesion type, is not yet
achieved [21]. The work of [20] suggested that it was possible
to generate images with different number of hemorrhages, but
it did not explore further its capability of generating images
with other lesions types.

We propose an heuristic-based data augmentation scheme
based on NV-like structures generation that compensate for
the lack of PDR cases in DR-labeled datasets. The proposed
neovessel synthesis algorithm relies on the general knowl-
edge of common location and shape of these structures. NVs
are generated and introduced in pre-existent retinal images
which can then be used for enlarging deep neural networks’
training sets. Training with this type of data augmentation
allows to increase detection of real NVs in independent test
sets.

II. METHODS
The NV-based data augmentation starts with the genera-
tion of prototype NVs using a semi-random graph-based
approach. The resulting graphs are processed having into
account the type of vessel and the location insertion, as sum-
marized in Fig. 1. The processing includes moving the graph
to the pixel-space, adjusting vessel width according to the
branching of the structure, rotation and color matching to
nearby vessels. Each step of the algorithm is detailed in the
remaining of the section.

A. INSERTION LOCATION
NVs occur anywhere in the retina, but they are most com-
mon posteriorly, within 45 degrees of the OD [7]. They
are particularly common on the OD itself. In the Diabetic
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FIGURE 1. Pipeline of the proposed neovessel generation algorithm and insertion in the retinal image.

Retinopathy study (DRS) [7], out of 1377 PDR eyes 15%
had NV only on the OD or less than 1 OD diameter from
the OD (NV on disc), 40% had NV only outside this zone
(NV elsewhere), 45% had NV in both zones. NVs often lie
over veins and appear to drain into them [7]. Sometimes
NVs grow for several OD diameters across the retina without
forming proeminent networks, commonly arising from the
OD. In these cases, they are only distinguishable from normal
vessels due to their capability of crossing both arterioles and
veins [7].

The region of interest (ROI) and location of where the
generated NV is inserted is based on the statistical behavior
of the pathology. Following the DRS statistics, the probability
of inserting generated NVs only in the OD or surrounding
region was set to 0.15, only elsewhere 0.40, and on both
sites 0.45. The area of the ROI was set to 25% of the
image size to properly capture the characteristics of the local
vasculature.

1) VESSEL SEGMENTATION
In order to ensure a more natural introduction, NVs were
only inserted on pixels located on vessels. This goes in line
with the fact that NV often lie over retinal veins. In order to
determine which image pixels belong to vessels, a rough ves-
sel segmentation was performed based on Otsu thresholding
on the image’s green channel, preceded by the application
of a bottom hat operator. We call this the vessel segmented
image Mvessels. To perform A/V segmentation would be a
much more complex task and it is out the scope of this study.
A more sophisticated deep learning vessel segmentation
method based on a U-Net was also explored in initial
tests, but the improvement in the vessel segmentation did
not lead to an improvement in the performance of the

DR grading algorithm, and thus the simpler approach was
chosen.

2) OPTIC DISC SEGMENTATION
For segmenting the OD the UOLO framework was used,
proposed by Araújo et al. [22] for the simultaneous detec-
tion and segmentation of structures of interest in medical
images. It consists of an object segmentation module which
intermediate abstract representations are processed and used
as input for object detection. UOLO was validated for OD
segmentation on different public datasets. The binary image
with the segmented OD is herein referred to asMOD.

B. QUANTITY
The number of introduced NVs is determined by randomly
selecting a probability threshold value. Initially the probabil-
ity of inserting a NV is set to one, and is updated after each
insertion (decreased by a factor of ×0.65). The generation-
insertion process continues until this probability reaches the
pre-determined probability threshold and no further NVs are
introduced. This update rule was selected since it allows a
non deterministic choice of the number of neovessels to be
inserted. The probability decay parameter value was chosen
experimentally in order to allow the insertion of a plausible
number of NVs, accordingly to the usual appearance of true
PDR imageswithNVs. Themost common number of inserted
neovessels per image is 3 (average of 3 ± 2 NVs/image).
This value seems adequate considering that 1) there is some
redundancy, and having images with more than one NV may
be better for training the network since it promotes activations
on different regions and vessel types on the same image,
which we believe that leads the network to learn more generic
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FIGURE 2. Semi-random neovessel generation algorithm’s parameters example. b is the current branch offspring level, p are the points composing the
branch, α is the angular range limit to where the current branch can grow, dmin and dmax are the minimum and maximum distance between two
sequential points, δ is the randomly selected distance, c is the number of offspring branches and Ls are the number of points between branching
offspring.

representations of the NVs, and 2) having a very high number
of NVs would make the image non realistic.

C. SEMI-RANDOM NEOVESSEL GENERATION
The NV generation algorithm assumes that NVs are com-
posed of branches, similarly to trees. On a tree, there is
a main branch (trunk) from which several other branches
can spurt. The amount, location, orientation and growth of
child branches is dependent on the type of tree (or NV).
By their turn, in a recursive process, the child branches can
generate offspring. Generically, the algorithm operates by
iteratively generating points on the Cartesian space on a
parent branch. At each iteration, there is the possibility that
the point belongs to a new child branch, affecting the position
and distance of all sibling points thereafter. Once a growth
limit has been achieved, the child branch ends and the growth
of the parent branch continues.

Formally, let b ≤ bmax define the current branch off-
spring level, composed by an iteratively growing set of points
Pb = {p0, . . . , pi, . . . , pc} in the Cartesian x,y space. Each
offspring level b (c ,Ls , α, pα,D) has a set of properties
that affect the behaviour of the branch: 1) c, with Cb =
{cmin, . . . , cmax} ∈ N R

←− c, is the number of child branches
that will offspring from the current branch of level b, ran-
domly selected from a set of integers Cb between cmin and
cmax; 2) Ls, which is the number of points added between
two offspring branches, with |Ls| = c; 3) α, the angular
range limit where pi can occur in relation to pi−1; 4) pα ,
which controls the probability of changing the sign of α;
5)D = {dmin , dmax , ddecay} is a set of distance related param-
eters, where dmin and dmax are the minimum and maximum
distances between two sequential points, respectively, and
ddecay is a iteration-wise distance growth factor; Each point
p (θ, δ, s)b ,i has a behaviour inherited by the branch level
b and the previous point pb ,i: 1) θb,i = θb,i−1 + θ̂ , where
θ̂ ∈ [αb , 0] ∨ θ̂ ∈ [0, αb], corresponding to the absolute
angle in relation to the origin of the referential where pi will

be located; 2) [dmin , dmax]
R
←− δ×d i−1decay corresponding to the

distance between pb ,i and pb ,i−1 and; 3) s, true when i ∈ Ls,

is a boolean indicating if the point will originate a new child
branch. Branch growth can be done using different update
rules. In this work, points p can result from a linear coordinate
update (xi = xi−1+cos(θ)×δ, yi = yi−1+sin(θ)×δ) or from
a logarithm spiral-like curve update (x = aekθ cos θ × δ, y =
aekθ sin θ × δ, where a and k are pre-defined constants). Due
to the recursive nature of the method, the maximum number
of branching levels b, bmax has to be limited. Otherwise,
the vessels would grow indefinitely. An exemplification of
some of the main parameters is shown in Fig. 2. Illustrative
step-wise examples of NVs generation are shown in Fig. 3.
Changing the hyperparameters that control the range of pos-
sible orientations, distances, number of points and number of
branches allows to obtain different NVs types.

The generated NV structures are iteratively converted to
the pixel space starting from the lowest branch level b. First,
a randomly selected scale factor (between 2 and 6) is applied
to the generated NVs in order to increase the range of possible
sizes of these structures. Then, for each b, the coordinates of
the points are rounded to the nearest integer. The resulting
structure is dilated using as structuring element a disk of
radius ∝ 1/b and smoothed with a Gaussian filter. The
insertion of the pixel represented NV,NVim, on the eye fundus
image is detailed in Section II-D.

1) SHAPE
New vessels often resemble carriage wheels, radiating from
the center of the structure to a circular boundary. They may
also be irregularly shaped and not present this radiating
pattern. Initially, NVs may be barely visible, but later their
caliber is commonly 1/8-1/4 that of a major retinal vein at the
disc margin, and occasionally be as large as these veins [7].

Despite NVs may present a high variety of shapes, we con-
sidered three different main types of shapes: tree-like, wheel-
like and broom-like. The first shape resembles a simple tree,
with relatively light branching. The broom shape has a more
dense appearance and grows mainly in a given angular range.
The wheel shape differs from the broom since it can grow
in the full 2π rad angular range and its branches may end
in curly structures. Different sets of parameter values were
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FIGURE 3. Examples of step-wise generation of artificial neovessels for the different considered shapes.

TABLE 1. Ranges and values of the semi-random generation algorithm parameters for each of the considered neovessel shapes. All shapes have three
levels (b ∈ {0,1,2}). The coordinate update rule is always linear, except for the wheel-like shape, for which the spiral update rule is used in the last level
(b = 2)). Also, pα = 0.5, except for the wheel at b = 2 where pα = 0 to promote curling. ddecay = 0.95, except for the wheel where ddecay = 1.

selected to associate with each distinct NV shape. These three
main shapes are shown in Fig. 3. Table 1 presents a summary
of the values/ranges of the most relevant parameters for each

of the considered NV shapes, along with a brief explanation
of some of the choices. For instance, in the case of the wheel-
like shape, the parameter c of the first level (b = 0), which
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FIGURE 4. Color attribution to a generated neovessel (NV).

controls the number of offspring branches, must be very large
in order to produce a dense structure, and thus cmin and cmax
must high. Also, the α parameter, which controls the angular
range limit for branch growth, must be very large (around 2π)
in order to allow the growth in all directions. Contrarily to the
wheel-shape, in the tree and broom-like shapes the angular
range for the first level must be reduced in order to force
a more narrow angular growth, in a specific direction. The
broom shape differs from the tree one mainly due to the
setting of the c parameter, whichmust be higher for the broom
in the beginning of the growth to allow amore dense structure.
Also, in the first level of the broom shape (as well as in the
wheel shape) all the branches should grow from the same
point, i.e., Ls is has just one index, whereas in the tree they
may arise from different locations.

2) ORIENTATION
For the broom-like shape, the orientation of the NV in the
image has special importance since, for instance, it may
seem unnatural to have a NV orientated perpendicular to the
existing vasculature. A rough indicator of the orientation of
the main vessels in a given image region can be determined
based on the OD position, with the definition of quadrants
centered on the OD. A broom NV is thus inserted with an
orientation close to that of the vessels in the insertion quadrant

(π/4, 3π/4, −3π/4, or −π/4), with a tolerance of 0.17 rad
(randomly determined for each insertion).

D. COLOR ASSIGNMENT AND NEOVESSEL INSERTION
The color of the generated NVs must be coherent with the
ROI’s vasculature to allow a realistic insertion. This color is
determined based on the assumption that 1) vessels’ colors are
not constant and change according to multiple factors, includ-
ing vessel type (artery or vein), proximity to the OD or fovea,
thickness, external illumination and position on the eye; 2) the
artificial NVs should have a color similar to the local vascu-
lature, namely the nearest vessels. Because of this, the color
of the NV is based on the color of the vessels from Mvessels
near the insertion region, instead of using only the color of
the vessel from which the NV will branch. Further, since the
vessel segmentation is not perfect, larger vessels, expected to
be more representative of the overall vasculature, are given
more weight on the final NV color.

Vessel color is attributed via a color matrix C that is com-
puted based on the colors of the local vasculature exemplified
in Fig. 4a. Specifically, each pixel from C , C(i, j), results
from the weighted average of the median RGB values of each
of the objects from Mvessels (Fig. 4b). For instance, for the
red channel, C(i, j)red =

∑N
v=0 rv,AP × DTv(i, j) × cv,red,

where v is the index of each of the N vessels segmented in

VOLUME 8, 2020 182467



T. Araújo et al.: Data Augmentation for Improving PDR Detection in Eye Fundus Images

Mvessels (i.e., each connected component), cv,red is the median
red color of vessel v, rv,AP is the area/perimeter ratio and
DTv(i, j) = DT ′v(i, j)/

∑N
v=0DT

′
v(i, j), where DT

′
v ∈ [0 , 1] is

the complement of the distance transform of Mvessels,v. The
area/perimeter ratio constitutes an approximation of vessel
thickness, given that the vessel shape can be approximated
by a rectangle with length c and thickness, l, with Av = c× l
and Pv = 2(c+ l), rAP,v should be higher for thicker vessels
(if c � l −→ rAP,v ∝ l). Due to the high color difference
that exists between the OD and non-OD regions, the vessels
from each of these regions are handled separately. The color
matrices are then combined (Fig. 4c) and C is smoothed
with a Gaussian filter to reduce the influence of sharp color
transitions (Fig. 4d).

Each pixel of NVim is attributed the color of the corre-
sponding position in the color matrix C . To ensure that NVim
is properly blended with the image and that branches fade
with increasing distance to the insertion point and neighbor
vessels, NVim is weighted by the complement of the nor-
malized distance transform of Mvessels (see Fig. 4e and 4h).
The insertion of the NV is then achieved via ROIwith NV =
(1− NVim)× ROI+ NVim × C .

E. DR GRADING
1) METHOD - DR|Graduate
DR grading was obtained using the methodology proposed
by Araújo et al. [16]. DR|Graduate is a deep learning-based
DR grading computer-aided diagnosis system that supports
its decision by providing an interpretable explanation and an
estimation of the uncertainty of that prediction, which gives
the ophthalmologist a measure of how much that decision
can be trusted. The method was designed having into account
the ordinal nature of the DR grading problem. It consists
mainly of a Gaussian-sampling approach built upon a Mul-
tiple Instance Learning (MIL) framework which allows to
infer an image grade together with a prediction uncertainty
and an explanation map, being trained only with image-wise
labels. The produced explanation maps highlight the regions
of the image related with each DR grade. The network is com-
posed of several convolutional-batch normalization blocks
interleaved with max-pooling layers. For each input image I ,
DR|Graduate predicts a diabetic retinopathy (DR) grade ŷg
and a grade uncertainty u. Let M be the output of the last
layer of DR|Graduate’s backbone after assessing the input
image I . The lesionmap L is computed by applying a 1×1×1
convolution with a linear activation overM . L is a map where
each element L i j indicates the presence of a lesion of grade
bL i je† on a patch of size dependent on the model’s receptive
field in the input. Following the MIL approach, the grade of
an image is initially estimated as ŷr = max(L). The model’s
output probabilities (pc, c ∈ {0 . . . 4}) are computed from ŷr
based on a Gaussian distribution centered on ŷr with variance
equal to the uncertainty u, with u learned during training.

†
b e rounding to the nearest integer, b c rounding down, d e rounding up.

DR|Graduate assumes that grading is a discrete ordinal
classification problem, making the goal the minimization of
the distance between the target and the predicted classes.
It also assumes that there is a different lesion type per grade,
and thus the class can be predicted following the standard
MIL assumption, meaning that the most severe lesion type
will be responsible for the image grade.

The model was trained by optimizing a loss based on
the cross-entropy, and the class imbalance problem was
addressed by augmentation of the least represented classes
via online horizontal and vertical flips, rotations, brightness
adjustments and contrast normalization. Training started with
all the 5 classes equiprobable and evolved to a more skewed
distribution, which is closer to the real world distribution.
Images were cropped around the FOV and resized to the input
size of the network, 640× 640 pixels. The model was trained
for 240 epochs with the Kaggle DR detection training set,
using a batch size of 30, the Adam optimizer, and a learning
rate of 3×10−4. DR|Graduate was validated in several differ-
ent datasets. The model showed a robust performance for DR
grading. However, as referred in Section I, it usually fails to
detect R4/PDR labeled images.

2) NEWLY PROPOSED DATA AUGMENTATION
DR|Graduate was herein trained with the original Kaggle
DR detection images for grades R0-R3, and the R4 class
was augmented using the images with artificial NVs. Fig. 5
shows examples of Kaggle images originally from grades
R0-R3with the generated NVs. Examples of newly generated
images were presented to an ophthalmologist, who accessed
their appearance and confirmed that the generated NVs
resemble true neovascularizations. The original R4 images
were kept, and the same number of newly generated images
was added. NVs were inserted in images equitably pooled
from the set of R0-R3 images. No insertion was performed on
the pre-existant R4 images since this could impair the detec-
tion of other PDR signs. The reason behind this R4 training
set construction was to have a significant number of images
with generatedNVs, but still maintain the information regard-
ing the original data in order to not degrade the performance
in the Kaggle DR detection and other datasets which may
present the same labeling scheme.

The training scheme was kept the same as in [16], in order
to assess only the influence of the NV augmentation in the
results. Note that the original data augmentation scheme, used
in [16] (flips, rotations, brightness adjustments and contrast
normalization), were still performed in the new training,
together with the newly proposed NV augmentation.

III. RESULTS
A. DATASETS
Kaggle DR detection: This dataset∗ has a large number
of high resolution color eye fundus images (approximately
35 000 in the training set, 55 000 in the test set). Images

∗https://www.kaggle.com/c/diabetic-retinopathy-detection
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FIGURE 5. Examples of images with synthesized artificial neovessels (NVs). Close-ups of some of these NVs are shown next to the images, along with the
NV type. Original DR labels (from the Kaggle DR detection dataset): A: R0; B: R0; C: R1; D: R2; E: R3; F: R3.

were provided by EyePACS,† and were acquired under a
large variety of conditions, using different types of cameras.
Images are labeled by a single clinician with the respective

†http://www.eyepacs.com

DR grade (5 severity levels). The distribution of the images
per grade in this dataset is {73.5, 7.0, 15.0, 2.5, 2.0}%
for {R0, R1, R2, R3, R4} grades, respectively. It is a
real-world dataset, presenting noise in image and labels,
and the images may present bad quality (contain artifacts,
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FIGURE 6. Confusion matrices of the new and initial (DR|Graduate’s) predictions vs the ground truth DR
grades in the SCREEN-DR, Kaggle DR detection test and Messidor-2 datasets. Matrixes were normalized by
dividing each original value by the sum of the values from it’s row (i.e., number of images from that grade
in the ground truth), and the shown values are percentages.

be out of focus and/or with inadequate exposition). This
dataset aims at promoting the development of robust and
reliable algorithms that perform well on a large variety of
images.
Messidor-2: Messidor-2 [23], [24]‡ has 1748 images

from 874 subjects, with one fovea-centered image per eye.
Images were acquired in 2010, at: Hôpital Lariboisière (Paris,
France), Brest University Hospital (Brest, France), and Saint-
Etienne University Hospital (St Etienne, France). The ground
truth used in this work is an adjudicated consensus of three
specialists [14].§ A total of 1744 images were used, as the
remainingwere adjudicated as ungradable. The class distribu-
tion is {58.3, 15.5, 19.9, 4.3, 2.0}% for {R0, R1, R2, R3, R4}
grades, respectively.
SCREEN-DR: This private dataset consists of a sub-

set of retinal images from a Portuguese DR screening
program, managed by the Portuguese North Health Admin-
istration (ARSN). The dataset has 966 images, labeled by
a retinal specialist in 5 severity levels. For 348 of these
images, pixel-wise annotations of the following lesions are
available: microaneurisms (MAs), hemorrhages (HEMs),
cotton-wool spots (CWSs), intra-retinal microvascular abnor-
malities (IRMAs), hard exudates (EXs), neovessels (NVs),
pre-retinal hemorrhages (PHEMs) and pre-retinal fibrosis
(PFIB). The class distribution in the SCREEN-DR dataset is
{43.0, 17.6, 23.4, 6.2, 9.8}% for {R0, R1, R2, R3, R4} grades,
respectively.

‡http://www.adcis.net/en/third-party/messidor2/
§https://www.kaggle.com/google-brain/messidor2-dr-grades

TABLE 2. Quadratic weighted kappa (κ) for the new and initial
(DR|Graduate’s) DR grading in the SCREEN-DR, Kaggle DR detection test
and Messidor-2 datasets.

B. RESULTS AND DISCUSSION
The quadratic-weighted Cohen’s kappa (κ) values of the new
and of the initial DR|Graduate predictions for three differ-
ent datasets are shown in Table 2. Additionally, in order to
perform a grade-wise evaluation, confusion matrices of the
initial and new predictionswere computed, as shown in Fig. 6.
These are normalized versions of the confusion matrices,
obtained by dividing each value of the original matrix by the
sum of the values of each row.

As shown, the κ values remain approximately the same in
the public datasets (Kaggle and Messidor-2), and improved
from 0.71 to 0.74 in the SCREEN-DR dataset. By inspect-
ing the confusion matrixes one can see that the grade-wise
in the Kaggle dataset the performance remained approxi-
mately the same. The fact that the performance in this dataset
did not degrade suggests that the inclusion of the original
R4 images together with the newly generated allowed the
model to be able to classify in a similar manner the original
R4-labeled images. For the Messidor-2, despite the κ value
having remained the same, one can see that the performance
on the R4 class, both in this dataset and in the SCREEN-DR,
has improved, with more R4-labeled images being correctly
detected.

Examples of the new and of the initial DR|Graduate’s
attentionmaps vs the specialist’s annotations on SCREEN-DR
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FIGURE 7. Maps predicted by our method and DR|Graduate along with the ophthalmologist’s annotated lesions in
the SCREEN-DR dataset. Curves correspond to the contours of the explanation maps (threshold=0.3), and the red
square indicates the region of most relevance for diagnosis (corresponding to the maximum in the network’s
output activation map). Explanation map: � R1, R2, R3, R4; ground truth map: � MA, HEM, EX,
CWS, IrMA, NV, PHEM, PFIB.
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FIGURE 8. Maps predicted by our method along with the ophthalmologist’s annotated lesions in the SCREEN-DR dataset in cases in which the model
mispredicts R4-labeled images. Curves correspond to the contours of the explanation maps (threshold=0.3), and the red square indicates the region of
most relevance for diagnosis (corresponding to the maximum in the network’s output activation map). Explanation map: � R1, R2, R3, R4;
ground truth map: � MA, HEM, EX, CWS, IrMA, NV, PHEM, PFIB.

images are shown in Fig. 7. In each predicted map, the region
with maximum activation is identified by a surrounding
square. The model is now capable of detecting NVs in eye
fundus images, as shown in Fig. 7a,7b and 7c, which were
initially not being detected by DR|Graduate [16]. However,
in some cases other structures are counfounded with NVs
and mistakenly detected as PDR signs (Fig. 7c). Addi-
tionally, NVs are sometimes misdetected as other lesions,
such as IRMAs (Fig. 7d), characteristic of R3. To note that
DR|Graduate originally was confounding the NV in this
image with an HEM rather than an IRMA. The difficulty for
specialists to distinguish between neovessels and IRMAs is
widely referred in the literature, being specially true for early
NVs [7].

One should note that PDR images, which do not present
NVs but rather other PDR signs (PHEMs and PFIBs), may
still be misclassified since these lesions are not contemplated
in the proposed data augmentation scheme. However, one
can see in Fig. 7e that despite not being able to identify the
PHEMs in the image, the method identified one of them as
being an hemorrhage, which is understandable due to the
similarity HEMs and these small PHEMs.

A few NVs are still missed, as the cases shown in Fig. 8.
Some of these vessels may present an unusual shape and
appearance (Fig. 8a and 8b). NVs that are too slight were
missed in certain cases (Fig. 8c), despite being contemplated
in the NV generation (Fig. 5)-A2). Very large NVs, such as
the ones shown from Fig. 8d, may be too large for the network
to detect given its receptive field. The NV attributed colors at
times may not be very realistic, which mainly happens due

to the presence light artifacts, given rise to color aberrations,
as shown in Fig. 5-F2 and F3.

IV. CONCLUSION
We proposed a data augmentation scheme to compensate for
the lack of PDR cases in DR-labeled datasets. It builds upon a
heuristic-based algorithm for the generation of neovessel-like
structures which relies on the general knowledge of common
location and shape of these structures. The synthesized NVs
can be introduced in pre-existent retinal images which can
then be used for enlarging the datasets for training deep
neural networks. The insertion of the NVs in the retinal
images has in account the color coherence with the neighbour
vasculature to ensure a realistic insertion. Experiments were
performed to assess the influence of this data augmentation
scheme in the training of a previous proposed model for
DR grading, DR|Graduate. Results have shown that the PDR
detection performance has improved, with NVs that were
being missed by the model now being highlighted in the
explanation maps. However, part of the PDR images are
still not detected since they do not present NVs but rather
pre-retinal fibrosis or pre-retinal hemorrhages, which were
poorly learned by the model. NVs which present an unusual
shape or that are too slight are still being missed by the
model, likely due to its lack of representation in the generated
dataset. This study shows the potential of introducing NVs in
retinal images for improving the detection of these prolifera-
tive DR signs, thus allowing to improve the performance of
computer-aided DR grading methods and easing their clinical
application.

182472 VOLUME 8, 2020



T. Araújo et al.: Data Augmentation for Improving PDR Detection in Eye Fundus Images

REFERENCES
[1] Diabetic Retinopathy Guidelines, The Royal College of Ophthalmologists,

London, U.K., Dec. 2012.
[2] S. Wild, ‘‘Estimates for the year 2000 and projections for 2030,’’ World

Health, vol. 27, no. 5, pp. 1047–1053, 2004.
[3] T. Scully, ‘‘Diabetes in numbers,’’ Nature, vol. 485, no. 7398, pp. S2–S3,

May 2012.
[4] S. Garg and R. M. Davis, ‘‘Diabetic retinopathy screening update,’’ Clin.

Diabetes, vol. 27, no. 4, pp. 140–145, Sep. 2009.
[5] L. Wu, P. Fernandez-Loaiza, J. Sauma, E. Hernandez-Bogantes, and

M. Masis, ‘‘Classification of diabetic retinopathy and diabetic macular
edema.,’’World J. Diabetes, vol. 4, no. 6, pp. 290–294, 2013.

[6] U. R. Acharya, E. Y. K. Ng, J.-H. Tan, S. V. Sree, and K.-H. Ng, ‘‘An
integrated index for the identification of diabetic retinopathy stages using
texture parameters,’’ J.Med. Syst., vol. 36, no. 3, pp. 2011–2020, Jun. 2012.

[7] J. K. Sun, P. S. Silva, J. D. Cavallerano, B. A. Blodi, M. D. Davis,
and L. M. Aiello, ‘‘Retinal vascular disease,’’ in Ryan’s Retina, vol. 2,
A. P. Schachat and S. R. Sadda, Eds. Amsterdam, The Netherlands:
Elsevier, 2018, pp. 1091–1128.

[8] S. R. Group, ‘‘Four risk factors for severe visual loss in diabetic retinopa-
thy: The third report from the diabetic retinopathy study,’’ Arch. Ophthal-
mol., vol. 97, no. 4, pp. 654–655, 4 1979.

[9] L. P. Aiello, M. T. Cahill, and J. S. Wong, ‘‘Systemic considerations in
the management of diabetic retinopathy,’’ Amer. J. Ophthalmol., vol. 132,
no. 5, pp. 760–776, Nov. 2001.

[10] G. S. Scotland, P. McNamee, S. Philip, A. D. Fleming, K. A. Goatman,
G. J. Prescott, S. Fonseca, P. F. Sharp, and J. A. Olson, ‘‘Cost-effectiveness
of implementing automated grading within the national screening pro-
gramme for diabetic retinopathy in Scotland.,’’ The Brit. J. ophthalmol.,
vol. 91, no. 11, pp. 1518–1523, 2007.

[11] M. D. A. Moff, Y. Lou, A. Erginay, W. Clarida, R. Amelon, J. C. Folk,
and M. Niemeijer, ‘‘Improved automated detection of diabetic retinopathy
on a publicly available dataset through integration of deep learning,’’
Investigative Opthalmol. Vis. Sci., vol. 57, no. 13, p. 5200, Oct. 2016.

[12] G. Quellec, K. Charrière, Y. Boudi, B. Cochener, and M. Lamard, ‘‘Deep
image mining for diabetic retinopathy screening,’’ Med. Image Anal.,
vol. 39, pp. 178–193, Jul. 2017.

[13] J. F. Arévalo, A. F. Lasave, D. G. Zeballos, and S. Bonafonte-Royo, ‘‘Dia-
betic Retinopathy,’’ in Retinal Choroidal Manifestations Selries Systemic
Diseases. New York, NY, USA: Springer, 2013, pp. 387–416.

[14] J. Krause, ‘‘Grader variability and the importance of reference standards
for evaluatingmachine learningmodels for diabetic retinopathy,’’Ophthal-
mology, vol. 125, no. 8, pp. 1264–1272, Aug. 2018.

[15] J. de la Torre, A. Valls, and D. Puig, ‘‘A deep learning interpretable clas-
sifier for diabetic retinopathy disease grading,’’ 2017, arXiv:1712.08107.
[Online]. Available: http://arxiv.org/abs/1712.08107

[16] T. Araájo, G. Aresta, L. Mendonça, S. Penas, C. Maia, Â. Carneiro,
A. M. Mendonça, and A. Campilho, ‘‘DR|GRADUATE: Uncertainty-
aware deep learning-based diabetic retinopathy grading in eye fundus
images,’’Med. Image Anal., vol. 63, Jul. 2020, Art. no. 101715.

[17] E. Menti, L. Bonaldi, L. Ballerini, A. Ruggeri, and E. Trucco, ‘‘Simu-
lation and Synthesis in Medical Imaging,’’ in Simulation and Synthesis
in Medical Imaging (Lecture Notes in Computer Science), vol. 9968,
S. A. Tsaftaris, A. Gooya, A. F. Frangi, and J. L. Prince, Eds. Athens, GA,
USA: Springer, 2016, pp. 167–176.

[18] P. Costa, A. Galdran, M. I. Meyer, M. Niemeijer, M. Abramoff,
A. M. Mendonca, and A. Campilho, ‘‘End-to-End adversarial retinal
image synthesis,’’ IEEE Trans. Med. Imag., vol. 37, no. 3, pp. 781–791,
Mar. 2018.

[19] H. Zhao, H. Li, S. Maurer-Stroh, and L. Cheng, ‘‘Synthesizing retinal
and neuronal images with generative adversarial nets,’’Med. Image Anal.,
vol. 49, pp. 14–26, Oct. 2018.

[20] A. K. Pujitha and J. Sivaswamy, ‘‘Retinal image synthesis for CAD
development,’’ in Proc. 15th Int. Conf. Image Anal. Recognit., vol. 10882,
Jun. 2018, pp. 6211–6213.

[21] V. Bellemo, P. Burlina, L. Yong, T. Y. Wong, and D. S. W. Ting, ‘‘Gen-
erative adversarial networks (GANs) for retinal fundus image synthesis,’’
in Proc. Conf. Artif. Intell. Lecture Notes Bioinformat, vol. 11367, 2019,
pp. 289–302.

[22] T. Araújo, G. Aresta, A. Galdran, P. Costa,
A. M. Mendonça, and A. Campilho, ‘‘UOLO—Automatic object
detection and segmentation in biomedical images,’’ in Proc. Conf. Artif.
Intell. Lecture Notes Bioinformat., vol. 11045, 2018, pp. 165–173.

[23] E. Decencière, ‘‘Feedback on a publicly distributed image database:
The messidor database,’’ Image Anal. Stereol., vol. 33, no. 3,
pp. 231–234, 2014.

[24] M. D. Abràmoff, ‘‘Automated analysis of retinal images for detection
of referable diabetic retinopathy,’’ JAMA Ophthalmol., vol. 131, no. 3,
pp. 351–357, 2013.

TERESA ARAÚJO received the M.Sc. degree in
bioengineering engineering and biomedical engi-
neering from the Faculty of the Engineering, Uni-
versity of Porto (FEUP), Porto, Portugal, in 2016,
where she is currently pursuing the Ph.D. degree
in electrical and computer engineering. Since
2014, she has collaborated as a Researcher with
the Biomedical Imaging Laboratory, Center for
Biomedical Engineering Research (C-BER), Insti-
tute for Systems and Computer Engineering, Tech-

nology and Science (INESC TEC), Porto. Her research interest includes the
development of computer-aided diagnosis systems for diabetic retinopathy
grading in eye fundus images.

GUILHERME ARESTA received the M.Sc. degree
in bioengineering engineering and biomedical
engineering from the Faculty of the Engineer-
ing, University of Porto (FEUP), Porto, Portugal,
in 2016, where he is currently pursuing the Ph.D.
degree in electrical and computer engineering. He
has been a Researcher with the Biomedical Imag-
ing Laboratory, Center for Biomedical Engineer-
ing Research (C-BER), Institute for Systems and
Computer Engineering, Technology, and Science

(INESC-TEC), Porto, since 2014. His research interest includes computer-
aided diagnosis systems for lung cancer assessment in chest computed
tomographies.

LUÍS MENDONÇA received the M.D. degree
from the Medical School, University of Porto,
in 2005.

He became a Board Certified Ophthalmologist
in 2010 after completing his residency at the
Department of Ophthalmology, Centro Hospitalar
São João, Porto, Portugal. From 2010 to 2011,
he completed a Retinal Research Fellowship at
the LuEsther T. Mertz Retinal Research Center,
Manhattan Eye, Ear, and Throat Hospital, Depart-

ment of Ophthalmology, New York, NY, USA. Since 2011, he has been
a Surgical and a Medical Retina Specialist with the Department of
Ophthalmology, Hospital de Braga, Braga, Portugal.

SUSANA PENAS is currently a Retina Special-
ist and a Consultant of Ophthalmology with the
Department of Ophthalmology, Centro Hospitalar
Universitário de São João, Porto, Portugal. She is
also an Assistant Teacher of Ophthalmology with
the Department of Surgery and Physiology, Fac-
ulty of Medicine, University of Porto. She is also
a Principal Investigator and a Co-Investigator in
many clinical trials related to retinal and choroidal
pathology. Her main areas of research are medical

retina, retinal and choroidal vascular pathology, angiogenesis, and retina
imaging. She has or has been a member of the European Society of Retina
Specialists, the American Academy of Ophthalmology, the Association for
Research in Vision and Ophthalmology, the European Association for Vision
and Eye Research, and the European Vitreo-Retinal Society. She has several
publications in international indexed journals, and is a Reviewer for indexed
journals.

VOLUME 8, 2020 182473



T. Araújo et al.: Data Augmentation for Improving PDR Detection in Eye Fundus Images

CAROLINA MAIA is currently a Retina Special-
ist and a Consultant of Ophthalmology with the
Department of Ophthalmology, Centro Hospitalar
Universitário de São João, Porto, Portugal. Her
areas of research include medical retina, retina
imaging, and diabetic retinopathy.

ÂNGELA CARNEIRO is currently a Retina Spe-
cialist and a Consultant of Ophthalmology wth
the Department of Ophthalmology, Centro Hospi-
talar Universitário de São João, Porto, Portugal,
and a Professor with the Department of Surgery
and Physiology, Faculty of Medicine, Univer-
sity of Porto. Her main research interests include
age-related macular degeneration (AMD), angio-
genesis, diabetic retinopathy, and retina imag-
ing. She has been the Principal Investigator or a

Co-Investigator in many clinical trials related to areas, such as AMD,
choroidal neovascularization, and diabetic retinopathy. She is a member
of the European Society of Retina Specialists, the American Academy of
Ophthalmology, and the Association for Research in Vision and Ophthalmol-
ogy. She has authored more than 50 original articles published in journals,
such as JAMA Ophthalmology, Retina, British Journal of Ophthalmology,
Experimental Eye Research, Journal of Cellular Biochemistry, Acta Oph-
thalmologica, Ophthalmologica, Ophthalmic Research, Oxidative Medicine
and Cellular Longevity, and European Journal of Ophthalmology. She is a
Reviewer for several indexed journals.

ANA MARIA MENDONÇA (Senior Member,
IEEE) received the Ph.D. degree from the Uni-
versity of Porto (FEUP). She was a Researcher
with the Institute for Biomedical Engineering
(INEB) until 2014, but since 2015, she has been a
Senior Researcher with INESC TEC. She was the
Director of the Master in Biomedical Engineering
from 2009 to 2014. She is currently an Associate
Professor with the Department of Electrical and
Computer Engineering (DEEC), Faculty of Engi-

neering, University of Porto (FEUP). She is also a member of the Scien-
tific Committee of the Doctoral Program in Biomedical Engineering. She
has been collaborating as a Researcher and also as responsible in several
research projects, mostly dedicated to the development of image analysis
and classification methodologies aiming at extracting essential information
from medical images in order to support the diagnosis process. Her past
work has been mostly devoted to three main areas: retinal pathologies, lung
diseases, and genetic disorders, but ongoing work is mainly focused on the
development of Computer-Aided Diagnosis systems in Ophthalmology and
Radiology. She has coauthoredmore than 100 papers in international journals
and conferences, which attracted more than 2350 citations, according to
Google scholar. Her current research interests include the areas of biomedical
engineering, medical image analysis, computer vision, andmachine learning.

AURÉLIO CAMPILHO (Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing from the Faculty of Engineering, University
of Porto (FEUP), in 1985. He was an Assistant
and an Associate Professor of Electrical and Com-
puter Engineering with FEUP, where he was a
Professor of Electrical and Computer Engineer-
ing, from 2003 to 2020. He was a Co-Founder of
the Biomedical Engineering Institute (INEB), and
from 1994 to 2000, he was the INEB President and

a Research Coordinator. He promoted the creation of the first ever MSc and
later PhD degrees in Biomedical Engineering in Portugal. He was one of
the promoters of the M.Sc. on Bioengineering degree at FEUP and ICBAS
(Instituto de Ciências Biomédicas Abel Salazar) from University of Porto.
Since January 2014, he has been a Coordinator of the Center for Biomed-
ical Engineering Research (C-BER), Institute for Systems and Computer
Engineering, Technology, and Science (INESC TEC). Since April 2020, he
has been a Jubilee Professor of Electrical and Computer Engineering with
the University of Porto, and a Senior Researcher with INESC TEC. He has
authored one book (with two editions), co-edited 20 books, and published
more than 250 papers in international journals and conferences. His current
research interests include the areas of biomedical engineering,medical image
analysis, image processing, computer vision, and machine learning. He is a
Fellow of the European Alliance for Medical and Biological Engineering
and Science (EAMBES). He has served as an Associate Editor of the IEEE
TRANSACTIONS ON BIOMEDICAL ENGINEERING and Journal of Machine Vision
and Applications. He is the General Chair of the series of International
Conferences on Image Analysis and Recognition (ICIAR). He has served
as an Organizer of several special issues and conferences.

182474 VOLUME 8, 2020


