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ABSTRACT First-order 1-compartment pharmacokinetic model for extravascular administered drugs can
be used to derive many useful quantities by comparing the predicted values with actual data. However,
less research has been done in actually formulating them as optimal control problems. Moreover, real
pharmacological processes are always exposed to influences that are not completely understood or not
feasible to model explicitly. Ignoring these phenomena in the modeling may affect the estimation of PK/PD
models’ (pharmacokinetic/pharmacodynamic models’) parameters and the derived conclusions.Therefore
there is an increasing need to extend the deterministic models to models including a stochastic component.
In our study, we modify the 1-compartment pharmacokinetic model to a stochastic differential equation
model based on an optimal control problem. A schedule of optimal dosing and timing has been given from
our proposed model.

INDEX TERMS Stochastic differential equation, optimal control, pharmacokinetics, stability, E-M method.

I. INTRODUCTION
Pharmacokinetics (PK) is the study of what the body does to a
drug. It studies the absorption, distribution, metabolism, and
excretion of the medicine (ADME), as well as bioavailability.
PK analysis forms a major part of the understanding and
development of the Investigation Medicinal Product (IMP),
and can also contribute heavily to the prescription once a drug
has been approved.

There are three approaches that have been suggested
for pharmacokinetic modeling: compartmental, physiologi-
cal and model-independent. The first one is an empirical
approach, which is based on simple compartmental models.
These compartments have no strict physiological or anatom-
ical basis. The compartment simply represents a body vol-
ume, or just as easily it could represent a chemical state, for
example a metabolite of the drug. Usually this approach uses
one or two compartments. Despite its simplistic nature, many
useful quantities can be derived using this approach, and by
comparing predicted values with actual data.

In [1], Sophie Donnet and Adeline Samson (2013)
reviewed the examination of the pertinence of stochas-
tic differential equations (SDEs) for pharmacokinetic/
pharmacodynamicmodels. A natural extension of deterministic
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differential equations model is a system of SDEs, where
relevant parameters have been modeled as suitable stochastic
processes, or stochastic processes have been added to the
driving system equations [2]. The first papers encouraging
the introduction of random fluctuations in PK/PD were
authored by D’Argenio [3] and Ramanathan [4], [5]. The
authors underline that PK/PD have contributions from both
deterministic and stochastic components: drug concentra-
tions follow determinable trends but the exact concentration
at any given time is not completely determined. For exam-
ple, Ramanathan [5] proposes a stochastic one-compartment
PK model with a variable elimination rate. More sophisti-
cated PK/PD models then have been proposed with multiple
compartments, non-linear or time-inhomogeneous absorp-
tion or elimination (seen for example Ferrante et al. [6];
Tornøe et al. [7]; Ditlevsen and De Gaetano [8];
Ditlevsen et al. [9]; Picchini et al. [10]).
Although lots of mathematical models for pharmacokinet-

ics has been build, less research has been done in actually
formulating them as optimal control problems. Actually, suit-
able control such as food intake, special excercises, some
vitamin, can affect the drug absorption. As in [11], the authors
studied significant effect of infection and food intake on
sirolimus pharmacokinetics and exposure in pediatric patients
with acute lymphoblastic leukemia. A mathematical model
for the depletion of bone marrow under cancer chemotherapy
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is analyzed as an optimal control problem in [12].
Reference [13] investigated multiscale tumor modeling
that integrates drug pharmacokinetic and pharmacodynamic
(PK/PD) information using stochastic hybrid system mod-
eling framework. Reference [14] presented a new model to
describe the single-dose pharmacokinetics of bevacizumab
and predict its multiple-dose pharmacokinetics in beagle
dogs. Reference [15] combined health record informatics and
pharmacokinetic modeling and got a powerful translational
approach to detect high dimensional drug-drug interactions.
Through clinical trial, [16] proposed a model based optimiza-
tion of G-CSF treatment during cytotoxic chemotherapy and
showed validity of model predictions regarding alternative
G-CSF schedules.

In this study, we investigate to combine optimal control
theory and stochastic methods to propose a novel pharma-
cokinetic model. Our aim is to find the optimal drug dosing
schedule and predict the absorption rate and concentration
rate. We added a control vector to the pharmacokinetic model
and optimal control theory was used to analyze the modified
model. We found the optimal dosing timing schedule and an
equilibrium point of the dynamic system. Near the stationary
point, white noise was added to the modified model, and the
ensuing stochastic differential equations (SDEs) were pre-
sented. We proved existence, uniqueness and stability of the
SDE system and found an explicit solution. Finally, themodel
was simulated and parameters of the model was estimated
by using the R language and the stability of the numerical
method was proven.

A. A BRIEF REVIEW OF FIRST-ORDER 1-COMPARTMENT
UNCONTROLLED MODEL (Extravascular Administration)
This approach models the entire body as a single compart-
ment into which a drug is added by a rapid single dose,
or bolus. It is assumed that the drug concentration is uniform
in the body compartment at all times, and is eliminated by
a first order process that is described by a first order rate
constant K10: 

dAa
dt
= −KaAa,

dAc
dt
= KaAa − K10Ac,

(1)

where
Aa = Amount of drug absorption deposit,
Ac = Amount of drug in central compartment,
Ka = Absorption rate constant,
K10 = first-order elimination rate, indicating elimination

of drug out of the central compartment into urine, feces, etc.
(1/time).

It’s easy to get the solution of the system (1):Aa = Aa(0)e−Kat ,

Ac =
KaAa(0)
Ka − K10

(e−K10t − e−Kat ),

where Aa(0) is the initial amount of drug in the gastrointesti-
nal tract.

B. STABILITY OF THE SDEs
Definition 1: [17] Let (�,F ,P) be a complete proba-

bility space with a filtration {Ft }t≥0 satisfying the usual
conditions. Let Bt =

(
B1t , · · · ,B

d
t
)T
t≥0 be a d-dimentional

Brownian motion defined on the space. Let 0 ≤ t0 < T <∞.
Let x(t) = (x1(t), · · · , xd (t))T be a d-dimensional Itô process
on t ≥ 0 and x0 be an Ft0 -measurable <

d -valued random
variable such that E|x0|2 < ∞. Let f : <d × [0,T ] → <d

and g : <d × [0,T ] → <d×m be both Borel measurable.
Consider the d-dimensional stochastic differential equation
of Itô type

dx(t) = f (x(t), t)dt + g(x(t), t)dBt , t0 ≤ t ≤ T (2)

with initial value x(t0) = x0. Assume that for any initial value
x(t0) = x0 ∈ <d , equation (2) has a unique global solution
which is denoted by x(t; t0, x0). We know that the solution
has continuous sample paths and its every moment is finite.
Assume furthermore that

f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0.

So equation (2) has the solution x(t) ≡ 0 corresponding to
the initial value x(t0) = 0. This solution is called the trivial
solution or equilibrium position.
Definition 2: [17] Let K denote the family of all contin-

uous nondecreasing functions µ : <+ → <+ such that
µ(0) = 0 and µ(r) > 0 if r > 0. For h > 0, let Sh =
{x ∈ <d : |x| < h}. A continuous function V (x, t) defined
on Sh× [t0,∞) is said to be positive-definite (in the sense of
Lyapunov) if V (0, t) ≡ 0 and, for some µ ∈ K,

V (x, t) ≥ µ(|x|) for all (x, t) ∈ Sh × [t0,∞) .

A function V is said to be negative-definite if −V is
positive-definite. A continuous non-negative function V (x, t)
is said to be decrescent (i.e. to have an arbitrarily small upper
bound) if for some µ ∈ K,

V (x, t) ≤ µ(|x|) for all (x, t) ∈ Sh × [t0,∞) .

A function V (x, t) defined on <d × [t0,∞) is said to be
radially unbounded if

lim
|x|→∞

inf
t≥t0

V (x, t) = ∞.

Definition 3: [17] The trivial solution of equation (2) is
said to be
(i) stochastically stable or stable in probability if for every

pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, t0) > 0
such that

P{|x(t; t0, x0)| < r for all t ≥ t0} ≥ 1− ε

whenever |x0| < δ. Otherwise, it is said to be stochastically
unstable.
(ii) stochastically asymptotically stable if it is stochasti-

cally stable and, moreover, for every ε ∈ (0, 1), there exists a
δ0 = δ0(ε, t0) > 0 such that

P{ lim
t→∞

x(t; t0, x0) = 0} ≥ 1− ε

whenever |x0| < δ0.
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(iii) stochastically asymptotically stable in the large if it is
stochastically stable and, moreover, for all x0 ∈ <d ,

P{ lim
x→∞

x(t; t0, x0) = 0} = 1.

Let 0 < h ≤ ∞. Denote by C2,1
(
Sh × <+; <+

)
the

family of all nonnegative functionsV (x, t) defined on Sh×<+
such that they are continuously twice differentiable in x and
once in t . Define the differential operator L associated with
equation (2) by

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1
2

d∑
i,j=1

[g(x, t)gT (x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1
(
Sh ×<+; <+

)
, then

LV (x, t) = Vt (x, t)+ Vx(x, t)f (x, t)

+
1
2
trace[gT (x, t)Vxx(x, t)g(x, t)].

Theorem 1: [17] If there exists a positive-definite
(i) function V (x, t) ∈ C2,1

(
Sh × [t0,∞) ; <+

)
such that

LV (x, t) ≤ 0 for all (x, t) ∈ Sh × [t0,∞), then the trivial
solution of equation (2) is stochastically stable.
(ii) decrescent function V (x, t) ∈ C2,1(Sh × [t0,∞) ; <+)

such that LV (x, t) is negative-definite, then the trivial solution
of equation (2) is stochastically asymptotically stable.
(iii) decrescent radially unbounded function V (x, t) ∈

C2,1(Sh × [t0,∞) ; <+) such that LV (x, t) is negative-
definite, then the trivial solution of equation (2) is
stochastically asymptotically stable in the large.
Definition 4: [17] The Euler–Maruyama approximate

solutions are defined as follows: For every integer n ≥ 1,
define xn(t0) = x0, and then for t0 + (k − 1)/n < t ≤
(t0 + k/n) ∧ T , k = 1, 2, · · · ,

xn(t) = xn(t0 + (k − 1)/n)

+

∫ t

t0+(k−1)/n
f (xn(t0 + (k − 1)/n), s)ds

+

∫ t

t0+(k−1)/n
g(xn(t0 + (k − 1)/n), s)dB(s).

Theorem 2: [18] If
∑d

i=1 B
T
i Bi + A + AT is negative-

definite, then for any sufficiently small stepsize 1, the
Euler–Maruyama (EM) approximate solution of the linear
SDE

dy(t) = [Ay(t)+ a]dt +
d∑
i=1

[Biy(t)+ bi]dBi(t), t ≥ 0

(where the initial value y(0) = x ∈ <d . Here A and B′is are all
the d×d matrices while a and b′is are d-dimensional vectors.)
is stable in distribution. In particular, for a scalar linear SDE

dy(t) = [αy(t)+ a] dt +
d∑
i=1

[βiy(t)+ bi]dBi(t), t ≥ 0,

where α, a, βi, bi are all real numbers, its EM approximate
solution is stable in distribution if 2α+

∑d
i=1 β

2
i < 0 and the

stepsize 1 is sufficiently small.

Let �t be the set of all possible outcomes (or realisations)
at the point t , and define the random variable Yt as the
function Yt : �t → <. Define the set of possible outcomes
over all time as � = ⊗∞t �t , and the random variables
Xt : �→ <, where for everyω ∈ �, withω = (ω0, ω1, · · · ),
we have Xt (ω) = Yt (ωt ). Hence we have a sequence of ran-
dom variables {Xt }t (which we call a random process). When
we observe {xt }t , this means there exists an ω ∈ �, such that
Xt (ω) = xt . To complete things we have a sigma-algebra F
whose elements are subsets of � and a probability measure
P : F → [0, 1].
Definition 5: We say that the sequence {Xt } converges

almost sure to µ, if there exists a set M ⊂ �, such that
P(M ) = 1 and for every ω ∈ M, we have

Xt (ω)→ µ, as t →∞.

In other words for every ε > 0, there exists an N (ω) such that

|Xt (ω)− µ| < ε,

for all t > N (ω). We denote Xt → µ almost surely, as

Xt → µ, P− a.s.

An equivalent definition, in terms of probabilities, is for every
ε > 0, Xt → µ, P− a.s. if

P(ω; ∩∞m=1 ∪
∞
t=m {|Xt (ω)− µ| > ε}) = 0.

II. USING OPTIMAL CONTROL THEORY TO STUDY THE
FIRST-ORDER 1-COMPARTMENT MODEL
Pharmacokinetic (PK) equations model the time evolution of
the drug’s concentration in the body/plasma. Let u denote the
drug dosage with u= 1 corresponding to a maximal dose and
u= 0 denoting no treatment. Simple models considered in the
literature (for example, see [19], [20]) use a first-order linear
system

ċ = fc+ hu, c(0) = 0,

where f and h are positive constants to represent the dynamics
for the drug concentration c in the plasma. The model itself
is one of exponential growth/decay as it is commonly used as
model for continuous infusions.

As in [12], a more generally bilinear system of the form
was proposed

ċ = (f + ug)c+ hu, c(0) = 0

with an additional parameter g added.
Here we add a control vector to equation (1) of the

first-order 1-compartment model, and derive the following
first-order 1-compartment dynamic system,

dAa
dt
= −KaAa + αu,

dAc
dt
= KaAa − K10Ac + βu,

(3)

where α and β are positive constants representing the dynam-
ics for the drug and concentration in absorption deposit Aa
and central compartment Ac in the plasma, respectively.
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Let A :=
[
a11 a12
a21 a22

]
:=

[
−Ka 0
Ka −K10

]
, x :=

[
x1
x2

]
:=[

Aa
Ac

]
, and B :=

[
b1
b2

]
:=

[
α

β

]
.

Then, we can write (3) in matrix notation as ẋ = Ax + Bu.
By Von Karman controllability, the necessary condition

for controllability is that the matrix
[
B AB

]
has full rank,

i.e.,
∣∣B AB ∣∣ 6= 0, i.e.,∣∣∣∣ αβ

[
−Ka 0
Ka −K10

](
α

β

)∣∣∣∣
=

∣∣∣∣ α −Kaα
β Kaα − K10β

∣∣∣∣
= α(Kaα − K10β)+ Kaαβ

6= 0,

i.e., Kaα2 6= (K10 − Ka)αβ which implies α 6= 0 and Kaα 6=
(K10 − Ka)β.
The fact is that maximizing the Hamiltonian function H

with respect to u, is only possible if u is bounded, i.e. |u| ≤ u0
for some u0.
As we mentioned above, in our system, the drug dosage u

is between 0 and 1 which surely satisfies the above bounded
condition.

In order to avoid drug side effects, we hope to achieve the
best possible therapeutic effect with as few medications as
possible. So in this paper we consider to a performance index
in the form
J = r1Aa(T )+ r2Ac(T )

+

∫ T

0
[q1Aa(t)+ q2Ac(t)+ b(1− u(t))] dt, (4)

where T represents the time betweeen two treatments,
r1, r2 > 0, q1, q2 ≥ 0, and b > 0 are constants.
In the objective (4), we have incorporated a term q1Aa(t)+

q2Ac(t) in the Lagrangian in an effort to achieve the best
possible therapeutic effect. At the same time, in order to avoid
drug side effects, we also want to schedule as few drug dosage
as possible by including a term b(1 − u(t)) in the objective.
In addition we have added a terminal term r1Aa(T )+r2Ac(T )
which represents a weighted average of the total drug concen-
tration at the end of an assumed fixed therapy interval [0,T] in
order to prevent that the drug concentration would be too low
to keep certain effectiveness towards the end of the therapy
interval.

The mathematical problem therefore can be formulated
as to maximize (4) over all Lebesgue measurable functions
u which take values in [0, 1] subject to the dynamics (1)
respectively (3) and given initial conditions.

By (4) and (3) respectively, we denote f0(x1, x2, u) =
q1Aa(t)+q2Ac(t)+b(1−u), f1(x1, x2, u) = −Kax1+αu, and
f2(x1, x2, u) = Kax1 − K10x2 + βu. We form the augmented

J∗ =
∫ T

0
[f0 + ψ1(f1 − ẋ1)+ ψ2(f2 − ẋ2)]dt,

where ψ1 and ψ2 are the adjoint functions associated with
constraints (3) and the given initial conditions. We will obtain
them from the following discussion.

Define the Hamiltonian
H = f0 + ψ1f1 + ψ2f2
= q1Aa(t)+ q2Ac(t)+ b− ψ1Kax1
+ψ2(Kax1 − K10x2)+ (ψ1α + ψ2β − b)u. (5)

By the Pontryagin’s maximum principle [21] [22], if u∗ is
the optimal control (optimal controls u∗ maximize the Hamil-
tonian H, i.e., (ψ1α+ψ2β−b)u∗ = max

0≤u≤1
(ψ1α+ψ2β−b)u),

and x∗ is the state trajectory, then there exists an absolutely
continuous function ψ(t) := (ψ1(t), ψ2(t)) defined on [0,T ]
satisfying the adjoint equations with transversality condition,

ψ̇1 = −
∂H
∂x1
= ψ1Ka − ψ2Ka, ψ1(T ) = r1,

ψ̇2 = −
∂H
∂x2
= ψ2K10, ψ2(T ) = r2, (6)

such that the following condition is satisfied: the optimal
control u∗ maximizes the Hamiltonian H (see (5)) over the
control set [0, 1] along

(
ψ1(t), ψ2(t),A∗a,A

∗
c , u
∗(t)

)
.

We call a pair ((Aa,Ac), u) consisting of an admissible
control u with corresponding trajectory (Aa,Ac) for which
there exist multipliers (ψ1, ψ2) such that the conditions of
the Maximum Principle are satisfied an extremal (pair) and
the triple ((Aa,Ac), u, (ψ1, ψ2)) is an extremal lift (to the
cotangent bundle).

From Pontryagin’s Maximum Principle [21] [22], the opti-
mal control u∗ maximizes H as a function of u. Since H
is linear in u and u ∈ [0, 1], the maximum value of H is
at u∗ = 1 if ψ1α + ψ2β − b > 0, and at u∗ = 0 if
ψ1α + ψ2β − b < 0; that is

u∗ =

{
1, if αψ1(t)+ βψ2(t)− b > 0,
0, if αψ1(t)+ βψ2(t)− b < 0.

(7)

Since u = 1 represents maximal dosage and u = 0
corresponds to no drug dosed, we have that, in principle,
optimal controls alternate between sessions of ‘‘full control’’
or rest periods and partial controls are not optimal.

Next we aim to find the switching time.
Claim: There is one and only one switch in the control.
Proof: Firstly, since the swithching function 8(t) =

αψ1(t) + βψ2(t) − b is continuous on the compact interval
[0,T ] and there exist two points which have different signs
on [0,T ], by intermediate value theorem, there is at least one
solution for 8(t) = αψ1(t)+ βψ2(t)− b = 0.
Secondly, by the ajoint equations (6), we have ψ̇2 = ψ2K10

which implies ψ2 = C2eK10t (where C2 is a constant),
substitute it to ψ̇1 = −

∂H
∂x1
= ψ1Ka − ψ2Ka, we get

ψ̇1 − ψ1Ka = −C2KaeK10t .

By solving the above ODE, we get

ψ1 = −
C2KaeK10t

K10 − Ka
− C1C2KaeKat ,

where C1 is a constant.
By the transversality condition ψ2(T ) = r2, we get C2 =

r2e−K10T . So ψ2 = r2eK10(T−t).
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By the transversality condition ψ1(T ) = r1, and C2 =

r2e−K10T , we obtain

r1 = ψ1(T ) = −
r2Ka

K10 − Ka
− C1r2Kae(Ka−K10)T .

It implies C1 = −

r1 +
r2Ka

K10 − Ka
r2Kae(Ka−K10)T

.

The necessary condition for t being a switching time is that
t satisfies

ψ1(t)α + ψ2(t)β − b = 0,

i.e.,(
−
C2KaeK10t

K10 − Ka
− C1C2KaeKat

)
α + C2eK10tβ − b = 0,

where C1 = −

r1 +
r2Ka

K10 − Ka
r2Kae(Ka−K10)T

and C2 = r2e−K10T .

Since
[(
−
C2KaeK10t

K10 − Ka
− C1C2KaeKat

)
α + C2eK10tβ − b

]′
6≡ 0 on [0,T ], i.e., the swithching function 8(t) = αψ1(t)+
βψ2(t) − b is strictly monotonous on [0,T ], there’s at most
one switch.

Therefore, by the above two conclusions, there is one and
only one switch in the control. �
The switching time can be obtained by solving(
−
C2KaeK10t

K10 − Ka
− C1C2KaeKat

)
α+C2eK10tβ− b = 0, using

numerical method.
Optimal trajectories satisfy

ẋ = Ax + Bu∗.

The equilibrium point P is

P :=
(
x1
x2

)
:=

(
a12b2u0−a22b1u∗

det(A)
a21b1u0−a11b2u∗

det(A)

)
=


αu∗

Ka
(α + β)u∗

K10

 . (8)

Since both eigenvectors of matrix A, λ1 = −Ka and λ2 =
−K10, are negative, the positive-plane has stable node at P =(

αu∗
Ka

(α+β)u∗

K10

)
.

III. THE FIRST-ORDER 1-COMPARTMENT STOCHASTIC
MODEL
From the above discussion, we see that the optimal control
occurs at u∗. Thus, we revise the first-order compartment
optimal control model (3) as

dAa
dt
= −KaAa + αu∗,

dAc
dt
= KaAa − K10Ac + βu∗.

(9)

We assume that the stochastic perturbations of the variables

around their values given in (8), P :=

(
αu∗
Ka

(α+β)u∗

K10

)
=

(
A∗a
A∗c

)
,

are white noise type, which are proportional to the distances
of Aa, Ac from the values A∗a, A

∗
c . We then arrive to the system{

dAa = (−KaAa + αu0)dt + σ1(Aa − A∗a)dξ
1
t ,

dAc = (KaAa − K10Ac + βu0)dt + σ2(Ac − A∗c )dξ
2
t ,

(10)

where σ1 and σ2 are real constants, and can be defined
as the intensities of stochasticity, and ξt = (ξ1t , ξ

2
t ) is a

2-dimensional white noise process. We wonder whether the
dynamical behavior of model (9) is robust with respect to
such a kind of stochastic perturbations by investigating the
asymptotic stochastic stability behavior of equilibrium P
for (10), and comparing the results with those obtained from
the system (9).

Let X1 = Aa − A∗a = Aa − αu∗
Ka

and X2 = Ac − A∗c =

Ac −
(α+β)u∗

K10
, then Aa = X1 + αu∗

Ka
and Ac = X2 +

(α+β)u∗

K10
.

Substituting them into the above system (10), and after sim-
plification, we arrive to a first order 1-compartment SDE
model: {

dX1 = −KaX1dt + σ1X1dξ1t ,
dX2 = (KaX1 − K10X2)dt + σ2X2dξ2t .

(11)

Using the Itô′s formula [23], it’s easy to solve dX1 =
−KaX1dt + σ1X1dξ1t and get

X1(t) = X1(0) exp

(
σ1ξ

1
t −

(
Ka +

σ 2
1

2

)
t

)
,

which is a so-called geometric Brownian motion (GBM).
If ξ1t is independent of X1(0), we have that

E(X1(t)) = X1(0)e−Kat ,

and

Var(X1(t)) = X2
1 (0)e

−2Kat (eσ
2
1 − 1).

The probability density function ofX1(t) is fX1 (x,Ka, σ1, t)

=
1

√
2π tσ1x

exp

−
(
lnx−lnx(0)+

(
Ka+

σ21
2

))2

2σ 21 t

 .
If Ka +

σ 21
2 > 0, then X1(t)→ 0 as t →∞, P− a.s.

If Ka +
σ 21
2 < 0, then X1(t)→∞ as t →∞, P− a.s.

If Ka+
σ 21
2 = 0, then X1(t) will fluctuate between arbitrary

large and arbitrary small values as t →∞, P− a.s.
For dX2 = (KaX1 − K10X2)dt + σ2X2dξ2t , we let X2 =

g(t, ξ2t ), and use Itô′s formula [23] to derive

dX2 =
(
∂g
∂t
+

1
2
∂2g

∂(ξ2t )2

)
dt +

∂g

∂ξ2t
(t, ξ2t )dξ

2
t .

Thus, 
∂g
∂t
+

1
2
∂2g

∂(ξ2t )2
= KaX1 − K10g,

∂g

∂ξ2t
= σ2g.
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From ∂g
∂ξ2t
= σ2g, we get X2 = g(t, ξ2t ) = C(t)eσ2ξ

2
t ,

and substituting it into ∂g
∂t +

1
2
∂2g
∂(ξ2t )2

= KaX1 − K10g,
we gather

KaX1 − K10X2 = KaX1 − K10C(t)eσ2ξ
2
t =

∂g
∂t
+

1
2
∂2g

∂(ξ2t )2

= C ′(t)eσ2ξ
2
t +

σ 2
2

2
C(t)eσ2ξ

2
t .

So KaX1 − K10C(t)eσ2ξ
2
t = C ′(t)eσ2ξ

2
t +

σ 22
2 C(t)e

σ2ξ
2
t , i.e.,

C ′(t)+

(
σ 2
2

2
+ K10

)
C(t)

= KaX1e−σ2ξ
2
t .

C(t) = X2(0)e
−

(
σ22
2 +K10

)
t

+ e
−

(
σ22
2 +K10

)
t
∫ t

0
KaX1e

(
σ22
2 +K10

)
s−σ2ξ2s

ds.

Therefore,
X2(t) = C(t)eσ2ξ

2
t

= X2(0)e
σ2ξ

2
t −

(
σ22
2 +K10

)
t
KaX1(0)e

σ2ξ
2
t −

(
σ22
2 +K10

)
t

·

∫ t

0
e
σ1ξ

1
s −σ2ξ

2
s +

[(
σ22
2 +K10

)
−

(
Ka+

σ21
2

)]
s
ds.

In conclusion, the solution of the system (11) is

X1(t) = X1(0) exp

(
σ1ξ

1
t −

(
Ka +

σ 2
1

2

)
t

)
,

X2(t)=X2(0)e
σ2ξ

2
t −

(
σ22
2 +K10

)
t
+ KaX1(0)e

σ2ξ
2
t −

(
σ22
2 +K10

)
t

·

∫ t

0
e
σ1ξ

1
s −σ2ξ

2
s +

[(
σ22
2 +K10

)
−

(
Ka+

σ21
2

)]
s
ds.

IV. QUALITATIVE ANALYSIS OF THE FIRST-ORDER
1-COMPARTMENT STOCHASTIC MODEL
Theorem 3: The solution of the stochastic model (11) is

unique.
Since the stochastic system model (11) is a linear system,

the uniqueness of its solution can been obtained directly from
Theorem 2.1 in Reference [17].
Theorem 4: If σ1 and σ2 satisfies

[
Ka

2K10(Ka + K10)
+

1
2Ka

]
σ 2
1 < 1,

σ 2
2

2K10
< 1,[
Ka

2K10(Ka + K10)
+

1
2Ka

]
σ 2
1 +

σ 2
2

2K10

< 1+
σ 2
1 σ

2
2

4KaK10
+

Kaσ 2
1 σ

2
2

4K10(Ka + K10)2
,

then the trivial solution of the stochastic model (11) is
stochastically stable.

Proof: Let the Lyapunov function be V (x, t) =

xTQx, where A =
[
−Ka 0
Ka −K10

]
, x = [X1,X2]T and

Q =
[
q11 q12
q12 q22

]
is symmetric and satisfies ATQ+QA = −I

which implies
2Ka(q12 − q11) = −1,
Ka(q22 − q12)− K10q12 = 0,
−2K10q22 = −1.

Solve this system, we obtain

Q =


Ka

2K10(Ka + K10)
+

1
2Ka

Ka
2K10(Ka + K10)

Ka
2K10(Ka + K10)

1
2K10

 .
By the application, we know Ka > 0 and K10 > 0, hence

q11 =
Ka

2K10(Ka + K10)
+

1
2Ka

> 0.

Moreover,

|Q| =
1

4KaK10
+

Ka
4K10(Ka + K10)2

> 0.

Thus,Q is a symmetric positive-definitematrix as required.
Moreover, since V (x, t) = xTQx is positive-definite if and
only if Q is positive-definite, we have that V (x, t) is positive-
definite.

Let f (x(t), t) = [−KaX1 KaX1 − K10X2]T and
g(x(t), t) = [σ1X1 σ2X2]T , then

LV (x, t)

= xTQf (x, t)+ f T (x, t)Qx + gT (x, t)Qg(x, t)

= −X2
1 − X

2
2 + q11σ

2
1X

2
1 + 2q12σ1σ2X1X2 + q22σ 2

2X
2
2 .

Define h(X1,X2) = −X2
1 − X2

2 + q11σ 2
1X

2
1 +

2q12σ1σ2X1X2 + q22σ 2
2X

2
2 , then

hX1 (X1,X2) = −2X1 + 2q11σ 2
1X1 + 2q12σ1σ2X2,

hX2 (X1,X2) = −2X2 + 2q22σ 2
2X2 + 2q12σ1σ2X1.

Denote
A = hX1X1 = −2+ 2q11σ 2

1 = −2(1− q11σ
2
1 ),

B = hX1X2 = 2q12σ1σ2,

C = hX2X2 = −2+ 2q22σ 2
2 = −2(1− q22σ

2
2 ),

and let
0 = hX1 (X1,X2) = −2X1 + 2q11σ 2

1X1 + 2q12σ1σ2X2,

0 = hX2 (X1,X2) = −2X2 + 2q22σ 2
2X2 + 2q12σ1σ2X1,

i.e.,
(1− q11σ 2

1 )X1 = q12σ1σ2X2,

(1− q22σ 2
2 )X2 = q12σ1σ2X1.

It’s clear that (0, 0) is a solution.
AC − B2

= 4(1− q11σ 2
1 )(1− q22σ

2
2 )− 4q212σ

2
1 σ

2
2

= 4

[
1−

(
Ka

2K10(Ka + K10)
+

1
2Ka

)
σ 2
1 −

σ 2
2

2K10

+
σ 2
1 σ

2
2

4KaK10
+

Kaσ 2
1 σ

2
2

4K10(Ka + K10)2

]
.
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If σ1 and σ2 satisfies AC − B2 > 0 and A < 0,
C < 0, i.e.,

[
Ka

2K10(Ka + K10)
+

1
2Ka

]
σ 2
1 < 1,

σ 2
2

2K10
< 1,[
Ka

2K10(Ka + K10)
+

1
2Ka

]
σ 2
1 +

σ 2
2

2K10

< 1+
σ 2
1 σ

2
2

4KaK10
+

Kaσ 2
1 σ

2
2

4K10(Ka + K10)2
,

then h(0, 0) = 0 is the maximum value of h. It means

LV = h(X1,X2) ≤ h(0, 0) = 0.

Thus, by Theorem 1 (i), the trivial solution is stochastically
stable. �

V. QUANTITATIVE ANALYSIS OF THE FIRST-ORDER
1-COMPARTMENT MODEL (EXTRAVASCULAR
ADMINISTRATION)
A. PARAMETER ESTIMATION OF THE FIRST-ORDER
1-COMPARTMENT MODEL (Extravascular Administration)
In the original ODE model,

dAa
dt
= −KaAa,

dAc
dt
= KaAa − K10Ac,

in order to estimate the parameters Ka and K10 in the model,
firstly, we generated sampled data with Ka = 2, K10 = 1 and
with initial concentrations being Aa = 0.957, Ac = 0.031.
Then we set the initial values for the optimizer as Ka =
K10 = 0.5, and we specify the coefficients drift and diffusion
as expressions. We can now use the Levenberg-marquardt
routine in package minpack.lm to estimate the parameters Ka
and K10 of the model.

The estimated coefficients are extracted from the output
object fitmod as follows:

Parameters :

Estimate Std . Error t value Pr(> |t|)
Ka 2.06204 0.02380 86.63 < 2e− 16 ∗ ∗∗
K10 1.01778 0.01051 96.83 < 2e− 16 ∗ ∗∗
− −−

Signif . codes : 0 ‘ ∗ ∗ ∗ ’ 0.001 ‘ ∗ ∗’ 0.01 ‘ ∗ ’0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error : 0.00935 on 38 degrees of freedom
Number of iterations to termination : 7
Reason for termination : Relative error in the sum of

squares is at most‘ftol’.

B. PARAMETER ESTIMATION OF THE FIRST-ORDER
1-COMPARTMENT MODEL WITH OPTIMAL CONTROL
In our revised ODE model with optimal control,

dAa
dt
= −KaAa + αu∗,

dAc
dt
= KaAa − K10Ac + βu∗.

FIGURE 1. Simulation curve of the original 1-compartment ODE model.

For u∗ = 0, we have done above. For u∗ = 1, in
order to estimate the parameters Ka, K10, α and β in the
model, firstly, we generated sampled data with Ka = 2,
K10 = 1, α = 0.16, β = 0.2, and with initial concentrations
being Aa = 0.957, Ac = 0.031. Then we set the initial values
for the optimizer as Ka = K10 = 0.5, α = 0.12, β =
0.03, and we specify the coefficients drift and diffusion
as expressions. We can now use the Levenberg-marquardt
routine in package minpack.lm to estimate the parameters
Ka, K10, α and β of the model.

The estimated coefficients are extracted from the output
object fitmod as follows:
Parameters :

Estimate Std . Error t value Pr(> |t|)
Ka 2.07126 0.03118 66.419 < 2e− 16 ∗ ∗∗
K10 1.03649 0.03128 33.131 < 2e− 16 ∗ ∗∗
α 0.83755 0.03572 23.447 < 2e− 16 ∗ ∗∗
β 0.21409 0.07052 3.036 0.00444 ∗ ∗
− −−

Signif . codes : 0 ‘ ∗ ∗ ∗ ’ 0.001 ‘ ∗ ∗’ 0.01 ‘ ∗ ’0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error : 0.009599 on 36 degrees of
freedom

Number of iterations to termination : 6
Reason for termination : Relative error in the sum of

squares is at most‘ftol’.

C. SIMULATIONS OF THE THREE FIRST-ORDER
1-COMPARTMENT MODELS
Using the above estimated parameters in V .A and V .B,
we solved the three models numerically and plotted the simu-
lation curves (Figure 1, 2, 3), then compared the three models
visually.

For 0 < u(t) < 1, all of the curves of (Aa,Ac) are between
curves on Figure 1 and Figure 2. It’s clear that our revised
ODE model with optimal control increased the amount of
drug absorption deposit (Aa) and drug in central compartment
(Ac), and SDE with optimal control model did the same
improvement but with consideration of the influences that are
not completely understood or not feasible to model explicitly.
So the SDE with optimal control model improves the model
and is more reasonable than the original ODE model and our
revised ODEmodel with optimal control. If we keep the same
(Aa,Ac), then we need less drug dosage.
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FIGURE 2. Simulation curve of the 1-compartment model with the
optimal control.

FIGURE 3. Simulation curve of the 1-compartment SDE model with
optimal control.

1) USING NUMERICAL METHOD TO VERIFY THE EXPLICIT
SOLUTION OF THE FIRST ORDER 1-COMPARTMENT
SDE MODEL
In this section, we’ll give a theorem for the stability of
the EM method [24], [25] for our SDE with optimal con-
trol model (11). Then we’ll verify our explicit solutions
of our SDE with optimal control model through compar-
ing the explicit solution with the numerical solution from
Euler-Maruyama(E-M) method.

Theorem 5: If

 σ
2
1 < 2Ka,(
σ 2
1 − 2Ka

) (
σ 2
2 − 2K10

)
> K 2

a ,
then

for any sufficiently small step size 1, the E-M approximate
solution of the SDE model (11) with the optimal control is
stable in distribution.

Proof: Let X (t) =
[
X1(t)
X2(t)

]
, A =

[
−Ka 0
Ka −K10

]
,

B1 =
[
σ1 0
0 0

]
, B2 =

[
0 0
0 σ2

]
, ξ (t) =

[
ξ1t
ξ2t

]
. Then

dX = AXdt +
∑2

i=1 BiX (t)dξ
i
t .

U = BT1 B1 + B
T
2 B2 + A+ A

T

=

[
σ 2
1 − 2Ka Ka
Ka σ 2

2 − 2K10

]
.

If {
σ 2
1 − 2Ka < 0,

|U | =
(
σ 2
1 − 2Ka

) (
σ 2
2 − 2K10

)
− K 2

a > 0,

FIGURE 4. Explicit Aa v.s. Numerical Aa.

FIGURE 5. Explicit Aa v.s. Numerical Aa on the same set of axes.

i.e., {
σ 2
1 < 2Ka,(
σ 2
1 − 2Ka

) (
σ 2
2 − 2K10

)
> K 2

a ,

then U is negative-definite, so by Theorem 2 for any suf-
ficiently small step size 1, the E-M approximate solution
of the SDE with optimal control model (11) is stable in
distribution.

In our SDE with optimal control model (11), Ka =
2.07126, K10 = 1.03649, σ1 = 0.5, and σ2 = 0.1, so

σ 2
1 − 2Ka = 0.52 − 2(2.07126) = −3.89252 < 0,(

σ 2
1 − 2Ka

) (
σ 2
2 − 2K10

)
= (−3.89252)(−2.06298) = 8.03019091

> 4.290117988 = 2.071262 = K 2
a .

Thus for any sufficiently small step size 1, the
E-M approximate solution of our SDE with optimal control
model (11) is stable in distribution. �
In order to compare the explicit Aa and the numerical Aa,

we draw them on the same set of axes (Figure 5), and to
show the explicit Ac and the numerical Ac overlap each other,
we also draw them on the same set of axes (Figure 7). In order
to compare the explicit Aa and the numerical Aa, we draw
them on the same set of axes (Figure 5), and to show the
explicit Ac and the numerical Ac overlap each other, we also
draw them on the same set of axes (Figure 7).

From Figure 4 and Figure 5, we can see the two curves
of explicit Aa and the numerical Aa completely overlap each
other, thus the explicit solution ofAa is correct. From Figure 6
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FIGURE 6. Explicit Ac V.S. Numerical Ac.

FIGURE 7. Explicit Ac v.s. Numerical Ac on the same set of axes.

and Figure 7, we can see the two curves of explicit totally Ac
and the numerical Ac also overlap each other, thus the explicit
solution of Ac is also correct.

VI. CONCLUSION
In this paper, we combined optimal control theory and
stochastic differential equation and proposed an optimal con-
trolled pharmacokinetic SDE model which provides an opti-
mal dosing and timing schedule. The original ODE PKmodel
was augmented through optimal control analysis and more-
over, in order to make the model more reasonable, the opti-
mal control model further was augmented into SDE model
by considering the stochastic perturbations of the variables
around their values at optimal control equilibrium point being
white noise type, which are proportional to the distances of
Aa and Ac from values at the optimal control equilibrium
point.

We got the explicit solution of our SDEmodel with optimal
control and proved the uniqueness and stability of explicit
solution. In part V, we discussed our model quantitatively.
We estimated the parameters of the model and compared the
simulation curves of the three model and found that our our
SDE model with optimal control increased the amount of
drug absorption deposit (Aa) and drug in central compart-
ment (Ac) and SDE more reasonable. Then we provided the
condition of stability of E-M method and used it to get the
numerical solutions. Then we verified our explicit solution
is correct through comparing the curves of simulated the
explicit and numerical solution.

Reference [12] analyzed a model for cancer chemotherapy
that aims at minimizing the damage done to bone marrow
cells during the chemotherapy, and concluded that partial

doses are not optimal and in principle optimal contrals
alternate between chemotheropy sessions of ‘‘full dose’’
and rest-periods. Reference [16] established a biomathe-
matical model of human granulopoiesis under chemotherapy
which allows predictions of yet untested G-CSF schedules,
comparisons between them, and with it, optimization of
flgrastim and pegfilgrastim treatment, and showed validity
of model predictions regarding alternative G-CSF schedules
by clinical trial results. From our study, we conclude the-
oretically that optimal dosing alternate between sessions of
‘‘full dose’’ or rest periods and partial dosage are not optimal
through analyzing the PK model as an optimal control prob-
lem. Moreover, we found the switching time of ‘‘full dose’’
and rest-periods which can be used for drug dosage schedule
easily. We can see that appropriate control can achieve the
best possible therapeutic effect with as few medications as
possible so that we can avoid drug side effects. And the
stochastic differential equation makes the model more rea-
sonable and the predictions about drug concentration more
accurate.
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