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ABSTRACT Surface ElectroMyoGraphy (sEMG) is widely applied to a variety of applications. Managing
the power consumption of battery-constrained SEMG Wireless Body Sensor Networks (WBSN) is an
important topic. In this paper, we use fatigue assessments as a case study. We apply the concept of distributed
computing to explore the impact of computation allocations on the client power consumption and the
requirement of architecture specifications. Regarding the CPU clock rate, we propose a power-saving
method based on the ping-pong buffer mechanism and evaluate all the crucial factors which affect the
power consumption such as sSEMG sample rates, algorithmic computational costs, wireless throughputs, and
selection of wireless technologies. To sum up, we conduct a comprehensive analysis of all possible distributed
computing architectures of WBSN to determine the lowest-power WBSN architecture. The results show that
the implementation based on the lowest-power WBSN architecture has lower power consumption compared
with other hardwares. The average current of the proposed architecture can be reduced by 81.7% compared
with the previous work. Besides, the battery life is 4.48 times that of the previous work under the continuous
wireless connection equipped with the same 300mAh lithium battery. Compared with the commercial device,

the battery life is 1.6 times that of the commercial one.

INDEX TERMS Surface EMG, biosignal processing, wireless body sensor networks, fatigue assessment.

I. INTRODUCTION

A. OVERVIEW OF sEMG APPLICATION

ElectroMyoGraphy (EMG) signal is an electrophysiologi-
cal signal which is produced by muscle contraction and
propagated from the muscles to the detection points on the
skin’s surface, and surface ElectroMyoGraphy (SEMQG) is a
noninvasive recording method of EMG signals. SEMG signals
are collected from the surface of the skin and often used to
evaluate muscle functions and muscle activities [1]. SEMG
is widely applied to a variety of applications. In clinical and
biomedical diagnosis, EMG signals are used to assess the
status of muscles that provide essential information about
the functional aspects of the Motor Units (MUs) to assist
in neuromuscular diagnosis [2]-[4]. [5] summaries the over-
all structure of pattern recognition schemes for EMG-based
prosthetic systems and discusses the real-time use on an
amputee’s upper limbs. Besides, in the sporting environment,
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EMG has been applied to long-distance runners to measure
the fatigue of the rectus femoris muscle [6], [7]. Furthermore,
[8] measures neck fatigue with an SEMG sensor system to
prevent turtle neck syndrome; this system can warn employ-
ees who work very long hours to receive medical treatment
earlier. Some previous works [1], [9], [10] had developed
fatigue analysis algorithms based on EMG signals which are
worth to be mentioned.

B. ARCHITECTURE DESIGN OF WIRELESS BODY SENSOR
NETWORK

Wireless Body Sensor Network (WBSN) is defined as an
integrated system which is used to analyze the physiological
information of a person. WBSN consists of a client and
a server. The client comprises four types of independent
devices, such as sensor nodes, an actuator node, a wireless
device, and a power unit, and the server is a personal device.
Based on the processing flow, [11] has indicated that there are
mainly three types of WBSN architectures collected from one
or more sensor nodes: managed WBSN, autonomous WBSN,
and intelligent WBSN.
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FIGURE 1. The managed WBSN architecture.
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FIGURE 2. The autonomous WBSN architecture.

A managed WBSN is a network in which the analysis on
the data collected is done by a personal device which can be a
smartphone or a personal computer, as illustrated in Figure 1.
The advantage of managed WBSN lies in the fact that the
demand of actuator performance is lower. All signals can
be operated by the third party. In a real-time application,
high-throughput wireless technology is required. In the mean-
while, it will also increase the power consumption of wireless
transmission. Besides, the required performance and power
consumption of actuator hardware are lower. An autonomous
WBSN has the same purpose as a managed WBSN; but the
processing flows are different. In an autonomous WBSN,
the actuator collected the data from the sensor nodes and
analyzed it without the need to wait for any third-party deci-
sion, as illustrated in Figure 2. Since the data were processed
completely in the actuator, the wireless device only needs to
transmit little information to a personal device. The wireless
device can select low-power and low-throughput technolo-
gies; but the WBSN system requires a high-performance
actuator hardware.

The optimal design is an intelligent WBSN that is a
combination of the above architectures. If situations are sim-
ple, analyses are done on their own by the actuator node; but
if they are complex, then the data are sent to the third party
for further processing.

Managing the power consumption of a battery-constrained
sEMG WBSN is an important topic. In this paper, we use
fatigue assessment as a case study. We apply the con-
cept of distributed computing [12] to explore the impact
of computation allocations on client power consumption
and the requirements of architecture specifications. The pro-
posed distributed computing WBSN architecture is illustrated
in Figure 3. The key contributions are summarized as follows.

« We divide the fatigue assessment algorithm into

two parts for distributed computing: a pre-processing
algorithm and a post-processing algorithm. The
pre-processing algorithm performs on an actuator while
the post-processing algorithm performs on a personal
device.
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FIGURE 3. The proposed distributed computing WBSN architecture.

o We evaluate all the crucial factors which affect the power
consumption to design a low-power architecture. These
factors include EMG sample rates, algorithmic com-
putational costs, wireless throughputs, and selection of
wireless technologies.

o We propose a CPU clock rate minimization method
based on a ping-pong buffer as the memory architecture.

Il. MATERIALS AND METHODS

A. THE FLOW OF FATIGUE ASSESSMENT ALGORITHM

The entire flow of the fatigue assessment algorithm is illus-
trated in Figure 4. A typical EMG signal processing flow
includes noise filtration, feature extraction, and feature detec-
tion [13], [14]. The noise filtration includes a band-pass filter
(described in Section II-A1), the Hamming window function
(described in Section II-A2), and the energetic compensa-
tion in power spectrum density (described in Section II-A4).
The feature extraction in the fatigue assessment application
represents frequency-domain transformation (described in
Section II-A3), and the feature detection in which the median
frequency algorithm is used (described in Section II-AS).

1) BAND-PASS FILTER

There are two main sources of motion artifacts [15], [16]:
one is from the interface between the detection surface of
the electrode and the skin, the other is from movement of the
cable connecting the electrode to the amplifier. The energetic
distribution of the above noise sources ranges from 0 to
20Hz. Aliasing effect [17] leads to high frequency noise
when sample rate does not satisfy half the Nyquist rate. In
order to avoid these effects, we employ a sixth-order digital
Butterworth Infinite Impulse Response (IIR) band-pass filter.
The passband ranges from 40Hz to 450Hz. Although the
utilization of FIR-based filters using the least-square strategy
can avoid arithmetic divisions, it needs a higher order to
achieve the same attenuation slope as the IIR filter. Therefore,
the IIR filter has the advantage of lower power consumption
and is chosen as the noise filtration method. The equation of
IIR filter is shown in Equation 1.

K L
Minl = "bixln— k1= ayln — 11, ()
k=0 =1

where K is the feedforward filter order, by is the feedforward
filter coefficient, L is the feedback filter order, a; is the
feedback filter coefficient, x[n] is the input signal, and y[n] is
the output signal. Figure 5 shows an example of a band-pass
filtered SEMG signal.

181367



IEEE Access

P.-C. Chen et al.: Power-Management Strategies in SEMG Wireless Body Sensor Networks

SEMG signal band-pass filter

‘ 4 I stagel = stage2
-— — TN\

' & N \

ook and/ i

Window

FIGURE 4. The flow of fatigue assessment algorithm.

Time Domain
2500

—— EMG raw data (stage 1)
~— Band-pass filtered (stage 2)

2000
1500

1000

500
0.00 0.25 0.50 0.75 125 1.50 175 2.00

©

—500

1.00
time (seconds)

FIGURE 5. An example of a band-pass filtered SEMG signal.

2) HAMMING WINDOW
After the data are processed by spectral analysis, the fre-
quency spectrum leaks to the contiguous frequencies causing
severe distortion when the waveform comprises frequencies
are not integer multiples of the sampling frequency. This
effect is called “Spectral Leakage™ [18], [19]. Note that the
leakage phenomenon could be greatly mitigated when the
sampling rate is carefully selected. However, the EMG signal
consists of various frequency components, thus making it
hard to avoid the effect using the power of two sampling
frequency. In other words, the data are always processed
by finite-length sampling in any practical application. This
approach is equivalent to the processing of data by rectangu-
lar window function and the convolution operation of the sinc
function on the spectrum. The role of data windowing is to
reduce the artificial high frequencies caused by finite-length
sampling. In the field of audio signal processing, Hamming
window is a common way to remove this effect. The equation
of the Hamming window function is shown in Equation 2.

21n

N -1

y[n]:[0.54—0.46-cos( )] -x[n],0<n <N —1,

@

where N is the window length, x[n] is the input signal, and
y[n] is the output signal. Figure 6 shows an example of a
SEMG signal which is processed by the Hamming window.

3) FAST FOURIER TRANSFORM

In order to decompose the frequency component of an SEMG
signal, a frequency-domain transformation must be used. The
time complexity of the Fast Fourier Transform (FFT) algo-
rithm is O(N log N) where N is the data size. This algorithm
is the computational bottleneck in the entire flow. We perform
the frequency-domain transformation on stage 1, stage 2, and
stage 3 as shown in Figure 7.
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FIGURE 6. An example of a sSEMG signal which is processed by the
Hamming window.
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FIGURE 7. An example of frequency-domain transformation.

4) THE ENERGETIC COMPENSATION IN POWER SPECTRUM
DENSITY
The main source of ambient noise is the electromagnetic
radiation [20] that is around 60Hz as shown in Equation 3a.
The amplitude of the ambient noise is sometimes greater than
the desired EMG signal about 1X to 3X. Since the surface
of the human body is constantly exposed to electromagnetic
radiation, it is not easy to avoid this exposure on the surface
of the earth. In the previous work, the 60Hz notch filter was
used but it influenced the original frequency spectrum and
needed higher computation. However, Power Spectrum Den-
sity (PSD) [21] describes the power distribution of frequency
components composing that signal. Therefore, we perform
the 60Hz energetic compensation in PSD to reduce the radia-
tion effect acquired by SEMG sensors as shown in Equation 3.
The steps are shown as follows:

1) Convert the total data to the PSD domain.

2) Calculate the average value Pgperqge from the

surrounding intensity of 10 frequencies (shown in
Equation 3b).
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FIGURE 8. An example of a sSEMG signal which is processed by the
energetic compensation in the PSD when the muscle is in a
relaxed state.

3) Assign the average value to the frequency from 57Hz
to 63Hz (shown in Equation 3c).

Fradiation = {f | f € 60 & 3Hz}, (3a)
1 56Hz 68Hz

Paverage = 75 D PO+ Y PN, (3b)
i=52Hz j=64Hz

P(f) = Paverage» Vf € Fradiations (30)

where P(f) is the PSD of the signal. Figure 8 shows an
example of a SEMG signal which is processed by the ener-
getic compensation in PSD when the muscle is in a relaxed
state.

5) MEDIAN FREQUENCY

During the fatiguing contractions, the PSD of an analyzed
SEMG signal shifts toward lower frequencies. The shift can
be described as a compression of the spectrum. The most
common parameters that would be enough to represent the
compression are mean and median frequencies [10], [22].
Compared with mean frequency, the median frequency has
the advantage of less sensitivity to noise [23]. Therefore,
we use median frequency to indicate fatigue as shown in
Equation 4. Thanks to the PSD conversion finished by the
former algorithm, the part of the PSD conversion in the
median frequency algorithm is omitted.

fmed 1 fs/2
[ e =3 [ puar, @
0 0

where f,.4 is the median frequency, f; is the sampling fre-
quency, and P(f) is the PSD of the signal. Figure 9 illustrates
an example of a SEMG signal which is analyzed by the
median frequency.

B. EVALUATION OF CRUCIAL FACTORS OF POWER
CONSUMPTION

1) SELECTION OF sEMG SAMPLE RATES

Ives and Wigglesworth [24] discussed the effects of the
selection of different EMG sampling rates. When collecting
typical amplitude and timing measurements from surface
EMG signals, oversampling is not required. When an EMG
sampling rate is below half of the Nyquist rate, it may result
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FIGURE 9. An example of a sSEMG signal which is analyzed by the median
frequency.

in poor temporal and amplitude of the signal. The high fre-
quency components of the SEMG signal have been reported
to be around 400-500Hz [25]; thus the recommended ADC
sample rate is from 800Hz to 1000Hz [26]. To ensure that
there is no information loss, 1000Hz is set as the maximum
frequency of the SEMG sample rate.

2) DATA QUANTITY OF EACH STAGE IN THE FATIGUE
ASSESSMENT FLOW

As aforementioned, we determine 1000Hz as the sEMG
sample rate. Due to the requirement of the FFT algorithm,
the frame length is set as 8.192 seconds. In this section,
we analyze each stage of data quantity as illustrated in
Figure 4. Stage 1 is the SEMG raw data; Stage 2 is the
post-processed data after processing by the band-pass filter;
Stage 3 is the post-processed data after processing by the
Hamming window function, and Stage 4 is the post-processed
data after processing by frequency-domain transformation.
The amount of data in stages 1-3 is shown in Equation 5:

x1,2,3 = afy, Q)

where x1 23 is the total amount of the processed data in
stage 1-3, « is the sample rate of ADC, B is the process-
ing frame time, and y is the data precision. After finishing
FFT, the original time-series data will be transformed into
frequency-domain data. Due to the mirroring of the frequency
spectrum, the practical valid amount of data in stages 4-5
is half of the amount of data in stages 1-3 as shown in
Equation 6:

X455 =apy/2, (6)

where x4 5 is the total amount of the processed data in stages
4-5, a is the sample rate of ADC, and y is the data precision.
The amount of data in stage 6 is shown in Equation 7:

X6 =V, (N

where xg is the total amount of the processed data in stage 6,
and y is the data precision.

Therefore, the amounts of data in stages 1-3 (xj23) are
16.384 kilobytes; the amounts of data in stages 4-5 (x4 5) are
8.192 kilobytes, and the amount of data in stage 6 (x¢) is
2 bytes as shown in Table 1.
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TABLE 1. The data quantity of each stage in the fatigue assessment flow.

stage 1 | stage 2 | stage 3 | stage 4 | stage 5 | stage 6
data quantity (Byte) | 16384 | 16384 | 16384 | 8192 |8192 |2

3) COMPARISON OF WIRELESS TRANSMISSION
TECHNOLOGIES

Concerning about wearable applications, the sEMG data
transmission can be achieved by utilizing wireless technolo-
gies. The 2G/3G are costly and consume high power con-
sumption, as well as the data rates of LoRa and Zigbee are not
enough to realize the high-sampling systems. Bluetooth Low
Energy (BLE) and Wi-Fi are the most common and low-cost
wireless transmission technologies in our daily life, which
are equipped in mobile phones, laptops, and so on. BLE
has much lower power consumption than Wi-Fi. However,
the data rate of Wi-Fi is sufficient enough to support the EMG
raw data. BLE cannot support the raw data but it can sup-
port the processed data by DSP algorithms. In Section II-B2,
we have evaluated every data quantity of processed data in
each stage and decided which wireless technology we are
going to choose according to the data throughput. For the
Wi-Fi technology, takes ESP8266EX [27] as an example,
the data transmission speed reaches 4.5 megabytes per second
and the average current is 80 mA. For the BLE technology,
takes HC-08 [28] as an example, the mode 1 is mainly used
to reduce the power consumption, and the current is 1.6 mA.
The data transmission speed reaches 2 kilobytes per second.

4) CPU CLOCK RATE MINIMIZATION METHOD BASED ON A
PING-PONG BUFFER AS THE MEMORY ARCHITECTURE

a: THE RELATIONSHIP BETWEEN THE CPU CLOCK RATE
AND ACTUATOR POWER CONSUMPTION

The dynamic power [29] consumed by a CPU is
approximately proportional to the CPU clock rate and the
square of the CPU voltage as shown in Equation 8.

Py = CV?f. )

where P is the dynamic power, C is the switched load capac-
itance, V is the supply voltage, and f is the CPU adjustable
clock rate. It is essential to minimize CPU frequency to
reduce power consumption and finish data analysis in time
simultaneously.

b: IMPROVEMENT OF DATA PROCESSING EFFICIENCY
BASED ON PING-PONG BUFFER

Most MCU applications are organized as a foreground and
background system. The architecture consists of two main
parts—the foreground is the Interrupt Service Routine (ISR)
that switches the buffer destination when the ADC hardware
finishes acquiring. The background is an infinite loop that
uses all remaining CPU cycles to perform the SEMG sig-
nal processing algorithm. The common design of process-
ing allocation is to wait for the ADC hardware to finish
acquiring data and then analyze them in the background
as shown in Figure 10. However, it causes data loss, poor
system utilization, and waste of client power consumption.
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FIGURE 12. Time graph in situation 2 with the ping-pong buffer.
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FIGURE 13. Improved time graph with the ping-pong buffer.

Background

Therefore, we embedded a ping-pong buffer [30]-[33]
mechanism on the memory architecture. It results in two
possible situations:

1) The data acquisition time is shorter than the DSP time.
It reflects that MCU has insufficient computational
resources. The acquisition hardware will turn into the
idle state and some data will be lost as shown in
Figure 11.

2) The data acquisition time is longer than the DSP
time. Owing to the sufficient computational resources,
the data analysis is completed early. It makes
background locked in an infinite loop, and is equivalent
to the continuous waste of CPU power consumption as
shown in Figure 12.

To improve these two situations, we moderate the clock
rate to balance the signal processing time and the data acqui-
sition time to minimize the power consumption of the actuator
while achieving twice the quantity of data processing in
the same period. The improved time graph is illustrated in
Figure 13.

¢: IMPROVED SYSTEM FLOW WITH A PING-PONG BUFFER

A Petrinet [34], [35] is a mathematical modeling language for
the description of distributed systems and the representation
is suitable for embedded systems [36]-[38]. Our Petri net
representation shows how double buffering works on our
proposed WBSN architecture as illustrated in Figure 14.

5) COMPREHENSIVE ANALYSIS IN DIFFERENT
COMPUTATION ALLOCATIONS

Based on the proposed clock rate minimization method,
different computations executing on an MCU may result
in different power consumption. We use different algo-
rithms mentioned in Section II-A as components, and divide
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FIGURE 14. Petri net representation shows how double buffering works
on our proposed WBSN architecture. The state sequence is
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sEMG data. (b) the buffer 0 enables DSP program and the buffer 1 is
ready to acquire data. (c) the buffer 0 is executing DSP algorithm and
transmitting with certain wireless technology, and the buffer 1 is
acquiring SEMG data. (d) the buffer 0 is ready to acquire data, and the
buffer 1 enables DSP program. (e) the buffer 0 is acquiring SEMG data,
and the buffer 1 is executing DSP algorithm and transmitting with certain
wireless technology.
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all algorithms into two parts for distributed computing:
the pre-processing algorithm and the post-processing algo-
rithm. The pre-processing algorithm is performed on the
MCU while the post-processing algorithm is performed on
the personal device. In this section, we list all possible
architectures in different algorithm allocations as shown in
Figure 15. Moreover, we aggregate the above factors
(described in Section II-B1, II-B2, and II-B3) to design all
possible architectures and apply the proposed clock rate min-
imization method to determine the lowest CPU frequency in
order to investigate power consumption. The required wire-
less throughput is calculated by dividing the data quantity
of the stage by the frame length. The selection of wireless
technologies is determined by which wireless device sat-
isfies the required wireless throughput and has the lowest
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TABLE 2. The architecture specifications of different computation
allocations.

stage | | stage 2 | stage 3 | stage 4 | stage 5 | stage 6
Required wireless | 2000|2000 |2000 |1000 |1000 |0.244

throughput (Byte/s)
Selection of Wire- | Wi-Fi | Wi-Fi | Wi-Fi | Wi-Fi | Wi-Fi | BLE
less technology
Current of Wireless | 80 80 80 80 80 1.6
technology (mA)
Minimized CPU |0.083 |0.55 1.89 18.9 19.2 19.9
clock rate (MHz)
Average current of | 0.1 0.3 1.2 14 14.5 17.1
MCU (mA)
The sum of current | 80.1 80.3 81.2 94.0 94.5 18.7
(mA)

Power distribution of SEMG WBSN

1 2 3 4 5

OMCU O Wireless Technology
FIGURE 16. Power distribution in the system.

power consumption. The architecture specifications are listed
in Table 2. The power distribution in the WBSN client indi-
cates that the selection of wireless devices dominates the total
power consumption of the system as shown in Figure 16.
After the above evaluation process, the total current found
in the case 6 architecture is the lowest. Therefore, the case 6
architecture is chosen to implement the whole system.

IIl. IMPLEMENTATION

Based on the above evaluation results, we design the WBSN
client architecture as illustrated in Figure 17. The PCB
implementation is shown in Figure 18.

A. MyoWare ™ MUSCLE SENSOR

The EMG signals are quasi-random in nature [39]. Before
amplification, the amplitude of EMG was 0-10 mV [1]. The
EMG signals will be mixed with noise when propagating
in different tissues. Without the use of a myoelectric sen-
sor, the original analog myoelectric signals are too weak to
be directly converted to digital signals with an MCU. The
muscle sensors amplify the analog SEMG signals conducted
from the electrodes and output band-limited signals with
proper amplitude intensity for the digitization conversion.
Due to the above-mentioned reasons, the MyoWare muscle
sensor [40] is chosen as the myoelectric sensor in this system
implementation as shown in Figure 19.

B. ACTUATOR

The aim of the actuator is to acquire and analyze data.
Yang et al. [41] have proved that an MCU is afford to acquire
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FIGURE 18. The implementation of SEMG WBSN client.
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FIGURE 19. The MyoWare muscle™ sensor.

SEMG signals. Therefore, STM32H743 [42] is chosen as
the main processing chip. In order to apply the method
described in Section II-B4, the main memory is allocated
for two buffers. The SEMG signals are digitized with the
built-in ADC hardware. After finishing acquiring digital data,
the ADC function triggers the Direct Memory Access (DMA)
engine to move the data into the ping-pong buffer without
CPU intervention as illustrated in Figure 14. On the other
hand, the background is an infinite loop that performs all
these five algorithms (described in Section II-A) and trans-
mits the fatigue result to the BLE module via the Universal
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TABLE 3. Comparison of various sEMG hardware architectures.

Architecture Commercial | [41] This work
device [45]
Signals EMG EMG 4*EMG
Band-pass filter,
Siganl Processin, Hamming window,
& Functions & Band-pass | None FFT,
filter PSD compensation,
Median frequency
Wireless BLE Wi-Fi BLE
Technology
PCB Size (cm?) |2.7x3.7 5.1x1.9 3.8x4.45
Battery
Capacity (mAh) N/A 300 300
Total Power 65SmW 104mAX3.3V | 19mAX3.3V
Consumption
Battery
Life (hours) ! 23 12

Asynchronous Receiver/Transmitter (UART) interface. Then,
the BLE module transmits the processed data to the smart
phone.

C. POWER UNIT

The whole system uses a 300 mAh lithium battery as the
main power source. The power unit consists of two circuits: a
power supply circuit and a power charging circuit. These two
circuits are controlled by a power switch. The power supply
circuit comprises a DC-DC converter [43] that converts bat-
tery voltages to 3.3 voltage and supplies the whole system.
The power charging circuit includes a linear li-ion battery
charger [44] that provides fixed current to a lithium battery
while charging with a micro-USB interface.

IV. RESULTS

Table 3 compares the differences between the proposed
design and other architectures. Both the commercial device
[45] and [41] can only support one channel sSEMG signal.
The commercial device [45] supports the band-pass filter
for signal pre-processing. However, the proposed architec-
ture supports four channel sSEMG inputs and several DSP
algorithms such as band-pass filter, hamming window, FFT,
PSD compensation, and median frequency. The functionality
of both [41] and our proposed architecture can be modified
by updating the firmware based on the implementation of an
MCU. Compared with the commercial device [45] and [41],
the reserved four sensor connectors allow users to customize
the required number of EMG channels for most applications.
In addition, a high-performance MCU gives users greater
flexibility to customize the allocation of computing capac-
ity according to different computing requirements. In other
words, the client can allocate more computations, or allocate
fewer computations to reduce the CPU clock frequency due
to power-saving requirements. In terms of wireless transmis-
sion technologies, the commercial device [45] uses the same
BLE technology as the proposed architecture, but [41] uses
a higher-power Wi-Fi device. Besides, the moderated CPU
clock rate and the selection of wireless device improve the
power consumption where the battery life lasts for 11.2 hours.
The average current of the proposed architecture can be
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reduced by 81.7% compared with [41]. Furthermore, the bat-
tery life is 4.48 times that of [41] under the continuous
wireless connection equipped with the same 300mAh lithium
battery. Compared with the commercial device [45], our pro-
posed system reduces the power consumption by 3.5%, and
the battery life is 1.6 times that of the commercial device [45].

V. CONCLUSION

This paper mainly tends to devise the general design strate-
gies to develop a low-power WBSN architecture based on
algorithm allocations. We determined the wireless tech-
nology by investigating the required wireless throughput.
Regarding the CPU clock rate, we proposed a minimization
method based on a ping-pong buffer as the memory archi-
tecture. In this paper, we used fatigue assessment as a case
study and designed our own digital signal processing flow
with five algorithms. To sum up, we conducted a compre-
hensive analysis of all possible distributed computing archi-
tectures of WBSN to determine the lowest-power WBSN
architecture. The results showed that the implementation
based on the lowest-power WBSN architecture has the lowest
power consumption compared with other hardwares. In the
future, the proposed power-management strategies could be
templates to apply to other SEMG applications.
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