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ABSTRACT To solve the problem of low accuracy of a mobile node localization in an underwater
sensor network, this article proposes a hybrid localization algorithm based on Doppler shift and angle of
arrival (AOA) for the underwater mobile node (DAHL). This algorithm utilizes the Doppler frequency shift
between the different signals received from the anchor node and the mobile node and the AOAmeasurement
of the signal reflected by the mobile node to estimate the instantaneous position and velocity information
of the mobile node through a two-stage algebraic method. In view of the existing measurement errors in the
actual situation, the position and velocity estimation errors of the mobile node are optimized by introducing
auxiliary parameters. Theoretical analysis and simulation experiments show that the DAHL method can
effectively improve the localization accuracy of the mobile node. The localization accuracy of this algorithm
can be close to the Cramér-Rao Lower Bound (CRLB) with the condition of small measurement errors.

INDEX TERMS Underwater sensor network, underwater mobile node localization, Doppler shift, AOA.

I. INTRODUCTION
Underwater sensor networks (UWSNs) are widely used in
marine environment monitoring, marine resource develop-
ment and utilization, geological disaster forecasting, and
marine defense security [1]–[3]. Deploying a variable number
of sensor nodes with communication capabilities in desig-
nated waters is the essential requirement for building the
UWSNs. The deployed nodes communicate with each other
to achieve collaborative work, and different types of sensor
nodes collect various types of data to monitor the underwater
environment.

The current communication technologies used by UWSNs
primarily include radio waves, optical waves, magnetic
induction(MI), and acoustic waves. The transmission dis-
tance of the radio signal will be shortened due to the rapid
attenuation of radio waves in the water. Background optical
pollution, clarity of the water, and optical scattering in the
water will have an enormous impact on the communication
quality of optical waves, which makes it difficult to transmit
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over long distances in water with complex diversity.Magnetic
induction communication has the characteristics of ensur-
ing transmission rate, low transmission delay [3]. However,
the communication range of magnetic induction can only
reach 10 to 100 m, which cannot meet the requirements of
long distance underwater networking. On the other hand,
the attenuation of the acoustic signals in water is small, and
the range of acoustic communication can reach several kilo-
meters. Although the acoustic signal has large transmission
delay and low data rate, its transmission distance is farther
than radio waves, optical waves, and magnetic induction.
Therefore, using acoustic waves to communicate becomes the
unquestionable choice of UWSNs in recent years.

In UWSNs, underwater node localization has gradually
become an indispensable key process. Accurate node location
information can help to improve the efficiency of rout-
ing protocols, optimize network topology designs, and bal-
ance energy consumption in different areas of the network.
However, due to the inherent characteristics of underwa-
ter acoustic channels, such as high transmission delay, lim-
ited bandwidth, Doppler effect, and severe multipath, it has
brought great challenges to the localization of UWSNs.
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Therefore, the problem of node localization in underwater
sensor networks has become a research hotspot in the field
of underwater acoustics.

The node localization technologies presently applied to
UWSNs mainly include range-based and range-free local-
ization. Range-free localization technologies mainly depend
on the connectivity of the network to achieve the position
of the node. Besides, the characteristics of link connectiv-
ity, signal-to-noise ratio (SNR), and bit error rate (BER) of
sensor nodes can also be used. Typical algorithms include
centroid algorithm, Approximate Point in Triangle (APIT),
and DV-Hop [4]. In the range-based localization technology,
the unknown node realizes the estimation of the relative dis-
tance and azimuth between itself and the reference node via
acoustic signals, and then uses the relevant algorithm to calcu-
late the position [5]. Commonly used measurement methods
for range-based localization include time of arrival (TOA) [6],
time difference of arrival (TDOA) [7], [8], received signal
strength (RSS) [9], angle of arrival (AOA) [10], and combi-
nations of these methods.

At present, localization research on UWSNs is mostly car-
ried out for the localization of nodes in a static environment,
many mature algorithms usually relying on different range-
based measurement methods, and each measurement method
is accompanied by its unique advantages and unavoidable
limitations [4], [5]. The TOA-based method uses the signal
transmission time and the signal arrival time to determine
the one-way distance. This method requires strict time syn-
chronization between the unknown node and the sensor. The
TDOA-based method uses the time difference of the signal
to reach each sensor node to achieve localization; neverthe-
less, this method also requires accurate time synchronization
between the sensor nodes. The RSS-based method uses trans-
mission loss (power difference between transmitted signal
and received signal) as the basis for distance estimation, but
in the underwater environment, changes in the underwater
acoustic channel will cause the RSS to have a high time-
varying characteristic, and it is difficult to accurately mea-
sure the signal transmission loss when applying the RSS to
underwater localization [11]. AOA-based localization uses
the propagation path of the signal to obtain the relative orien-
tation or angle between the node to be localized and the sensor
node. On the other hand, during the observation of the target,
the underwater sensor node receiving the signal needs to be
equipped with a directional antenna with strong directivity to
obtain AOA measurements [12]. The method based on AOA
measurement requires each sensor node observes the angle of
arrival of the signal to generate the coordinates of the target
and provide the position information of the node to avoid the
ambiguity of localization [13], [14]. To improve the local-
ization accuracy in the underwater environment, multiple
measurement methods can be combined to locate the target.
Reference [15] proposed a localization method based on
bistatic range (BR) and AOA measurements, and the essence
of BR is to use ellipse localization. It uses the transmission
time of the signal emitted from the transmitting signal sensor

and reflected back to the receiving signal sensor via the target.
The transmitting signal sensor and the receiving signal sensor
are in different positions. This method uses parameter conver-
sion and multistage processing to locate stationary nodes, and
its localization accuracy for nodes is high. In [16], the author
proposed a hybrid TDOA and AOA method for locating
stationary nodes, which has higher localization accuracy than
TDOA-based localization alone. The proposed method based
on structured total least squares is more robust than the linear
least squares method. However, in the actual marine envi-
ronment, nodes including autonomous underwater vehicles
(AUVs), underwater gliders, frogmen, and submarines will
move according to application requirements [17]. Because
these kinds of nodes have their own velocity, when using the
methods for locating stationary nodes to locate mobile nodes,
serious errors will arise in the information estimation. The
precise localization of underwater mobile nodes is the key to
ensuring the completion of various tasks. Consequently, this
article has carried out in-depth research on the localization
algorithms for underwater mobile nodes.

In the presence of relative motion between the mobile node
and the sensor in the UWSN, the impact of the nonnegligi-
ble node velocity information on localization performance
needs to be fully considered. The localization is far from
accurate when only using measurement information such as
time difference or angle to locate a mobile node. However,
in this case, the signal frequency information is sufficiently
accurate, so it can be used to obtain Doppler shift measure-
ments to locate the mobile node. Reference [18] discussed the
feasibility of using Doppler shift measurements in underwa-
ter localization. The localization accuracy of the target was
improved in [19] by combining the spatial correlation of the
ocean currents, tracking the speed of sound, using Doppler
shift measurements and applying anchor node drift velocity
information. Reference [20] proposed a hybrid localization
algorithm in a Non-Line-of-Sight (NLOS) environment. This
method combines the Doppler shift, TOA, and the angle of
departure (AOD) observations, and then uses the least squares
technique to estimate the position of the target. However,
the application scenario of the method is the localization of
moving targets in indoor environment and ground environ-
ment with dense buildings. A method for joint localization
using Doppler shift and TOA is proposed in [21]. It utilizes
information such as the Doppler shift and TOA estimation
associated with the moving target node to locate the target,
and the combination gives the position and velocity estima-
tion of the moving target. The simulation experiments show
that the proposed Doppler-aided method not only improves
the position estimation accuracy of the node but also improves
the tracking performance.

In summary, when locating an underwater mobile node,
a localization method with different measurement parameters
is proposed in this article, which can be explored to further
improve the accuracy of localization estimation.

The main contributions of the completed work in this
article are summarized as follows: (1) this article designs
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a network model for mobile node localization in a three-
dimensional (3D) underwater scene and combines multiple
anchor nodes and ordinary nodes with known positions to
locate the mobile node; (2) a hybrid localization algorithm
based on Doppler shift and AOA for the underwater mobile
node (DAHL), which is suitable for networks operating in
nearshore environments, is proposed; (3) similar to the AOA
measurements, there are high-dimensional and nonlinear
relationships between the Doppler shift and the mobile node
localization information, and a two-stage algebraic method is
used to linearize these relationships during the localization
process; (4) the Cramér-Rao lower bound (CRLB) of the
DAHL is analyzed. In addition, through simulation experi-
ments, the superiority and effectiveness of the DAHL algo-
rithm are verified. Naturally, this algorithm will provide a
new solution for the localization of the mobile nodes in a
3D UWSN.

The sections in this article are arranged as follows. The net-
work model is established in Section II. Section III introduces
the localization model designed on the basis of the network
model. In Section IV, a hybrid localization algorithm based
on the Doppler shift and AOA for the underwater mobile node
is introduced in detail. Section V analyzes the CRLB of the
localization algorithm. Section VI presents the experimental
simulation results. Finally, the paper is summarized, and the
prospective future work is proposed in section VII.

Notations: In the paper, AT represents the transposed
matrix of A, A−1 represents the inverse matrix of A,
Ap×q represents a matrix with p rows and q columns, and
blkdiag(A,B,C) represents the generation of the specified pair
where the diagonal elements are the block diagonal matrix
of A, B, and C. ‖·‖ is the Euclidean norm. The operator⊗

is a Kronecker product, which represents an operation
between two matrices of arbitrary size. For any parameter e,
e0 represents the true value of the parameter e. 0q represents a
q-dimensional zero-column vector. For any vector a, it indi-
cates the column vectors, and a (p : q) represents the p-th to
q-th elements in a.

II. NETWORK MODEL
A three-dimensional UWSN is considered and there are M
anchor nodes and N ordinary nodes deployed in the UWSN.
These nodes are manually deployed in precise positions,
and they are connected by cables. Assuming that there is
a mobile node u in the UWSN monitoring area, it passes
through the network at a certain velocity, and the velocity
of the node is much slower than the propagation speed of
the communication signal. Multiple anchor nodes equipped
with omnidirectional antennas emit monitoring signals of
different carrier frequencies, and the monitoring signals are
reflected by the mobile node during propagation and received
by multiple ordinary nodes. It is assumed that the ordinary
nodes know the carrier frequency of the anchor nodes trans-
mitting the monitoring signals, so ordinary nodes can effec-
tively distinguish the received signals of the different types of
nodes. Ordinary nodes can obtain the Doppler shift and AOA

FIGURE 1. Network model. It shows the deployment scenario of the
network.

measurement data from the received signal. Among them,
the Doppler shift measurement comes from the frequency
difference between the monitoring signal and the reflecting
signal received by the ordinary node, and the AOA measure-
ment comes from the angle at which the reflecting signal
reaches the ordinary node. The monitoring signal involved
in this article refers to the signal transmitted from the anchor
node, and the reflecting signal means the signal reflected by
the monitoring signal at the mobile node. The AOA refers
to the azimuth and elevation at which the reflecting signal
reaches the ordinary node. Ordinary nodes send the observed
Doppler shift and AOA data information to the shore-based
monitoring center through cables, and the monitoring cen-
ter processes the information to accomplish the localization
of the node. The network deployment scenario is shown
in Fig. 1.

In this scenario, the signals emitted by different anchor
nodes do not interfere with each other. Good communication
capabilities are maintained between ordinary nodes and the
shore-based monitoring center, and all calculations are per-
formed in the same reference system.

III. LOCALIZATION MODEL
The position coordinate of the i-th anchor node in the network
is si = [xi, yi, zi]T for i = 1, 2, · · · ,M , and the position
coordinate of the j-th ordinary node is nj =

[
xj, yj, zj

]T for
j = 1, 2, · · · ,N . The real position vector of the mobile node
is recorded as u0 = [x, y, z]T , and the real velocity vector is
recorded as v0 =

[
vx , vy, vz

]T . Every ordinary node in the
UWSN can obtain the Doppler shift and AOA measurement.
The mobile node localization model is shown in Fig. 2.

In the network, anchor node i transmits amonitoring signal,
which is reflected by mobile node u, and the frequency
at which ordinary node j receives the reflected signal is
recorded as [22]

fi,j = fci
(
1+

v
c

(
cos θi,v + cos θv,j

))
, (1)
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FIGURE 2. Localization model. It shows the localization process of the
mobile node.

where i = 1, 2, · · · ,M , j = 1, 2, · · · ,N , c = 1500 m/s is the
underwater average sound speed, θi,v is the angle between the
i-th anchor node and the direction of movement of the mobile
node, and θv,j is the angle between the j-th ordinary node
and the direction of movement of the mobile node. Using the
cosine theorem, the following can be obtained through (1):

fi,j = fci −
fci
c

(
ψ0
i + ψ

0
j

)
. (2)

In (2),ψ0
i =

Vi
d0i

andψ0
j =

Vj
d0j
, where d0i is the real distance

between the anchor node and the mobile node, and d0j is
the real distance between the ordinary node and the mobile
node,which can be expressed as

d0i =
∥∥∥u0 − si∥∥∥

=

√
(x − xi)2 + (y− yi)2 + (z− zi)2, (3)

d0j =
∥∥∥u0 − nj∥∥∥

=

√(
x − xj

)2
+
(
y− yj

)2
+
(
z− zj

)2
, (4)

Vi =
(
u0 − si

)T
v0

= (x − xi) vx + (y− yi) vy + (z− zi) vz, (5)

and

Vj =
(
u0 − sj

)T
v0

=
(
x − xj

)
vx +

(
y− yj

)
vy +

(
z− zj

)
vz. (6)

Then, the ordinary node j obtains the Doppler shift between
the monitoring signal transmitted by anchor node i and the
reflected signal by the mobile node is

f 0ij = fci − fi,j, (7)

To be exact, the Doppler shift observation equation
obtained by ordinary node j can be expressed as

f 0ij =
fci
c

(
ψ0
i + ψ

0
j

)
. (8)

In view of the measurement error in the actual underwater
environment, the Doppler shift measurement value has

fij = f 0ij +1fij, (9)

where fij, f 0ij , 1fij are the measured value, true value, and
measurement error of the Doppler shift, respectively. For
1fij, corresponding verification analysis has been given in
[23], [24], which proves that when the Doppler shift is esti-
mated in the presence of environmental noise and multi-path
effect, the Doppler shift estimation error approximately obeys
the zero-mean Gaussian distribution. The measurement of the
Doppler shift can be modeled as

f = f 0 +1f . (10)

In (10), f is the Doppler shift measurement vector,
f 0 and1f are the Doppler shift reference (a vector composed
of the true values of the Doppler shift) and the Doppler
shift measurement error, respectively. The vector in the above
formula can be expressed written as

f =
[
f T1 , f

T
2 , f

T
3 , · · · , f

T
N

]T
(11a)

f j = f 0j +1f j (11b)

f j =
[
f1j, f2j, f3j, · · · , fMj

]T (11c)

1f j =
[
1f1j,1f2j,1f3j, · · · ,1fMj

]T
. (11d)

As shown in Fig. 2, the AOA observation equation of
ordinary node jwhen the reflected signal reaches the ordinary
node is expressed as

α0j = arctan
y− yj
x − xj

(12)

and

β0j = arcsin
z− zj
d0j

. (13)

In (12) and (13), α0j and β0j are the real azimuth and
elevation of the mobile node relative to the j-th ordinary
node, respectively, where α0j ∈ (−π, π], β0j ∈ (0, π/2);
considering the influence ofmeasurement error, themeasured
values of azimuth and elevation are

αj = α
0
j +1αj (14)

and

βj = β
0
j +1βj. (15)

In (14) and (15), 1αj is the measurement error of the
azimuth αj and 1βj is the measurement error of the eleva-
tion βj. The AOA obtained by the ordinary nodes can be
expressed in vector form, where α = [α1, α2, α3, · · · , αN ]T

and β = [β1, β2, β3, · · · , βN ]T for j = 1, 2, · · · ,N , and (14)
and (15) can be further expressed as

α = α0 +1α (16)

and

β = β0
+1β. (17)
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where α is the azimuth measurement vector, α0 and 1α are
the azimuth reference value (a vector composed of the true
values of the azimuth) and the azimuth measurement error
vector, respectively. β is the elevation measurement vector,
β0 and 1β are the elevation reference value (the vector
formed by the true value of elevation angle) and the elevation
measurement error vector, respectively.

In summary, to simplify the algorithm derivation pro-
cess, MN Doppler shift measurements and N pairs of AOA
measurement information obtained by ordinary nodes are
collected. The Doppler shift and AOA measurement infor-
mation are recorded as ε, and the observation vector ε can
be recorded as follow:

ε =
[
f T ,αT ,βT

]T
. (18)

Combining (10), (16), and (17), the measurement equation
of the method localization on the mobile node is

ε = ε0 +1ε. (19)

In (19), ε0 =
[
f 0

T
,α0

T
,β0T

]T
is the observation vector

without measurement error, and 1ε =
(
1f T ,1αT ,1βT

)T
is the corresponding measurement error vector. It is assumed
that 1ε obeys a Gaussian distribution with a mean value of
zero. The covariance matrix of 1ε is Qε = E

[
1ε1εT

]
=

diag
(
Qf ,Qα,Qβ

)
, and Qf , Qα , and Qβ are the covariance

matrices corresponding to the measurement error vectors1f ,
1α, and 1β, respectively.

For the mobile node, the unknown position and veloc-

ity information is expressed as 2 =

[
u0

T
, v0

T
]T

. The

algorithm proposed in this article uses MN Doppler shift
measurements, N azimuth measurements, and N elevation
measurements with measurement errors, combined with the
statistical characteristics of the error corresponding to each
type of measurement parameter. Based on the measurement
model, the algorithm estimates localization information of the
mobile node as accurately as possible.

IV. DAHL ALGORITHM
The DAHL algorithm uses a two-stage estimation process.
Since there is a nonlinear relationship between observation
vector ε and the unknown parameter 2 of the mobile node,
in the first stage, using the obtained Doppler shift and AOA
measurement data, construct a pseudolinear equation about
u0 and v0 of themobile node and observation vector ε to solve
the existing nonlinear problem and preliminarily estimate
the position and velocity of the mobile node. In the second
stage, the relationship between the auxiliary parameters and
the parameters of the mobile node is used to optimize the
estimation error in the first stage.

A. FIRST STAGE
In DAHL, regardless of the position error of the anchor
node and the ordinary node, each ordinary node can accu-
rately measure the arrival time of the monitoring signal

and the mobile node reflecting signal. The distance differ-
ence between the two types of signal propagation can be
expressed as

rij = d0i + d
0
j − dij. (20)

In (20), rij can be obtained by the product of the time
difference between the arrival time of the signal and the speed
of underwater acoustics, i.e., rij = cτij. dij is the distance
between the anchor node and the ordinary node, and dij is
obtained by

dij =
∥∥si − nj∥∥

=

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2
. (21)

Substituting (8) into (9) and shifting the terms; then, sub-
stituting (20) to obtain

cd0i 1fij = crijfij + cdijfij − fci
(
nj − si

)T v0
− fciψ0

j
(
rij + dij

)
− cd0j fij. (22)

For the azimuth and elevation measurements, this article
assumes that the measurement error of the two parameters is
small, which can be written as

1αj = αj − α
0
j ≈ 0 (23)

and

1βj = βj − β
0
j ≈ 0. (24)

According to (23) and (24), cos1αj ≈ 1, sin1αj ≈ 1αj,
cos1βj ≈ 1, and sin1βj ≈ 1βj can be clearly obtained.

Similar to [25], substituting (14) and (15) into (12) and
(13), respectively, to obtain

gTj
(
nj − u0

)
1αj = qTj u

0
− qTj nj (25)

and

d0j cosβj1βj = mTnj −mTu0 + d0j sinβj. (26)

In (25), gj and qj are expressed as
[
cosαj, sinαj, 0

]T and[
sinαj,− cosαj, 0

]T , and in (26), m = [0, 0, 1]T .
In this stage, with the help of auxiliary parameters ψ0

and µ0, an approximately linear relationship can be estab-
lished between the position parameters u0 and v0 of the
mobile node and the observation vector ε of the ordinary
node. Therefore, the estimated parameter vector is recorded

as γ 0 =

[
u0

T
, v0

T
,ψ0T ,µ0T

]T
, where γ 0 includes 2N+6

parameters; where ψ0
=

[
V1
d01
, V2
d02
, · · · , VN

d0N

]T
and µ0

=[
d01 , d

0
2 , · · · , d

0
N

]T
, and each unknown parameter is indepen-

dent of each other.
Combining (22), (25), and (26), the relationship between

the observation vector obtained by different ordinary nodes
and the estimated parameter vector can be written as the
following linear equation:

B11ε = h1 − G1γ 0, (27)

181666 VOLUME 8, 2020



K. Hao et al.: Hybrid Localization Algorithm Based on Doppler Shift and AOA for an Underwater Mobile Node

where

B1 =
[
blkdiag

(
B1 f ,B1α,B1β

)]
(28a)

B1 f = cIN ⊗ diag
(
d01 , d

0
2 , · · · , d

0
M

)
(28b)

B1α = diag
(
gT1
(
n1 − u0

)
, · · · , gTN

(
nN − u0

))
(28c)

B1β = diag
(
d01 cosβ1, · · · , d

0
N cosβN

)
, (28d)

h1 =
[
hT1f ,h

T
1α,h

T
1β

]T
(29a)

h1f =
[
hT1f ,1,h

T
1f ,2, · · · ,h

T
1f ,M

]T
(29b)

h1f ,i = [cfi1 (di1 + ri1) , · · · , cfiN (diN + riN )]T (29c)

h1α =
[
−qT1 n1,−q

T
2 n2, · · · ,−q

T
NnN

]T
(29d)

h1β =
[
mTn1,mTn2, · · · ,mTnN

]T
, (29e)

and

G1 =

[
GT1 f ,G

T
1α,G

T
1β

]T
(30a)

G1 f =
[
G1 f1 ,G1 fj

]
(30b)

G1 f1 =

[
0T3 , fci

(
nj − si

)T
,0Tj−1, fci

(
dij + rij

)]
(30c)

G1 f2 =

[
0Tj−1, cfij,0

T
N−1

]
(30d)

G1α =

[
−qTj ,0

T
2N+3

]
(30e)

G1β =

[
mT ,0TN+j+2 − sinβj,0TN−j

]
. (30f)

Based on (27), unknown parameter γ 0 in the first stage
can be estimated using weighted least squares. In the actual
calculation process, the initial value of weighting matrix W
needs to be set to obtain the estimated values of u0 and v0.
Therefore,Q−1ε is first set toW to generate the initial estimate
of the mobile node state γ̂ 0, which can be expressed as

γ̂ 0 =

(
GT1WG1

)−1
GT1Wh1. (31)

By substituting the estimated values of each parameter in
γ 0 into (28), (29), and (30), the matrix B̂1 is constructed to
obtain a more accurate weighting matrix

W1 = B̂−T1 E
(
1ε1εT

)−1
B̂−11 = B̂−T1 Q−1ε B̂−11 . (32)

Then, the weighted least squares estimated value γ 1 of the
unknown parameter γ 0 in the first stage can be obtained as

γ 1 =

(
GT1W1G1

)−1
GT1W1h1. (33)

The error covariance matrix of estimated parameter γ 1

obtained in the first stage is cov (γ1) ≈
(
GT1W1G1

)−1
.

According to the above calculation, the estimated value of
position vector u0 of the mobile node is û = γ 1(1 : 3),
and the estimated value of velocity vector v0 is v̂ =
γ 1(4 : 6). In the practical application of underwater local-
ization, the requirements for node localization accuracy are
relatively high. Therefore, the estimated value of the first

stage needs to be corrected to obtain an accurate estimation
of the node position and velocity information.

B. SECOND STAGE
Record the estimated value obtained in the first stage as

γ 1 =

[̂
uT , v̂T , ψ̂

T
, µ̂T

]T
. The relationship between esti-

mated value γ 1 and true value γ 0 can be written as

γ 1 = γ 0 +1γ 1. (34)

In (34), 1γ 1 =
(
1uT ,1vT ,1ψT ,1µT

)T
is the error

vector corresponding to γ 1, where 1ψ =
[
1ψ1,1ψ2 · · · ,

1ψN
]T and 1µ =

[
1d1,1d2 · · · ,1dN

]T . The vector con-
tained in 1γ 1 can be written as

1u = û− u0 (35a)

1v = v̂− v0 (35b)

1ψj = ψ̂j − ψ
0
j (35c)

1dj = d̂j − d0j . (35d)

In (35a) and (35b), 1u and 1v are the corrections of
the position and velocity estimation, respectively. According
to the error correction method proposed in [26], the two
equations can be expressed as

1u = 03 +1u (36)

and

1v = 03 +1v. (37)

Equation (35d) is shifted, and both sides of the equation
are squared at the same time. After ignoring the second-order
estimation error, the following can be obtained that

2̂dj1dj = d̂2j − û
T û− nTj nj + 2̂uTnj + 2

(̂
u− nj

)T
1u.

(38)

Similarly, after shifting (35c), it can be multiplied by the
transformed (35d) to obtain

d̂j1ψj + ψ̂j1dj = d̂jψ̂j − ûT v̂+ nTj v̂+ v̂
T1u

+

(̂
uT − nTj

)
1v. (39)

Define the parameter to be estimated at this stage as
1δ =

[
1uT ,1vT

]T , based on the above discussion, com-
bine (38) and (39) into

B21γ 1 = h2 − G21δ. (40)

In (40), the matrices B2, h2, and G2 are written as

B2 =

[
BT21,B

T
22,B

T
23,B

T
24

]T
(41a)

B21 =

[
I3×3, 0T(2 N+3)×3

]
(41b)

B22 =

[
0T3×3, I3×3, 0

T
(2 N )×3

]
(41c)

B23 =
[
0N×6, diag

(̂
dj
)
, diag

(
ψ̂j
)]

(41d)

B24 =
[
0N×(N+6), 2 diag

(̂
dj
)]
, (41e)
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h2 =
[
0T1×3, 0

T
1×3,h

T
2f ,h

T
2d

]T
(42a)

h2f = d̂jψ̂j − ûT v̂+ nTj v̂ (42b)

h2d = d̂2j − û
T û− nTj nj + 2̂uTnj, (42c)

and

G2 =

[
GT21,G

T
22,G

T
23,G

T
24

]T
(43a)

G21 = [−I3×3,03×3] (43b)

G22 = [03×3 − I3×3] (43c)

G23 =

[
−̂vT ,−

(̂
u− nj

)T ] (43d)

G24 =

[
−2

(̂
u− nj

)T
,0N×3

]
. (43e)

Let the estimated value of 1δ be γ 2; through (40),
the weighted least squares estimate of the parameter to be
estimated in the second stage of 1δ can be obtained by

γ 2 = 1̂δ =
(
GT2W2G2

)−1
GT2W2h2, (44)

whereW2 is a weighted matrix, which is

W2 = B−T2 E
(
1γ 11γ

T
1

)−1
B−12

= B−T2 cov
(
γ 1
)−1 B−12 . (45)

The covariance matrix of γ 2 is

cov
(
γ 2
)
=

(
GT2W2G2

)−1
. (46)

After the correction by (44), 1û = γ 2(1 : 3) and 1̂v =
γ 2(4 : 6) can be obtained. According to the established
relationships in (35a) and (35b), the position and velocity can
be estimated as

ũ = û−1û (47)

and

ṽ = v̂− 1̂v. (48)

The obtained position and velocity estimates of the mobile
node are written as δ̃ =

[̃
uT , γ̃ T

]T , and the covariance matrix
of δ̃ is

cov(̃δ) = cov
(
γ 2
)

=

(
GT2B

−T
2 GT1B

−T
1 Q−1ε B−11 G1B−12 G2

)−1
. (49)

V. CRLB ANALYSIS
The previous section discussed the DAHL algorithm for the
estimation process of the localization information of the
mobile node in detail. This section will conduct a theoretical
analysis of the DAHL algorithm, verify the effectiveness of
the proposed algorithm, and give the CRLB of the estimation
error to establish the performance limit of the mobile node
location problem.
The CRLB of the position and velocity estimation in this

article can be obtained by calculating the inverse of the Fisher
information matrix (FIM) [27]. Since the measured values of

the Doppler shift and AOA satisfy the measurement model
in (19), and the Doppler shift and AOA measurement error
1ε obey the Gaussian distribution with zero mean, the mixed
Gaussian probability density function based on the Doppler
shift and AOA measurement is

P(ε | 2) = Ke−
1
2

(
ε−ε0

)TQ−1ε (
ε−ε0

)
, (50)

where K is the normalization constant. FIM of 2 can be
expressed as

F = J(2)TQ−1ε J(2). (51)

In (51), J(2) is the Jacobian matrix, which can be
expressed as

J(2) = ∇ε
0

θ =


∂f 0

∂u0T
∂f 0

∂v0T
∂α0

∂u0T
0

∂β0

∂u0T
0

 , (52)

where

∂f 0

∂u0T
=

fci
c

(
∂ψ0

i

∂u0T
+
∂ψ0

j

∂u0T

)
(53a)

∂ψ0
i

∂u0T
=

v0∥∥u0 − si∥∥ −
(
u0 − si

)T v0∥∥u0 − si∥∥2
(
u0 − si

)T∥∥u0 − si∥∥ (53b)

∂ψ0
j

∂u0T
=

v0∥∥u0 − nj∥∥ −
(
u0 − nj

)T v0∥∥u0 − nj∥∥2
(
u0 − nj

)T∥∥u0 − nj∥∥ (53c)

∂f 0

∂v0T
=

fci
c

((
u0 − si

)T∥∥u0 − si∥∥ +
(
u0 − nj

)T∥∥u0 − nj∥∥
)

(53d)

∂α0

∂u0T
=

[
− sinα0j , cosα

0
j , 0

]
∥∥u0 − si∥∥2 (53e)

∂β0

∂u0T
=

[
0, 0,

1∥∥u0 − nj∥∥ cosβ0j
]
. (53f)

Then, the CRLB of2 can be obtained as

CRLB(2) =
(
J(2)TQ−1ε J(2)

)−1
. (54)

Equation (54) includes the CRLB for the position and
velocity estimation. It should be noted that the small errors
mentioned in this article are 1fij � fij, c1fij � d0i ,
1αj ≈ 0, and 1βi ≈ 0. When the above conditions are met,
the proposed method can theoretically achieve the CRLB.

VI. SIMULATION RESULTS
The localization performance of the DAHL algorithm will be
verified through simulation experiments in this section.

A. PERFORMANCE METRICS
In this article, the CRLB is used as the evaluation
standard for evaluating localization performance, and the
root mean square error (RMSE) is used as the evaluation
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index to measure the accuracy of the position and velocity
estimation. The RMSE is defined as

RMSEu =

√√√√ 1
L

L∑
l=1

∥∥u0 − ũl∥∥2 (55a)

RMSEv =

√√√√ 1
L

L∑
l=1

∥∥v0 − ṽl∥∥2, (55b)

where L is the number of Monte Carlo simulations, and
1000 independent Monte Carlo simulations are performed
for each experiment in the simulation. RMSEu represents the
RMSE of the position, and RMSEv represents the RMSE of
the velocity. ũl and ṽl are the estimated values of the u0 and v0
obtained by the l-th Monte Carlo simulation experiment.
It should be pointed out that in each simulation experiment,
the trajectory of the mobile node is consistent.

B. SIMULATION SCENARIO
To achieve better performance of DAHL, this article makes
a trade-off between the energy consumption of the anchor
nodes vs. ordinary nodes and (in the experimental situa-
tion) the number of nodes vs. the localization accuracy.
The localization ability of DAHL is tested by simulating a
deployed localization network consisting of 3 anchor nodes
and 5 ordinary nodes. These nodes in the network are accu-
rately deployed in an area of 1000 m× 1000 m× 400 m, the
maximum transmission range of anchors node is 1000 m, and
the average speed of sound in water is 1500 m/s. The position
of the mobile node to be located is u0 = [600, 800, 300]T m,
and the velocity is v0 = [2.4, 1.6, 1.2]T m/s. The deployment
positions of nodes used for localization in the network as
shown in Table 1.

TABLE 1. Anchor node and ordinary node positions (in meters).

Since the propagation speed of underwater sound is much
greater than the velocity of the mobile node, assuming that
the mobile node reflects the monitoring signals emitted by
each anchor node at the same location. The covariance matrix
of measurement error 1ε is Qε = diag

(
Qf ,Qα,Qβ

)
.

The following assumptions are made about the measurement
error contained in 1ε: (1) Doppler shift measurement error
1fij ∼ N

(
0, σ 2

f

)
, and the covariance matrix of 1f is

Qf = σ 2
f IMN×MN ; (2) azimuth measurement error 1αj ∼

N
(
0, σ 2

α

)
, and the covariancematrix of1α isQα = σ 2

α IN×N ;

(3) elevation measurement error 1βj ∼ N
(
0, σ 2

β

)
, and

the covariance matrix of 1β is Qβ = σ 2
β IN×N ; and (4)

σf represents the standard deviation of the Doppler shift
measurement error (i.e., the measurement error level of the
Doppler shift), σα and σβ represent the standard deviation of
the azimuth and elevation measurement errors, respectively
(in this article, σα = σβ is assumed, σα and σβ are uniformly
expressed as σAOA, i.e., the AOA measurement error level),
and the measurement error vectors 1f , 1α, and 1β are not
correlated with each other.

C. MOBILE NODE POSITION AND VELOCITY ESTIMATION
1) The LOCALIZATION ACCURACY OF THE ALGORITHM
UNDER DIFFERENT MEASUREMENT ERROR CONDITIONS
In the simulation, the position and velocity estimation accu-
racy under different measurement error levels is evaluated to
verify the localization performance of the DAHL algorithm
for the mobile node. Set the variation range of σf and σAOA
are 0.1 Hz to 10 Hz and 0.02 deg to 2 deg, respectively.
To further verify the effectiveness of DAHL for mobile node
localization, the following two localization algorithms are
used as comparison algorithms: (1) the localization method
based on BR and AOA proposed in [15] and (2) the DAHL
algorithm without AOA measurement.

FIGURE 3. When the deviation of the AOA measurement error is 1 deg,
the RMSE of the mobile node position estimate varies with σf .

Fig. 3 shows that when the AOA measurement error devi-
ation is constant at 1 deg, the localization accuracy of the
mobile node changes with the increase in the Doppler shift
measurement error level. As shown in Fig. 3, the method
proposed in [15] has poor localization accuracy for themobile
node. This is because when processing the localization of
the mobile node, the method does not use the Doppler shift
containing the position and velocity information of themobile
node. Although the localization accuracy of the parame-
ter measurement is not affected by the change in Doppler
shift measurement error, it ignores the interference caused
by the velocity of the node to the localization, resulting in
poor localization accuracy. The DAHL without the AOA
localization method that uses the Doppler shift measurement
to locate the mobile node is better than the method pro-
posed in [15]. It can be seen from Fig. 3 that after introducing
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the AOA measurement parameters into the solution that only
uses Doppler shift localization, the DAHL method improves
the localization accuracy of the mobile node accordingly.
When σ 2

f = 0.1Hz2, the localization accuracy of the DAHL
method gradually deviates from the CRLB, but with the
increase in σf , the DAHL method shows better localization
performance.

FIGURE 4. When the deviation of the AOA measurement error is 1 deg,
the RMSE of the mobile node velocity estimate varies with σf .

Since the localization method in [15] cannot use measure-
ment data to attain the velocity of the mobile node, when
evaluating the performance of DAHL for mobile node veloc-
ity estimation, it is only compared with the DAHL without
AOA method. Fig. 4 shows the comparison of the estimation
accuracy of the mobile node velocity with the two localiza-
tion methods as the Doppler shift measurement error level
changes and the AOA measurement error deviation remains
constant at 1 deg. And Fig. 4 shows that when the Doppler
shift measurement error variance σ 2

f < 0.1Hz2, i.e., when the
Doppler shift measurement error is small, the RMSEv of the
DAHL method and the DAHL without AOA method is close
to the CRLB. When σ 2

f > 0.1Hz2, the velocity estimation
accuracy of the two algorithms for the mobile node starts to
deviate from the CRLB. Compared with the DAHL without
theAOA localizationmethod, the RMSEv curve of theDAHL
method for the mobile node velocity estimation deviates to a
smaller degree from the CRLB, which shows that it has high
velocity estimation accuracy.

It can be seen from Fig. 5 that when the Doppler shift
measurement error deviation is constant at 2 Hz, the local-
ization accuracy of the mobile node is the result of different
AOAmeasurement error levels. The DAHL without the AOA
method does not include AOA measurement parameters,
so the change in AOA measurement error does not affect
its localization accuracy. However, the method proposed
in [15] is more seriously affected by AOA measurement
error changes. The increasing AOA measurement error dom-
inates the localization performance of this method, making
its localization accuracy significantly lower than that of the
DAHLwithout AOAmethod and DAHLmethod. In addition,
it ignores the influence of the velocity of the mobile node

FIGURE 5. When the Doppler shift measurement error deviation is 2 Hz,
the RMSE of the mobile node position estimate varies with σAOA.

FIGURE 6. When the Doppler shift measurement error deviation is 2 Hz,
the RMSE of the mobile node velocity estimate varies with σAOA.

on the localization, resulting in a large error in the local-
ization accuracy. Compared with the other two algorithms,
the DAHL method exhibits a higher localization accuracy in
the process of increasing σAOA.

As shown in Fig. 6, when σf = 2 Hz, the RMSEv of the
DAHL without AOA method for the mobile node is stable at
approximately 4.6 m/s. This is because DAHL without the
AOA localization method does not include AOA measure-
ment parameters. In the process of estimating the velocity of
the mobile node, the change in the AOA measurement error
has no effect on the velocity estimation accuracy. Since σAOA
has a small impact on the velocity estimation performance,
when σf is constant at 2 Hz and the AOA measurement error
is small, the RMSEv of DAHL for the mobile node is close
to the CRLB. When σAOA > 0.2 deg, the RMSEv curve of
the DAHL method gradually deviates from the CRLB, but it
still has better estimation accuracy than the DAHL without
AOA method. The reason for this is that although the AOA
measurement value does not include the velocity informa-
tion of the mobile node, the azimuth and elevation measure-
ment information obtained by DAHL during the localization
process can provide additional information for the velocity
estimation. The measurement data of the AOA composed of
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FIGURE 7. The RMSE of the mobile node position estimation when
σf and σAOA change at the same time.

FIGURE 8. The RMSE of the mobile node velocity estimation when
σf and σAOA change at the same time.

azimuth and elevation constitute the equation that restricts the
velocity estimation in two stages.

Fig. 7 and Fig. 8 show the performance of the three algo-
rithms in estimating the position and velocity, respectively,
of the node when the changes in Doppler shift and AOA
measurement error level are considered. In the simulation,
the following equivalent relations are set: σf = σ and
σα = σβ = 0.2σ . Since σf and σAOA are changed at the same
time in the simulation, and Fig. 7 and Fig. 8 show that with
the increase in σf and σAOA, the position estimation error and
velocity estimation error of the three algorithms also increase,
which is the expected result.

In the actual ocean environment, a huge challenge for the
position of anchor nodes and ordinary nodes in UWSNs is
the ocean currents. Although the anchor nodes and ordinary
nodes in the scenario set in this article are connected to the
shore-based by cables, these nodes will drift in a small range
with ocean currents and cause position deviations.

When the deployed nodes have position errors, to verify
the adaptability of the DAHL algorithm, it is assumed that
the position deviation of anchor nodes and ordinary nodes
in the x, y, and z directions is 5 m, and the position error
obeys Gaussian distribution. In the simulation, based on the
real position of the deployed node, and 5 m as the standard

deviation, randomly generated the position coordinates of
nodes with errors. Other parameters are the same as the
settings under the condition of no position errors. The dotted
lines in Fig. 7 and Fig. 8 show the accuracy of different
algorithms for estimating the position and velocity of the
mobile node when there are position errors in both anchor
nodes and ordinary nodes.

Fig. 7 is demonstrated that the overall accuracy of the
DAHL method is better than that of the method proposed
in [15] and the DAHL without AOA method, which shows
that the localization method combined with Doppler shift and
AOA measurement can efficiently improve the localization
accuracy of the mobile node. When the Doppler shift and
the AOA measurement error are small, the localization accu-
racy of the DAHL method for the mobile node is extremely
close to the CRLB. With the increase in σ , the localization
estimation accuracy of the three methods for the mobile
node gradually decreases. When the measurement error is
large, compared with the DAHL without AOA method and
the method proposed in [15], the localization accuracy of
DAHL is significantly enhanced. The reason for the poor
localization accuracy of the method in [15] is that it does not
fully consider the motion characteristics of the mobile node.
However, DAHL without AOA uses only a single measure-
ment parameter to locate the mobile node, and its localization
accuracy is significantly reduced compared with the DAHL
method that uses two measurement parameters.

As shown in Fig. 8, when the DAHL without AOAmethod
is σ = 0.316, the RMSEv of the mobile node starts to deviate
from the CRLB. When σ < 0.562, the RMSEv estimated
by the DAHL algorithm for the velocity of the mobile node
can basically reach the CRLB. It can be seen from Fig. 8 that
as σ increases, the degree of deviation in the RMSEv from
the CRLB gradually increases. The velocity estimation per-
formance of the DAHL method and DAHL without AOA
method gradually decreases; however, compared with the
DAHL without AOAmethod, the DAHL estimates the veloc-
ity of the mobile node to be closer to the CRLB. It shows that
when the Doppler shift measurement is utilized to estimate
the motion information of the mobile node, the addition of the
AOAmeasurement helps to improve the position and velocity
estimation performance, causing the DAHL method to be
more robust than other algorithms. Due to anchor nodes and
ordinary nodes in the UWSN are anchored to the seabed by
chains, although ocean currents and tidesmay cause the nodes
to drift, the range of their free drift is limited to a fixed area.
For the DAHL algorithm, it can be seen from the changes in
the RMSE curves in Fig. 7 and Fig. 8 that the position error
of anchor nodes and ordinary nodes has a minor effect on the
localization accuracy of the mobile node.

2) The LOCALIZATION ACCURACY OF THE ALGORITHM
UNDER DIFFERENT TRANSMISSION RANGE CONDITIONS
Taking into account the practicality of theDAHL in the ocean,
and at the same time, to consider the localization performance
of the DAHL when the number of anchor nodes and the
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FIGURE 9. The RMSE of the mobile node position estimation when the
maximum transmission range of anchor nodes changes.

FIGURE 10. The RMSE of the mobile node velocity estimation when the
maximum transmission range of anchor nodes changes.

maximum transmission range variation in a 3D underwater
scene, the deployment area of the UWSN is expanded to
4000 m × 4000 m × 400 m. In this area, at a depth of 400m,
there are 9 anchor nodes are evenly arranged at 2 km intervals.
And the carrier frequency of the signal transmitted by the
anchor node is selected in turn from 10 kHz to 18 kHz. The
transmission range of the anchor node can be changed by
adjusting its transmitting power. In the simulation, the trans-
mission range of the anchor node is changed to verify the
localization effect of the DAHL algorithm. It is assumed that
the Doppler shift measurement error deviation is constant
at 2 Hz and the AOA measurement error deviation is con-
stant at 1 deg. The position parameters of the mobile node
and the ordinary nodes with no modification. Fig. 9 and
Fig. 10 respectively show that when the transmission range
of the anchor node changes, the RMSE of the mobile node
position estimation and the RMSE of the velocity estimation.

It can be seen from Fig. 9 and Fig. 10 that when the trans-
mission range of anchor nodes gradually increases from 2 km
to 5 km, the position estimation accuracy and velocity esti-
mation accuracy of the mobile node are gradually growing.
This is because the increase in the transmission range means
that more anchor nodes are used by the DAHL algorithm.
In the process of locating the mobile node, ordinary nodes
need to use themonitoring signal transmitted by anchor nodes

and the reflected signal from the mobile node to measure the
Doppler shift and AOA. More anchor nodes can enable ordi-
nary nodes to obtain more measurement data containing the
position and velocity information of the mobile node, thereby
further improving the localization performance of the DAHL.
When the transmission range reaches 5 km, the anchor nodes
deployed in the area of 4000 m × 4000 m × 400 m will all
participate in the localization process. At this time, the local-
ization accuracy of the DAHL is optimal.

Although the transmission range of anchor nodes increases
(the number of anchor nodes involved in localization
increases) to obtain more measurement data, the cost of
deploying a single anchor node in the actual ocean envi-
ronment is about hundreds of thousands, and the substantial
increase in anchor nodes will inevitably greatly surge the cost
of the system. Therefore, subject to environmental challenges
and deployment costs, it is necessary to ensure a moderate
number of nodes and a relatively sparse distribution on the
premise that the transmission range of the anchor node can
completely cover the entire monitoring area.

In summary, from the above simulation results, compared
with the method for locating a stationary node and of the
method for locating a mobile node using only single mea-
surement information, the DAHL algorithm proposed in this
article demonstrates high localization accuracy and superior-
ity in the localization process.

VII. CONCLUSION
In this article, a hybrid localization algorithm based on
Doppler shift and AOA measurements is proposed. The
method aims to provide a solution for locating the mobile
node in a 3D UWSN. Through comprehensive analysis of the
Doppler shift and AOA measurement data obtained by ordi-
nary nodes, auxiliary parameters are introduced to transform
the nonlinear equation formed by the Doppler shift and AOA
measurement values into a pseudolinear equation, and then
the localization information of the mobile node are estimated.
Finally, the accurate estimation values of the position and
velocity can be further obtained by optimizing the estimation
error. Theoretical and simulation experiments show that for
a mobile node, DAHL can reliably estimate its instantaneous
position and velocity in the simulation under the condition
of small measurement error. When the measurement error
increases, the method has shown high performance in esti-
mating the position and velocity. After the mobile node is
accurately located and its velocity has been obtained, it can be
monitored and tracked in real time. In future work, a tracking
algorithm for the mobile node will be further designed on
the basis of the DAHL algorithm to improve the monitoring,
defense, and control capabilities of UWSNs in the deploy-
ment area.

REFERENCES
[1] G. Tuna and V. C. Gungor, ‘‘A survey on deployment techniques,

localization algorithms, and research challenges for underwater acoustic
sensor networks,’’ Int. J. Commun. Syst., vol. 30, no. 17, Nov. 2017,
Art. no. e3350.

181672 VOLUME 8, 2020



K. Hao et al.: Hybrid Localization Algorithm Based on Doppler Shift and AOA for an Underwater Mobile Node

[2] K. Hao, H. Shen, Y. Liu, B. Wang, and X. Du, ‘‘Integrating localization
and energy-awareness: A novel geographic routing protocol for under-
water wireless sensor networks,’’ Mobile Netw. Appl., vol. 23, no. 5,
pp. 1427–1435, Oct. 2018.

[3] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M. S. Alouini, ‘‘Underwater
Optical Wireless Communications, Networking, and Localization: A Sur-
vey,’’ Ad Hoc Netw., vol. 94, Nov. 2019, Art. no. 101935.

[4] Q. Fengzhong, W. Shiyuan, W. Zhihui, and L. Zubin, ‘‘A survey of ranging
algorithms and localization schemes in underwater acoustic sensor net-
work,’’ China Commun., vol. 13, no. 3, pp. 66–81, Mar. 2016.

[5] M. Erol-Kantarci, H. T. Mouftah, and S. Oktug, ‘‘A survey of architectures
and localization techniques for underwater acoustic sensor networks,’’
IEEECommun. Surveys Tuts., vol. 13, no. 3, pp. 487–502, 3rdQuart., 2011.

[6] S. Zhao, B. M. Chen, and T. H. Lee, ‘‘Optimal sensor placement for target
localisation and tracking in 2D and 3D,’’ Int. J. Control, vol. 86, no. 10,
pp. 1687–1704, Oct. 2013.

[7] Z. Gong, C. Li, and F. Jiang, ‘‘Passive underwater event and object detec-
tion based on time difference of arrival,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[8] K. Hao, K. Yu, Z. Gong, X. Du, Y. Liu, and L. Zhao, ‘‘An enhanced
AUV-aided TDoA localization algorithm for underwater acoustic sen-
sor networks,’’ Mobile Netw. Appl., early access, Jun. 6, 2020, doi:
10.1007/s11036-020-01577-5.

[9] S. Poursheikhali and H. Zamiri-Jafarian, ‘‘Received signal strength based
localization in inhomogeneous underwater medium,’’ Signal Process.,
vol. 154, pp. 45–56, Jan. 2019.

[10] H. Huang and Y. R. Zheng, ‘‘Node localization with AoA assistance in
multi-hop underwater sensor networks,’’ Ad Hoc Netw., vol. 78, pp. 32–41,
Sep. 2018.

[11] Y. Sun, Y. Yuan, Q. Xu, C. Hua, and X. Guan, ‘‘A mobile anchor node
assisted RSSI localization scheme in underwater wireless sensor net-
works,’’ Sensors, vol. 19, no. 20, p. 4369, Oct. 2019.

[12] L. E. Emokpae and M. Younis, ‘‘Throughput analysis for shallow water
communication utilizing directional antennas,’’ IEEE J. Sel. Areas Com-
mun., vol. 30, no. 5, pp. 1006–1018, Jun. 2012.

[13] I. Ullah, J. Chen, X. Su, C. Esposito, and C. Choi, ‘‘Localization and
detection of targets in underwater wireless sensor using distance and angle
based algorithms,’’ IEEE Access, vol. 7, pp. 45693–45704, 2019.

[14] L. E. Emokpae, S. DiBenedetto, B. Potteiger, and M. Younis, ‘‘UREAL:
Underwater reflection-enabled acoustic-based localization,’’ IEEE Sensors
J., vol. 14, no. 11, pp. 3915–3925, Nov. 2014.

[15] L. Rui and K. Ho, ‘‘Efficient closed-form estimators for multistatic
sonar localization,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 1,
pp. 600–614, Jan. 2015.

[16] T. Jia, H. Wang, X. Shen, Z. Jiang, and K. He, ‘‘Target localization based
on structured total least squares with hybrid TDOA-AOA measurements,’’
Signal Process., vol. 143, pp. 211–221, Feb. 2018.

[17] C. Zheng, D. Sun, L. Cai, and X. Li, ‘‘Mobile node localization in under-
water wireless networks,’’ IEEE Access, vol. 6, pp. 17232–17244, 2018.

[18] P. A. M. de Theije and J.-C. Sindt, ‘‘Single-ping target speed and course
estimation using a bistatic sonar,’’ IEEE J. Ocean. Eng., vol. 31, no. 1,
pp. 236–243, Jan. 2006.

[19] R. Diamant, L. M. Wolff, and L. Lampe, ‘‘Location tracking of ocean-
current-related underwater drifting nodes using Doppler shift measure-
ments,’’ IEEE J. Ocean. Eng., vol. 40, no. 4, pp. 887–902, Oct. 2015.

[20] K. Papakonstantinou and D. Slock, ‘‘Hybrid TOA/AOD/Doppler-shift
localization algorithm for NLOS environments,’’ in Proc. IEEE 20th Int.
Symp. Pers., Indoor Mobile Radio Commun., Sep. 2009, pp. 1948–1952.

[21] P. Carroll, K. Domrese, H. Zhou, S. Zhou, and P. Willett, ‘‘Doppler-aided
localization of mobile nodes in an underwater distributed antenna system,’’
Phys. Commun., vol. 18, pp. 49–59, Mar. 2016.

[22] Y. Kalkan and B. Baykal, ‘‘Frequency-based target localization methods
for widely separated MIMO radar,’’ Radio Sci., vol. 49, no. 1, pp. 53–67,
Jan. 2014.

[23] Z. Gong, C. Li, and F. Jiang, ‘‘Analysis of the underwater multi-path
reflections on Doppler shift estimation,’’ IEEE Wireless Commun. Lett.,
early access, Jun. 19, 2020, doi: 10.1109/LWC.2020.3003743.

[24] Z. Gong, C. Li, F. Jiang, and J. Zheng, ‘‘AUV-aided localization of under-
water acoustic devices based onDoppler shift measurements,’’ IEEETrans.
Wireless Commun., vol. 19, no. 4, pp. 2226–2239, Apr. 2020.

[25] J. Wang, Z. Qin, Y. Bi, S. Wei, and F. Luo, ‘‘Target localisation in multi-
static radar using BR, TDOA, and AOAmeasurements,’’ J. Eng., vol. 2019,
no. 19, pp. 6052–6056, Oct. 2019.

[26] H. W. Sorenson, Parameter Estimation: Principles and Problems, vol. 9.
New York, NY, USA: M. Dekker, 1980.

[27] S. M. Kay, Fundamentals of Statistical Signal Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

KUN HAO received the M.S. degree from Tian-
jin University, Tianjin, China, in 2006, and the
Ph.D. degree from the School of Computer Sci-
ence and Technology, Tianjin University, in 2010.
She is currently an Associate Professor with the
School of Computer and Information Engineering,
Tianjin Chengjian University. Her research inter-
ests include underwater sensors networks, wireless
communications and networking, wireless sensor
networks, network protocol and network optimiza-

tion, and application of VR technology in architecture design.

QIXIN XUE is currently pursuing the M.S. degree
in computer science and technology with Tian-
jin Chengjian University, Tianjin, China. From
2018 to 2020, he was a Student with the Under-
water Communication Group, Tianjin Chengjian
University. His research interests include wireless
communications and networking, the development
of underwater sensors networks, underwater senor
networks localization, and underwater acoustic
localization.

CHENG LI (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees from the Harbin Insti-
tute of Technology, Harbin, China, in 1992 and
1995, respectively, and the Ph.D. degree in elec-
trical and computer engineering from Memorial
University, St. John’s, NL, Canada, in 2004. He is
currently a Full Professor with the Department
of Electrical and Computer Engineering, Faculty
of Engineering and Applied Science, Memorial
University. His research interests include mobile

ad hoc and wireless sensor networks, wireless communications and mobile
computing, switching and routing, and broadband communication networks.
He is a Registered Professional Engineer in Canada and a Senior Member of
the IEEE Communications Society, the IEEE Computer Society, the IEEE
Ocean Engineering Society, and the IEEE Vehicular Technology Society.

KAICHENG YU is currently pursuing the M.S.
degree in computer science and technology with
Tianjin Chengjian University, Tianjin, China.
From 2017 to 2018, he was a Student with
the Underwater Communication Group, Tian-
jin Chengjian University. His research interests
include the development of underwater sensors
networks, wireless communications and network-
ing, wireless sensor networks, network protocol,
and network optimization.

VOLUME 8, 2020 181673

http://dx.doi.org/10.1007/s11036-020-01577-5
http://dx.doi.org/10.1109/LWC.2020.3003743

