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ABSTRACT Advanced process modeling methods have been used for prediction and monitoring of key
quality indices in wastewater treatment processes. However, single conventional models usually have
limited precision accuracy when predicting the effluent indices in papermaking wastewater treatment
processes. To achieve a better prediction accuracy and robustness, we propose a stacking ensemble learn-
ing (SEL) method which utilizes the advantages of the internal base-learning models. The method combines
base-learning algorithms including partial least squares, support vector regression, and artificial neural
networks with a meta-learning algorithm, which is a multiple-response linear regression in this work.
To evaluate the model performance in practical applications, both real wastewater data and simulation
wastewater data are used for modeling. The predicted effluent indices include effluent suspended solid
(SSeff), effluent chemical oxygen demand (CODeff), effluent ammonia concentration (SNHeff), and efflu-
ent nitrate concentration (SNOeff). Compared with base-learning algorithms and other ensemble learning
methods, the results demonstrate that SEL significantly improves the prediction accuracy and reduces
the prediction errors, which provides a new way to achieve real-time monitoring of wastewater treatment
processes.

INDEX TERMS Stacking ensemble learning, papermaking process modeling, effluent indices, prediction
accuracy, wastewater treatment processes.

I. INTRODUCTION
The key to improving the quality management efficiency in
wastewater treatment processes (WWTPs) heavily relies on
the implementation of effective real-time monitoring of the
effluent concentrations [1]. In recent years, hardware sensors
in WWTPs have been exposed to a series of shortcomings
in the monitoring process, such as significant time lags and
high maintenance costs [2]. On the contrary, soft sensing
methods can save measurement cost and improve monitoring
quality inWWTPs, which is not only economical and reliable
but also have a dynamic response [3]–[5]. For example, soft
sensors can make real-time predictions for key WWTP vari-
ables including the concentrations of suspended solids (SS),
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chemical oxygen demand (COD), total phosphorus (TP), total
nitrogen (TN), and daily sewage sludge. For some variables
with periodic features, variables information can be divided
into the periodic component and the residual component
based on periodic analysis. Soft sensors combining with peri-
odic analysis can achieve a better prediction performance [6].
Nowadays, increasing attention has been paid in advanced
monitoring techniques in WWTPs [7], [8].

In recent years, the main conventional methods including
partial least squares (PLS), support vector regression (SVR),
and artificial neural networks (ANN) have been used for the
prediction of wastewater effluent indices. However, the com-
plex characteristics in wastewater treatment processes, such
as nonlinearity, time-varying characteristic, and uncertainty
make it difficult to obtain a satisfactory prediction result
using these conventional methods. For example, the linear
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method such as PLS usually shows bad modeling perfor-
mance when nonlinear characteristic exists in the WWTP
data [9]. Embedding kernel functions into PLS has been
considered as an effective way for improving the prediction
performance, in which the original data is transformed into
a high-dimensional feature space by nonlinear mapping [10].
Compared with PLS, ANN has better nonlinear fitting per-
formance and adaptive learning ability, which allows ANN to
be successfully applied inWWTPs [11], [12]. However, there
always exist low efficiency and local minimum problems in
the ANN modeling process. To improve its modeling perfor-
mance, the original ANN model needs to combine with other
optimization methods such as fuzzy subtractive clustering
and optimize fuzzy rule [13]. Although SVR has proven to
work well under limited data sets, the computational cost
is relatively large for large-scale data sets [14]. Aiming at
curbing this limitation of the conventional SVR, the LSSVR
algorithm has been proposed and it can provide a more effec-
tive solution by transforming the optimization problem into a
set of linear equations problem [15]. Reducing the computing
complexity, the improved LSSVR model can be successfully
applied for predicting the wastewater effluent indices [16].

However, conventional models inevitably have some lim-
itations. Without further optimization, none of the original
models has the capability to interpret the complex charac-
teristics of wastewater treatment processes. Moreover, there
always exists a contradiction between model complexity and
its generalization ability for limited samples. It is difficult
and usually impossible for an over-optimized model to reach
high prediction performance for all the data sets. Fortunately,
it has been confirmed that ensemble learning methods could
improve prediction accuracy without making the model too
complicated [17]. Rather than transforming a single model
and hoping the modified model to display its full poten-
tial, ensemble learning methods combine different types of
models’ advantages to achieve a better prediction perfor-
mance. By considering various viewpoints of training data
and multiple training principles, ensemble learning methods
can be of great benefit for excavating the potential informa-
tion between WWTP variables so the model’s generaliza-
tion ability is greatly increased. Ensemble learning methods
have been an important direction of process modeling in
future.

All of the conventional models are also called base-learners
in ensemble learning methods which improve prediction
ability by diversifying its base-learners [18]. At present,
ensemble learning methods are generally divided into three
types: Bagging, Boosting and stacking ensemble learning
(SEL) [19]–[21]. For Bagging and Boosting, the emphasis is
mainly placed on the data resampling technique [22], [23].
Thus, the diversity between all of the base-learners is focused
on the multiformity of the training samples. Unlike Bagging
and Boosting, SEL pays more attention to the diversity of
training principles. More specifically, SEL integrates several
distinct base-learning algorithms through a meta-learning
algorithm, which aims to improve the prediction accuracy and

generalization capability. From the viewpoint of diversity,
SEL has a better prospect [24].

If the well-trained base-learning algorithms with higher
prediction accuracy are prerequisites to SEL, the meta-
learning algorithm determines the quality of SEL to a degree.
Multi-response linear regression (MLR) has been confirmed
as the most suitable meta-learning algorithm in SEL. Dif-
ferent from the voting or average methods in Bagging and
Boosting, SEL uses MLR to further generalize the output
values of the base-learning algorithms. Previous research
has shown that the main superiority of MLR depends on its
powerful function for reducing variance and bias of different
base-learning algorithms [25].

In recent years, SEL has been successfully applied to
the industrial field as a real-time prediction method. Divina
developed an approach for short-term electricity consumption
forecasting based on SEL. Compared with other conven-
tional methods, the proposed method realized an efficient
and promising way for solving the forecasting accuracy prob-
lem [26]. Khairalla proposed a modified SEL method to
predict the average growth rate of total oil demand, whichwas
superior to other benchmark methods in the aspects of error
rate and directional accuracy [27]. Sun successfully applied
SEL to the river ice forecasting field and obtained a better
prediction result with higher accuracy [28]. In this work,
a novel SEL algorithm is proposed to predict the wastewater
effluent indices. This article is organized in the following
manner. In Section 2, the training and testing processes are
illustrated in more details, then the modeling principles of
base-learning algorithms and meta-learning algorithm are
briefly introduced. In Section 3, data processing and parame-
ter optimization are illustrated first, and then other ensemble
learning methods are introduced for comparison. To evaluate
the prediction performance of SEL, both real wastewater
data and simulation wastewater data are used for modeling.
Finally, the conclusions are given in Section 4.

II. METHODS
SEL can improve estimation ability by combining the advan-
tages of several different algorithms. In this work, SEL can
be divided into two parts. The first part contains base-learning
algorithms and the second part is themeta-learning algorithm.
The base-learning algorithms should be efficient, diversiform
and simple. As a prerequisite for building an ensemblemodel,
strong learning ability of base-learning algorithm is helpful
to improve the predicted performance of SEL. In terms of
training principle, the diversity between each base learner
should be as large as possible, which enables SEL to inter-
pret data characteristics from multiple perspectives. More-
over, lower computational complexity will be beneficial to
further improvement and optimization. Based on the above
criteria, PLS, SVR, and ANN are chosen as the candidate
base-learning algorithm. Compared with the simple average
and voting strategy, MLR has access to a further general-
ization result, which is also the most commonly used meta-
learning algorithm at present.
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A. TRAINING AND TESTING PROCESS
For the training process, three base-learning algorithms
including PLS, SVR, and ANN are defined as ζ1, ζ2, and ζ3,
respectively. As the meta-learning algorithm,MLR is defined
as ξ . In the training process, five-fold cross validation
approach is adopted.

Original training set D= {(x1, y1), (x2, y2), · · · , (xm, ym)}
is randomly divided into five data sets with the same size
as D1, D2, D3, D4, D5 and xi represents sample feature,
yi represents the target value. Amongwhich, four data sets are
used for training base-learners, and the remaining data set is
used to verify the predicted performance, then optimizing the
specific parameters of base-learner h(j)i from the i-th learning
algorithm ζi. The above-mentioned process needs to be car-
ried out five times. Then, the well-trained base-learner h(j)i is
used to predict the samples which not participate in modeling,
and the prediction result can be expressed as h(j)i (xi). The
secondary training set produced by the three base-learning
algorithms can be expressed as D′ = {(x′i, yi)}

m
i=1. Among

them, x′i = (h(j)1 (xi), h
(j)
2 (xi), h

(j)
3 (xi)), and yi is still the

target value in the original training set D. The D′ is used for
training the meta-learner h′ = ξ (D′) by the meta-learning
algorithm ξ .
For the testing process, five base-learners h(j)i get corre-

sponding prediction results for original test data set Dtest,
which can be described as h(1)i (xt ), h

(2)
i (xt ), h

(3)
i (xt ), h

(4)
i (xt ),

and h(5)i (xt ). By averaging all of the prediction results, a pre-
diction vector is obtained as follows:

hi(xt ) =
n=5∑
j=1

h(j)i (xt )/5 (1)

Three base-learning algorithms produce three prediction vec-
tors, which can be described as x′′i = (h1(xt ), h2(xt ), h3(xt )).
Because y′i in Dtest has not changed, the secondary test set
can be expressed as D′′ = {(x′′i , y

′
i)}

n
i=1. By applying the D′′

into the meta-learner h′, the final prediction result H (x) =
h′(D′′) is obtained. The implementation process of SEL and
the formation process of the secondary data set is shown
in Figures 1 and 2, respectively.

B. BASE-LEARNING ALGORITHMS
1) PARTIAL LEAST SQUARES
Partial least squares algorithm has been widely used in
regression, mainly by finding the reasonable latent variables.
Assume that input matrix is X = [x1, x2, · · · , xq]n×q and
output matrix is Y = [y1, y2, · · ·, yp]n×p. Among them, n is
the number of the samples, q and p represents the number of
input variables and output variables, respectively. To better
exploit variance structures of process, X and Y are projected
into a lower dimensional space as follows:{

X = TPT
+ E

Y = UQT
+ F

(2)

FIGURE 1. Scheme of stacking ensemble learning.

FIGURE 2. Formation process of secondary data set.

where P and Q are loading matrices, T and U are
latent matrices which carry enough variation information in
X and Y, E and F represent residual matrices.

2) SUPPORT VECTOR REGRESSION
Support vector regression algorithm is the modified version
of support vector machine (SVM) which can be used to solve
linear and non-linear regression tasks. It performs better for
small-scale data set by using the structural risk minimization
principle. The key to SVR lies in finding suitable mapping
function ϕ(x) between input vectors and output vectors. With
the help of mapping function ϕ(x), the training data T =
{(x1, y1), (x2, y2), · · ·, (xi, yi), · · · , (xn, yn)} is mapped
into a high dimensional feature space. Then, an optimized
regression function can be constructed in the new feature
space as follows:

f (x) = wTϕ(x)+ b (3)

where w is the weight vector and b represents the bias term.
By introducing insensitive loss function ε, the errors within
a specified tolerance range can be neglected. Then, the slack
variables ξi and ξ∗i are added into Equation (3). The regression
task can be transformed into an optimization problem as
follows:

yi − wTϕ(x)− b ≤ ξi + ε, i = 1, 2, · · ·, n
wTϕ(x)+ b− yi ≤ ξ∗i + ε, i = 1, 2, · · · , n
ξiξ
∗
i ≥ 0, i = 1, 2, · · · , n

(4)
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By adding Lagrangian coefficients βi and β∗i , the weight
vector w can be expressed as follows:

w =
n∑
i=1

(βi − β∗i )ϕ(x) (5)

Finally, the SVR can be defined as the following regression
function:

f (x) =
n∑
i=1

(βi − β∗i )K (x, x′)+ b (6)

whereK (x, x′) corresponds to the kernel function. The radial
basis function (RBF) was used in this work, which can be
expressed as follows:

K (x, x′) = exp(−γ
∥∥x− x′

∥∥2) (7)

where γ is kernel parameter which is used to control the radial
range of the kernel function.

3) ARTIFICIAL NEURAL NETWORKS
Artificial neural networks algorithm has a powerful
self-learning and self-adaptive ability to reduce prediction
error. Figure 3 shows the classic topology structure of arti-
ficial neural networks with three layers including input layer,
hidden layer, and output layer.

FIGURE 3. Topology structure of artificial neural networks.

Firstly, it is assumed that the number of input layer nodes,
hidden layer nodes, and output layer nodes is N , M , and Q,
respectively. Moreover, xi represents the i-th input value in
the input layer, wij represents the weight value from the input
layer to the hidden layer,wjk represents the weight value from
the hidden layer to the output layer and θj corresponds to the
threshold value. The input information is firstly propagated
forward from the input layer to the hidden layer then the
error is propagated backward according to weight values and
transfer function f (x). Through repeated correction of weight
values, the predicted values are gradually closer to the actual
values. During the whole process, x ′j represents the output
value of the j-th neuron in the hidden layer which can be
defined as follows:

x ′j = f (
N∑
i=1

wijxi − θj), j = 1, 2, · · ·M (8)

The output value of the k-th neuron in the output layer is
written as yk , which can be defined as follows:

yk = f (
M∑
j=1

wjkx ′j − θk ), k = 1, 2, · · ·Q (9)

The networkweights and the thresholds need to be adjusted
depending on the minimum mean square error (MSE) which
is defined as follows:

MSE =
1
l

l∑
n=1

(tn − yn)2 (10)

where l is the number of training samples, tn corresponds
to the expected value of the neural node and yn denotes the
predicted value. The MSE will be reduced to certain extent
by repeating the back-propagation mechanism. Another stop-
ping criterion of the algorithm is that the training time reaches
its maximum.

C. META-LEARNING ALGORITHM
As the most efficient meta-learning algorithm, MLR com-
bines weight values with output values coming from
base-learning algorithms to obtain a further generalization
result. The specific form can be expressed as follows:

y = w0 + w1x1 + w2x2 + · · · + wkxk (11)

where y denotes the final prediction result, wk corresponds
to the weight value, and xk corresponds to the output value
from the base-learning algorithm. All of the weight values
are obtained in the training process. By choosing appropriate
weight values, MLR makes the square sum of the difference
between the predicted values and the real values as small as
possible. The formula is shown as follows:

e =
n∑
i=1

( y(i) −
k∑
j=1

wjx
(i)
j )2 (12)

where n is the number of samples, k is the number of
base-learning algorithms, y(i) represents the real value of the

i-th sample, and
k∑
j=1

wjx
(i)
j represents the predicted value of

the i-th sample.

D. MODELING PERFORMANCE INDICES
To determine whether the final results have a better predic-
tion accuracy, three evaluation indices including determinate
coefficient (R2), mean absolute percentage error (MAPE),
and root mean square error (RMSE) are used in this work,
which is calculated from Equations (13), (14), and (15),
respectively.

R2
= 1−

N∑
i=1

(ŷi − yi)2

N∑
i=1

(yi − ȳi)2
(13)
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MAPE =
1
N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (14)

RMSE =

√√√√ N∑
i=1

(ŷi − yi)
2

/
N (15)

where yi is measured value, ŷi is predicted value, and ȳi is the
mean value of yi.

FIGURE 4. Papermaking WWTP data.

TABLE 1. Mean and standard deviation values of the papermaking WWTP
data.

III. RESULTS AND DISCUSSION
A. DESCRIPTION OF TWO DATA SETS
The modeling data used in this work include real wastewater
data and simulation wastewater data. The actual wastewater
data were collected from a papermaking WWTP in China.
The data collection system includes various probes, signal
acquisition card and power relay output board. As shown
in Figure 4, the data include the following variables: wastew-
ater flow rate (Q), influent suspended solid (SSin), efflu-
ent suspended solid (SSeff), pH, temperature (T ), influent
chemical oxygen demand (CODin), effluent chemical oxygen
demand (CODeff), and dissolved oxygen (DO). The statistics
are listed in Table 1. Among the eight variables, SSeff and
CODeff are response variables (target values) which need
to be controlled. Both CODeff and SSeff variables met the

TABLE 2. Correlation coefficients between response variables and
explanatory variables.

Chinese national effluent release standards. The rest of vari-
ables (sample features) are explanatory variables which are
closely related to the response variables. The specific correla-
tion coefficients between response variables and explanatory
variables are presented in Table 2. These variables deter-
mine the degradation efficiency of pollutants by affecting the
microbial activity of active sludge then indirectly influence
the trend of SSeff and CODeff.

The simulation wastewater data were generated from
benchmark simulationmodel no. 1 (BSM1)which is designed
to simulate a wastewater treatment system. As shown
in Figure 5, BSM1 consists of five biological reactors and
one secondary sedimentation tank. BSM1 can provide diverse
control strategies under three weather conditions including
dry weather, rainy weather and storm weather. In this article,
the dry weather data were used for simulation. The sampling
period is 14 days and the sampling interval is 15 minutes.
Finally, 1345 samples were generated and each of the sam-
ples includes ten variables. Table 3 displays the specific
process variables among which effluent ammonia concentra-
tion (SNHeff) and effluent nitrate concentration (SNOeff) are
response variables and the rest are explanatory variables.

At the beginning of the modeling process, Jolliffe’s three
parameters method was used to detect the outliers [29]. Then,
the processed data were normalized to ensure the values of
different features have the same dimension. The correspond-
ing transformation formula is as follows:

X′ =
X− µ
σ

(16)

where X corresponds to the original sample vector, µ rep-
resents the mean value of the original sample vector, and σ
is the standard deviation of the original sample data. Then,
all the data were divided into training data and test data. For
the real wastewater data, the first 120 samples were used as
training data and the rest 50 samples were used as test data.
For the simulationwastewater data, the first 672 sampleswere
used for training, and the remaining 673 samples were used
for testing.

B. PARAMETER OPTIMIZATION
Although PLS has been successfully applied in many indus-
trial processes, the calculation process for obtaining latent
variables is still lack of a uniform standard. In this work, with
the help of the index of variable importance in the projection
scores [30], the scores of latent variables higher than 1 are
considered as valuable latent variables for modeling.
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FIGURE 5. BSM1 layout.

TABLE 3. Process variables in BSM1.

The Kernel function is of key importance in SVR. Among
all of the kernel functions, RBF is the most commonly used
one. Its main advantage is that even if prior knowledge of
the data is absent, the prediction effect is still robust. There-
fore, RBF was adopted in this work. The kernel parameter
γ directly affects the complexity of data distribution in the
higher dimensional space, and hence needs to be confirmed
first. If γ is too small, it will perform like linear kernel func-
tion. On the contrary, it will perform like polynomial kernel
function. Another important parameter of SVR is the regu-
larization parameter C also known as penalty factor, which
is used to achieve a compromise between empirical risk and
confidence level. If C value is too high, the SVR tends to
result in over-fitting phenomenon. On the contrary, smaller
C value is often accompanied with under-fitting problems.
The grid searching method [31] was adopted to search for a
suitable combination of C and γ in this work.

The key to constructing a well-performed ANN lies in
finding a suitable network structure and activation function.
Considering the data size is not large, the three-layer network
structure was chosen in this work. The number of hidden
layer nodes, the activation function of hidden layer, and
output layer were selected according to the actual prediction
performance. The specific parameters of the base-learning
algorithms are shown in Table 4.

C. ENSEMBLE LEARNING MODELS COMPARISON
To compare SEL with other types of ensemble learning
methods in terms of prediction accuracy, random forest (RF)
model based on bagging algorithm and adaptive boost-
ing (AdaBoost) model based on boosting algorithmwere con-
structed by using the samewastewater data. The base-learners
of RF and AdaBoost are both decision trees. Considering
that prediction of wastewater effluent indices is essentially a
regression task, the CART (classification and regression tree)
is selected as the decision tree which is not pruned during
the modeling process. The main difference between RF and
AdaBoost is that the former integrates decision trees in a
parallel manner, while the latter integrates decision trees in
a serial manner. In terms of RF, the main tuning parameters
include the number of decision trees ntree and random vari-
ables used at each split mtry. In terms of AdaBoost, the main
tuning parameters include the number of iterations nT and
learning rate of base-learners ν. All of above-mentioned tun-
ing parameters were obtained by grid searching method.

D. RESULTS AND DISCUSSION
To directly observe the prediction performance of SEL,
we provide prediction figures for real wastewater data and
simulation wastewater data. As shown in Figures 6 and 7,
the data points of the two cases are both well modeled
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TABLE 4. Specific parameters of base-learning algorithms.

FIGURE 6. Prediction results of SS eff and COD eff using stacking ensemble learning.

using SEL. The quantitative evaluation results including
RMSE, MAPE and R2 for PLS, SVR, ANN, RF, AdaBoost
and SEL are listed in Tables 5 and 6. It can be seen that

SEL achieves the highest prediction accuracy for two cases.
For CODeff, compared with the base-learning algorithms of
PLS, SVR, and ANN, the RMSE of SEL is reduced by
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FIGURE 7. Prediction results of SNHeff and SNOeff using stacking ensemble learning.

TABLE 5. Comparison of modeling results for CODeff and SSeff.

TABLE 6. Comparison of modeling results for SNHeff and SNOeff.

13.97%, 6.18%, and 14.49%, respectively. For SSeff, the
RMSE of SEL is reduced by 14.46%, 6.58%, and 10.13%,
respectively. In terms of R2, the prediction accuracy of SEL
is also improved significantly range from 5.88%-26.32%,
6.25%-21.43% for CODeff and SSeff. Meanwhile, SEL also
demonstrated its superiority of ensemble learning compared
with RF and AdaBoost, specifically with the minimum

RMSE value (4.25) and the maximum R2 (0.72) for CODeff,
theminimumRMSE value (0.71) and themaximumR2 (0.68)
for SSeff.

For SNHeff, compared with the base-learning algorithms
of PLS, SVR, and ANN, the RMSE of SEL is reduced
by 63.53%, 49.18%, 48.33%, respectively. For SNOeff,
the RMSE of SEL is reduced by 57.14%, 42.31%, 47.37%,
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respectively. In terms of R2, the prediction accuracy of SEL
is also improved significantly range from 4.76%-15.79%,
4.88%-10.26% for SNHeff and SNOeff. Compared with RF and
AdaBoost, SEL has the best prediction results, specifically
with the minimum RMSE value (0.31) and the maximum R2

(0.88) for SNHeff, the minimum RMSE value (0.30) and the
maximum R2 (0.86) for SNOeff.

Considering the fact that base-learning algorithms have
their algorithm learning preference, their predictive capabil-
ity may be limited for the papermaking wastewater effluent
indices. Depending on different circumstances, SEL firstly
uses the original training set to train base-learning algo-
rithms, then uses the secondary training set generated by
base-learning algorithms to train themeta-learning algorithm.
In other words, the output values of base-learning algorithms
are the input features of meta-learning algorithm. Based
on the prediction results of the base-learning algorithms,
SEL achieves a better generalization for the effluent indices.
In addition, compared with other ensemble learning methods,
SEL has higher prediction accuracy. From the viewpoint of
theoretical analysis, the superior prediction performance of
SEL can be mainly attributed to the following points:

(1) Through exploring the feature space from different per-
spectives, SEL can provide a more comprehensive analysis
for complex characteristics in the wastewater data;

(2) The SELmakes use of the advantages of different base-
learning algorithms while gets rid of their relatively worse
prediction drawback, so as to reduce the risk of trapping into
local minima;

(3) Compared with base-learning algorithms, SEL expends
the hypothesis space in modeling process, which may be
closer to the real hypothesis of the wastewater treatment
process.

(4) From the viewpoint of the diversity and integration of
base-learning algorithms, SEL can combine different types
of base-learners corresponding to various base-learning algo-
rithms compared with other ensemble learning methods, and
constructing a meta-learning algorithm is a more reasonable
way than adopting statistically averaging, which makes SEL
a better capacity of generalization.

Although SEL has tremendous potential for improving
the prediction accuracy in wastewater effluent data, the step
of parameter optimization will be a time-consuming work.
In this work, there are three groups of parameters need to
be determined, which results in an increasing running time
of SEL as shown in Table 7. The running time of SEL
mainly spends on the ANN base-learning algorithm. Because
ANN uses the back-propagation mechanism for optimizing
the hyper-parameters, the network weights and the thresholds
in each neuron need to be revised several times to finally
reach the precision requirement, which immediately causes
the increment of the total running time. In general, ensemble
learning methods take more time than base-learning algo-
rithms for training and prediction. Among ensemble learning
methods, the running time of RF and AdaBoost is relatively

TABLE 7. Comparison of running time for CODeff and SNHeff.

shorter compared with SEL. This is mainly because the
base-learners of RF andAdaBoost are relatively simplewhich
makes RF andAdaBoost have low computational complexity.

With the ever-increasing amounts of data in WWTPs,
the complexity and running time will directly affect its prac-
tical application and further development. In future work,
besides optimizing the execution efficiency of SEL, more
combinations of base-learning algorithms will be studied.
Various machine learning algorithms, such as Gaussian pro-
cess regression, relevance vector machine, gene expression
programming, and evolutionary polynomial regression, can
be integrated with the existing SEL. Meanwhile, the data
set should be expended to further validate the prediction
accuracy of SEL.

IV. CONCLUSION
In this work, the stacking ensemble learning is used for
modeling the papermaking wastewater treatment process.
By predicting the CODeff and SSeff from real wastewater
data as well as SNHeff and SNOeff from wastewater simulation
data, the proposed SEL method has successfully interpreted
the complex characteristics of wastewater data. The predic-
tion hypothesis space of SEL is more comprehensive for the
wastewater treatment process. During the prediction process,
the meta-learning algorithm enables SEL to obtain a further
generalization result, which makes use of the advantages of
each base-learning algorithm while avoiding the risk of trap-
ping into local minima. The simulation results show that SEL
has a better prediction ability compared with base-learning
algorithms including PLS, SVR, ANN and other ensemble
learning methods including RF and AdaBoost. Therefore,
applying SEL into the real-time monitoring of wastewater
treatment processes has practical reference value and realistic
signification. Future work will be focused on the improve-
ment in execution efficiency. Besides, more base-learning
algorithms should be tried for stacking ensemble learning and
sample size will be further expanded to verify the applicabil-
ity of the proposed method.
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