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ABSTRACT Digital image correlation (DIC) is a typical non-contact full-field deformation parameters mea-
surement technique based on image processing technology and numerical computation methods. To obtain
the displacements of each point of interrogation in DIC, subsets surrounding the point must be chosen in
the reference image and deformed image before correlating. In the existing DIC techniques, the size of
subset is always pre-defined by users manually according to their experiences. However, the subset size has
proven to be a critical parameter for the accuracy of computed displacements. In the present paper, a self-
adaptive selection of subset size method based on Shannon entropy is proposed to overcome the deficiency
of existing DIC methods. To verify the effectiveness and accuracy of the proposed algorithm, a numerical
translated test is performed on four actual speckle patterns with different entropies, and then another test is
performed on four computer-generated speckle patterns with non-uniform displacement field. All the results
successfully demonstrate that the proposed algorithm can significantly improve displacement measurement
accuracywithout reducing toomuch computational efficiency. Finally, a practical application of the proposed
algorithm to micro-tensile of Q235 steel is conducted.

INDEX TERMS Digital image correlation, self-adaptive selection, subset size, Shannon entropy.

I. INTRODUCTION
In recent years, digital image correlation [1]–[3] has become
a practical, cost-effective and frequently used method for
estimation of object surface displacement and strain fields
in various scientific and engineering fields. There is no need
to state the importance, capabilities and advantages of DIC
here due to the fact that these have been well mentioned
in numerous literatures [4]–[6]. Generally, to perform the
DIC, speckle images are divided into blocks (i.e., subsets or
windows) containing a certain number of pixels first. The
displacements are then solved bymatching the subsets on ref-
erence images to the correlating the subsets on the deformed
images. Consequently, this kind DIC is usually called subset-
based DIC. Owing to the merits of simple theories, high
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accuracy and efficiency, well-developed computer codes and
so on, subset-based DIC has become a widely used algorithm
in both academic as well as commercial DIC software pack-
ages [7], [8]. Up to now, the numerous home-made subset-
based DIC software or programs have been developed in
many laboratories and some powerful commercial subset-
based DIC packages (such as the Vic-2D/3D system [9] and
the XJTUDIC system [10]) are available in the market. In all
these software packages, whether home-made or commercial,
a subset sizemust bemanually set before performing themain
program by users according to their experiences. Once the
subset size is chosen, calculations of all points (or pixels) in
the image will use the same subset size in DIC measuring
process. It is found that the subset size can strongly influ-
ence the accuracy of displacement measurement [11], [12].
In the correlation analysis of subset-based DIC, the demands
for subset size are contradictory. On the one hand, a large
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FIGURE 1. Examples of different types of speckle patterns.

size of subset is preferable because a large subset contains
sufficiently information on stochastic intensity pattern to dis-
tinguish itself from others, which may effectively increase
the matching accuracy. On the other hand, in the subset, the
deformations of these points far away from the center point
become large with the increase of subset size. Thus, a small
subset can be more readily and accurately approximated by
the given subset displacement functions. This means that a
small subset is desired in subset-based DIC.

In addition, as is known to all, the specimen surface must
be covered with stochastic speckle pattern which deforms
along with test surface. In generally, we can obtain three
types of speckle patterns named painted speckle patterns (see
Fig.1(a) and (b)), laser speckle pattern (see Fig.1(c)) and
texture speckle pattern (see Fig.1(d)), which are made by
spraying black/white paints, illuminating the test surface by
laser and deriving from natural texture of specimen surface,
respectively. It can be observed clearly that the speckle pat-
terns made by different methods or persons and captured
under different magnification may produce different intensity
distributions, contrasts, speckle sizes and other characteris-
tics. In a speckle pattern, the intensity pattern of the subset
centered different points is different. At the same point of a
speckle pattern, a change of subset size may cause a change
in intensity pattern of subset. Consequently, how to select a
suitable size of subset for different speckle patterns is a very
complicated problem.Moreover, the discussion above reveals
that there must be an optimal size for each subset in a speckle
image, not a fixed-size.

Currently, various investigations about subset size have
been reported in the literature. Sun and Pang [13] pointed
out that the subset size is closely related to the quality of
subset image based on the study of assessment of subset
image quality using subset entropy. They also pointed out
that a lower limit of subset size should exist to suppress the
influence of random errors. However, the subset size selection
method has not been proposed in this work. Pan et al. [14]
proposed a subset size selection algorithm based on the Sum
of Square of Subset Intensity Gradients (SSSIG). However,
the SSSIG was derived based on the Sum of Squared Dif-
ferences (SSD) correlation coefficient as well as the assump-
tion that the intensity gradients of speckle pattern are much

larger than that of image noise. Wang et al. [15] designed a
weighting factor according to the position of each point in
the subset and defined the corresponding correlation function.
Similarly, Huang et al. [12] defined a Gaussian window (i.e.,
subset) function and established a weighted SSD function.
The above-mentioned two methods can minimize the influ-
ence of subset sizes by adjusting the weighting factor and
Gaussian window through their corresponding procedure,
respectively. However, the fixed-size subset is still used in
these two methods. Xing et al. [16] and Wang et al. [17]
proposed a spatial-temporal subset based DIC considering
the temporal continuity of deformation. That is, they built a
three-dimensional subset by introducing the time dimension.
However, the spatial subset size is also fixed in this algorithm.

In this article, a self-adaptive selection of subset size algo-
rithm based on Shannon entropy is proposed, which can chose
a proper subset size at each measuring point for different
speckle patterns in DIC analysis. In the proposed algorithm,
an easy-to-compute parameter called Shannon entropy (SE) is
employed as a key parameter for the self-adaptive selection of
a subset size. In order to verify the effectiveness and accuracy
of the proposed algorithm, numerical simulation experiments
are implemented first. The results clearly illustrate that the
proposed algorithm can obtain accurate measured displace-
ments. Finally, as a practical application, the proposed algo-
rithm is used in the micro-tensile test of Q235 steel.

II. FUNDAMENTAL PRINCIPLE OF SUBSET-BASED DIC
DIC deals with two images of specimen surface recorded
before and after loading by CCD/CMOS camera to extract the
deformation parameters. The image acquired before loading
is defined as reference image, and the other image is defined
as deformed image. Fig. 2 schematically shows the basic
principle of the standard subset-based DIC. A small square
referent subset of (2N + 1)×(2N + 1) pixels centered at
the interrogation point P and a bigger searching subset of
(2M + 1)×(2M + 1) pixels centered at the corresponding
point are chosen from the reference and deformed image,
respectively (see Fig. 2 (a)-(b)). A series of subsets of (2N+1)
× (2N + 1) pixels centered at each point, which are defined
as the deformed subsets, are chosen in searching subset.
A correlation coefficient distribution map is then obtained,
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FIGURE 2. Principle of subset-based DIC. (a) Speckle images before and after deformation; (b) subsets chosen
from reference and deformed images respectively; (c) distribution of correlation coefficient; (d) displacement
vector of the interesting point; (e) displacement field.

as shown in Fig. 2(c), by performing the correlation calcu-
lation between reference subset and each deformed subset
using a predefined function of correlation coefficient. After-
wards, the peak position in the correlation coefficient distri-
bution map is found using a certain optimization algorithm.
The deformed subset, which corresponds to the peak position
of the correlation coefficient map, is called as the target sub-
set. The vector between the reference and target subset center
is the displacement vector at P (shown in Fig. 2(d)). The full-
field displacement can be obtained easily by repeating the
same procedure at other pixels of images (shown in Fig. 2(e)).
More detailed descriptions of DIC technique can be found
in [18].

It can be seen from above description that, in standard
subset-based DIC, the reference and deformed subset of
(2N + 1) × (2N + 1) pixels are chosen by user as fixed-size
computation sub-images. As mentioned earlier, the subset
size is critical to calculation accuracy of subset-based DIC.
Consequently, it should build a proper algorithm, which can
choose the subset size adaptively according to the quality of
speckle pattern.

In practical application of DIC, the zero-mean normalized
cross-correlation (ZNCC) coefficient, which is insensitive to
the scale and offset changes in lighting of deformed image,
is widely used [18], [19]. In this work, the following ZNCC
correlation coefficient function is used.
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where f (xi, yi) and g(x ′i , y
′
i) are the intensity values at (xi, yi)

in the reference subset and (x ′i , y
′
i) in the deformed subset

respectively; fm and gm are the mean intensity values of the
reference and deformed subsets; n denotes the number of
pixels contained in the reference subset; X is the desired
deformation vector, X = [ u ux uy v vx vy] . The classic
Newton-Raphson iteration method is employed to optimize

the correlation coefficient function.

X k+1 = X k −
∇C(X k )
∇∇C(X k )

, (2)

where Xk and Xk+1 are the kth and (k + 1)th iteration values
respectively;∇C(X ) is the gradient of correlation coefficient;
∇∇C(X ) is the second-order derivative of correlation coeffi-
cient (i.e. Hessian matrix).

III. SHANNON ENTROPY
As a main pioneer of the mathematical formulation of infor-
mation theory, Shannon introduced the concept of entropy
firstly in 1948 [20]. Entropy (more specifically, Shannon
entropy) is basically a measure of the disorder associated
with a random variable in the information theory. That is,
it quantifies the expected value of the information contained
in a received message. Image Shannon entropy (ISE) is a
measure of the information content of an image. For an image
with dimension ofM × N pixels, the ISE can be written as

H = −
2β−1∑
j=0

pj
M · N

log2
pj

M · N
, (3)

where H is image Shannon entropy, bits/pixel; β is the pixel
depth of the image (Generally, the 8-bit image is used in
actual practice, that is β = 8.); pj is the probability, or
frequency, of the occurrence of each gray level, which can be

compute by the histogram of the image; and
2β−1∑
j=0

pj
M ·N = 1.

IV. SELECTION OF SUBSET SIZE
More recently, Shannon entropy was used by Liu et al [21]
for assessing the quality of speckle pattern. From the results,
it can be seen that themeasurement accuracy of DIC is closely
related to the SE of speckle pattern. Generally, high mea-
surement accuracy can be obtained when the speckle pattern
has large SE, which is explained that a speckle pattern with
large SE has more feature information (i.e. greater degree of
speckle uniqueness). The speckle pattern with large SE can
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FIGURE 3. Mean SSE with standard deviation bar vs. subset size.

be called good quality speckle pattern. However, the quality
of a speckle pattern can not be improved further once the
speckle pattern is captured by using a certain imaging system.
Thus, the subset selected in the matching calculation of DIC
should contain as much information as possible. Fig. 3 shows
the plots of the mean subset Shannon entropy (SSE) with
standard deviation bar as a function of subset size (The results
obtained by using the traditional subset-based DIC method
and the example speckle images in Fig. 1). It can be seen that:
(1) the mean SSE increases as the subset size increases. That
is, the large subset contains more unique feature information.
(2) The standard deviation of SSE decreases as the subset
size increases. That means the smaller the subset is, the more
scattered the subset Shannon entropies in a speckle pattern
are. (3) The curve becomes considerably flat when the subset
size approaches a certain value, and the maximum mean SSE
is close to SE of speckle pattern (shown in Table 1). Based on
the above observation, it is concluded that the measurement
accuracy ofDIC can be improved by adjusting the SSE,which
can be decreased or increased by adjusting the subset size in a
certain range. This is the basic idea of the proposed algorithm
for self-adaptive selection of subset size in DIC technology.

The detailed realization process of the proposed algorithm
is illustrated by the flowchart program in Fig. 4. First, the
reference image Shannon entropy (RISE) can be calculated
for setting the threshold of SSE. Taking into account the
relationship betweenmeasurement accuracy and ISE [21], the
upper and lower limit of SSE can calculate as follows based
on RISE. {

SSEup = [RISE]+ 0.1
SSElow = [RISE]− 0.1

(4)

where SSEup denotes the upper limit of SSE, SSElow denotes
the lower limit of SSE, [RISE] denotes the Shannon entropy
of the reference image constrained to only one digit after the
decimal point.

Then, the SSE is calculated to compare with the threshold.
If the SSE is less than the lower limit value, the subset size

TABLE 1. Shannon entropies of four speckle patterns.

will be increased by 2 pixels and an updated SSE will be
obtained. Similarly, if the SSE is greater than the upper limit
value, the subset size will be decreased by 2 pixels and an
updated SSE will also be obtained. The cycle repeats until
the SSE is in the range of upper and lower limit value, which
indicated that the algorithm has detected the optimal subset
size. After that, a common DIC procedure is implemented to
compute the displacement at the current point.

Just as the existing standard DIC algorithm, the calculation
of the proposed algorithm starts from the upper left point of
the calculation area. Then, as shown in Fig. 5, the calculation
routine is implemented point by point along each row and
column. Owing to the fact that Shannon entropies of adjacent
subsets are not generally drastic change, the subset size of
the former calculation point optimized by above algorithm
is used as the initial subset size of the current calculation
point. This easy-to-operate scanning strategy may improve
the computation efficiency. It should be note that the initial
subset size of the first calculation point is set by user manual.

V. NUMERICAL EXPERIMENTS AND RESULTS
A. VERIFICATION USING DIFFERENT TYPES OF SPECKLE
PATTERNS
To evaluate the proposed algorithm and eliminate the impact
caused by image acquisition system and environment, numer-
ical experiments are utilized in this work. Four sets of test
speckle images (are shown in Fig. 6 along with their his-
tograms) with the size of 416 × 416 pixels and a pixel
depth of 8-bit grayscale are used in the experiments. Every
reference image itself is a part of its original frame with a
resolution of 656× 494 pixels captured by a Guppy F-033B
camera in our previous actual experiment. The speckle pattern
A and B are made by randomly spraying white and black
paints on the flat specimen captured under configurations of
different magnification. The speckle pattern C is captured by
illuminating the flat specimen surface with a laser diode. The
output power of the laser diode is 5mW at λ = 650 nm
wave length. The speckle pattern D is obtained directly from
natural texture of a flat wood surface. The speckle pattern A,
B and D are illuminated by LED light source. The Shannon
entropy values of the above four reference speckle patterns
are calculated and listed in Table 1.

In the following numerical studies, four deformed images
are first generated by giving -0.2 pixel translation motion to
four speckle patterns in v-direction according to the bicubic
interpolation theorem [22]. Then the displacements between
the reference and deformed images are calculated at regularly
distributed 2601 (=51 × 51) points applied the traditional
algorithm and the proposed algorithm in this work. The sub-
sets used in the traditional algorithm are 15 × 15 pixels,
31× 31 pixels and 61× 61 pixels, respectively.
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FIGURE 4. Flowchart of the proposed algorithm.

FIGURE 5. The calculation procedure of subset-based DIC with the
self-adaptive selection of subset size algorithm.

Fig.7 shows the distributions of displacements measured
by the traditional algorithm with three different subset sizes
and the proposed DIC algorithm. Four speckle images are
numerically translated in the same way. The difference in
displacements is therefore only related to the speckle pat-
tern and the subset size. By comparison, we clearly see that
the distributions of displacements measured by the proposed
algorithm have higher and narrower central peaks than those
measured by the traditional algorithm with three different
subset sizes. It is evident that the proposed algorithm has the
highest measurement accuracy. Moreover, we can also see
that the smaller the Shannon entropy of speckle pattern is,
the more obvious the advantage of the proposed algorithm is.
It reveals that the proposed algorithm is quite satisfactory for
the speckle pattern with very small Shannon entropy such as
natural texture speckle pattern.

The mean subset sizes in calculation of four speckle pat-
terns by the proposed algorithm are listed in Table 2. It can

TABLE 2. Mean subset sizes for calculating four speckle patterns using
the proposed algorithm.

be seen from the table that the mean subset size is different
for each of speckle patterns. It proves the effectiveness of
the proposed algorithm. Additionally, the speckle pattern
with big entropy can lead to relatively big mean subset size.
Combining Fig. 7 and Table 2, we may conclude that it is not
necessary to obtain the biggest possible entropy of speckle
pattern when the proposed algorithm is used. An even speckle
pattern as shown by Fig. 6 (D) can be sufficient for the
proposed algorithm.

Fig. 8 shows the statistical distributions of entropies of
subsets used in the traditional and proposed algorithms for
calculating the four speckle patterns. It is clear that the
entropies of subset used in the proposed algorithm are located
within a more narrow range and their distributions are more
concentrated around the value of speckle pattern entropy.
It illustrates that the self-adaptive selected subsets in the
proposed algorithm contain almost the same and enough
information. It is noteworthy that although the entropy of
subset can be controlled by adjusting the size of subset,
it can not be precisely controlled. Therefore, the distribution
of subset entropies of the self-adaptive subset sizes for four
speckle patterns is different.

In addition to the measurement accuracy, the computing
time of DIC algorithm is another critical performance. The
comparison ofmean time consumption for the traditional DIC
and the proposed algorithm are shown in Table 3. It should be
noted that all the computations are conducted on the same
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FIGURE 6. Four speckle patterns and their histograms, (A) and (B) are painted speckle pattern captured under different
magnification; (C) is laser speckle pattern; and (D) is nature texture speckle pattern (wood texture).

FIGURE 7. Histograms of the measured v-displacements for the speckle patterns A-D (from top to bottom) using the traditional DIC with the fixed subset
sizes of 15 × 15 pixels (first column), 31 × 31 pixels (second column) and 61 × 61 pixels (third column) and the proposed algorithm (fourth column).
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FIGURE 8. Histograms of the subset Shannon entropies for the speckle patterns A-D (from top to bottom) using the traditional DIC with the
fixed subset sizes of 15 × 15 pixels (first column), 31 × 31 pixels (second column) and 61 × 61 pixels (third column) and the proposed algorithm
(fourth column).

TABLE 3. Mean computing time of four speckle patterns by the
traditional DIC and the proposed algorithm.

computer, and the computing time is relative time. It can
be observed from Table 3 that the mean time consumption
of the proposed algorithm is higher than traditional subset-
based DIC with the subset sizes of 15 × 15 pixels and 31 ×
31 pixels, but it is much lower than that of the traditional

FIGURE 9. Four simulated speckle patterns.

subset-based DIC with the subset sizes of 61 × 61 pix-
els. Compared with traditional DIC using the subset size of
31 × 31 pixels, the mean computing time of the proposed
algorithm is in the same order. In fact, the use of larger subset
requires more computing time due to solving the Eq. (1)
in subpixel displacement measurement [13]. Therefore, the
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FIGURE 10. Histograms of the measured errors in u-direction for the speckle patterns E-H (from top to bottom) using the traditional DIC with the fixed
subset sizes of 15 × 15 pixels (first column), 31 × 31 pixels (second column) and 61 × 61 pixels (third column) and the proposed algorithm (fourth column).

calculation accuracy of the proposed algorithm is improved
without increasing too much calculation time.

B. VERIFICATION USING SIMULATED SPECKLE PATTERNS
WITH NON-UNIFORM DISPLACEMENT FIELD
To further validate the performance of the proposed algo-
rithm in measuring the speckle patterns with non-uniform
displacement field, four simulated speckle patterns and their
corresponding non-uniform deformation speckle images are
generated according to the simulated algorithm proposed
by Zhou et.al. [23]. The detailed features of four simulated
speckle patterns are listed as follows: the size of images is
256 × 256 pixels; the preassigned strain in x-direction is
1000µε (i.e., dudx=1000µε) and in y-direction is -2000µε

TABLE 4. Shannon entropies of four simulated speckle patterns.

(i.e., dvdy=-2000µε); the speckle size is 2.5 pixels; the num-
bers of speckles are 2000, 2400, 2800 and 3200, respectively.
Four simulated speckle patterns are exhibited in Fig. 9, and
their Shannon entropies are listed in Table 4.

Both the traditional DIC with the same subset sizes as
above experiment and the proposed algorithm are still applied
to calculate the displacements of four pairs of speckle patterns
(the reference and deformed images). The displacements
of each deformed speckle pattern are obtained at regularly
distributed 1296 (=36 × 36) points. Fig.10 and Fig.11 show
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FIGURE 11. Histograms of the measured errors in v-direction for the speckle patterns E-H (from top to bottom) using the traditional DIC with the fixed
subset sizes of 15 × 15 pixels (first column), 31 × 31 pixels (second column) and 61 × 61 pixels (third column) and the proposed algorithm (fourth column).

the distributions of measured errors in horizontal and vertical
direction used the traditional DIC and proposed algorithm,
respectively. It can be observed that the distributions of mea-
surement errors in horizontal and vertical directions obtained
by the proposed algorithm have higher and narrower central
peaks than the traditional DIC with different subset sizes.
The measurement errors of each deformed speckle pattern
obtained by the proposed algorithm are located within a more
narrow range. It is proved that the proposed algorithm has
better accuracy than the traditional DIC. This clearly showed
the effectiveness of the proposed algorithm once again.

At the same time of measuring displacements, the mean
computing times of each deformed speckle pattern are

TABLE 5. Mean computing time of four speckle patterns by the
traditional DIC and the proposed algorithm.

recorded and listed in Table 5. It can also be seen that the
calculation time of the proposed algorithm is less than that of
the traditional DIC with 61 × 61 pixels subset, and is more
than of the traditional DIC with 15 × 15 pixels and 31 × 31
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FIGURE 12. Flat steel specimen and the reference image.

FIGURE 13. Micro-tensile test machine.

pixels subsets. Therefore, the proposed algorithm is expected
to be more suitable for practical applications.

VI. APPLICATION TO MICRO-TENSILE TEST
The proposed algorithm is also used to the micro-tensile
test of Q235 steel. The flat specimen with specific geom-
etry, which is prepared by an electrical discharge machine,
is shown in Fig. 12. The natural texture of the specimen sur-
face is used as the characteristics for matching calculations.
The micro-tensile test machine shown in Fig. 13, which is
developed by ourselves and reported in detail in our previous
work [24], is adopted in this test experiment. The micro-
tensile test machine mainly consists of a servo motor (Maxon
Ecmax), a worm gear reducer, a ball screw with a left- and
right-hand thread, load sensor (SM-609-A), and displace-
ment sensor (Soway-SDV). Specific parameters of the micro-
tensile test machine are listed as follows: the dimensions is
122 mm × 88 mm × 36 mm, the maximum tensile load
is 1000 N, the tensile stroke is 10 mm, the load resolution
is 0.1N, the displacement resolution is 1 µm. The specimen
is tightly clamped at both gripping sections as shown in
Fig. 13. Two grippers, who move in opposite directions, are
driven by a ball screw with a left- and right-hand thread. The
moving speed of one gripper is 5µm/s. A commercial optical
microscope (Olympus, DSX500) is used to obtain the micro-
scopic images of the specimen surface. The recorded images
have a size of 1600 × 1200 pixels. The basic experimental
configuration is shown in Fig. 14.

The optimized DIC method proposed in this work is used
to calculate the displacements of the region of interest (ROI),

FIGURE 14. Experimental set up for micro-tensile test.

FIGURE 15. Load-elongation curve obtained from the micro-tensile test
machine and the proposed DIC method.

and the elongation is calculated. Fig. 15 shows a direct
comparison of the load-elongation diagram measured by the
micro-tensile test machine and the proposed DIC method.
It clearly exhibits that the results measured by two methods
are in good agreement. The root mean square error (RMSE)
of the results measured by the two methods is as low as
0.0214mm for displacement up to 1.012mm, and the mean
deviation of two results is 0.0176mm. The small deviation
may be caused by the change of the surface roughness. After
loading, the distance between the specimen and the optical
microscope may change due to the change of surface rough-
ness (i.e. the out-of-plane displacement is produced). Further-
more, the factors of stiffness of micro-tensile test machine,
gripper slippage, planeness of specimen, optical distortions
andmeasurement error of the improvedDICmethodmay also
result in the deviation.

VII. CONCLUSION
A new subset size selection method of DIC is presented in
this article. Themethod uses SE of subset as a simple criterion
for selecting the subset size adaptively by comparing with the
SE of whole speckle pattern. In addition, a simple scanning
strategy is employed to ensure selected subset size of former
subset transfer to its neighbor subset. The numerical exper-
iments using four real speckle patterns with different Shan-
non entropies and four computer-generated speckle patterns
with non-uniform displacement field demonstrate that the
improved DICmethod has better accuracy than the traditional
method without increasing too much calculation time. It is
also shown that the effect of proposedmethod ismore obvious
for the speckle pattern with very small Shannon entropy such
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as natural texture speckle pattern. Further, the validity and
applicability of the proposedmethod is successfully validated
by applying to micro-tensile test and comparing with micro-
tensile test machine.
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