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ABSTRACT Biometric recognition has the potential to authenticate individuals by an intrinsic link between
the individual and their physical, physiological and/or behavioral characteristics. This leads a higher security
level than the authentication solely based on knowledge or possession. One of the reasons why biometrics is
not completely accepted is the lack of trust in the storage of biometric templates in external servers. Biometric
data are sensitive data which should be protected as is contemplated in the data protection regulation of many
countries. In this work, we propose the use of biometric Learning Parity With Noise (LPN) commitments as
template protection scheme. To the best of our knowledge, this is the first proposal for biometric template
protection based on the LPN problem (that is, the difficulty of decoding random linear codes), which offers
post-quantum security. Biometric features are compared in the protected domain. Irreversibility, revocability,
and unlinkability properties are satisfied as well as resistance to False Acceptance Rate (FAR), cross-
matching, Stolen Token, and similarity-based attacks. A recognition accuracy with a 0% FAR is achieved,
because user-specific secret keys are employed, and the False Rejection Ratio (FRR) can be adjusted
depending on a threshold to preserve the accuracy of the unprotected scheme in the Stolen Token scenario.
A good performance in terms of execution time, template storage and operation complexity is obtained for
security levels at least of 80 bits. The proposed scheme is employed in a dual-factor authentication protocol
from the literature to illustrate how it provides security using authentication and database (cloud) servers
that can be malicious. The proposed LPN-based protected scheme can be applied to any biometric trait
represented by binary features and any matching score based on Hamming or Jaccard distances. In particular,
experimental results are included of a practical finger vein-based recognition system implemented inMatlab.

INDEX TERMS Biometric template protection, post-quantum security, LPN commitments, dual-factor
authentication, authentication protocol, finger veins.

I. INTRODUCTION
Nowadays, our society has accepted extensively the use of
biometric systems as a way of user authentication. The prob-
lem is that biometric data, which are stored as template at
the registration phase or enrollment, are sensitive and, hence,
should be protected, as contemplated in the data protection
regulation of many countries [1]. Another problem is that
biometric data that are revealed cannot be employed any
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more to avoid impersonation and privacy attacks. This also
motivates to protect templates since people cannot provide
many biometric traits.

The ISO/IEC 24745 standard on biometric information
protection establishes the requirements of irreversibility,
unlinkability, and revocability for biometric template pro-
tection schemes [1]. Irreversibility means that no informa-
tion related to the biometric data can be recovered even if
protected templates are compromised. Hence, biometric data
remain private. Unlinkability means that no adversary can
knowwhich individual is the owner of the protected template,
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thus allowing user identity privacy. In case a protected tem-
plate is compromised, it should be revocable or renewable
to obtain a new protected template from the same biometric
sample.

Traditionally, biometric template protection schemes have
been classified into 1) biometric cryptosystems and 2) feature
transformations or cancelable biometrics [2].

Biometric cryptosystems bind a secret cryptographic key to
the biometric data. Among them, fuzzy extractor, fuzzy vault
and fuzzy commitment schemes were proposed, the latter
being widely employed [3]–[5]. In Fuzzy Commitments [6],
the commitments are Auxiliary or Helper Data generated
as a combination of biometric data with an error correc-
tion codeword indexed by a cryptographic key. A crypto-
graphic hash of the secret key (or of the error correction
codeword) is stored together with the Helper Data. Bio-
metric data should be represented as binary strings and the
Hamming distance is used as the distance metric. Match-
ing is performed by attempting to recover the cryptographic
key from the Helper Data and the input biometric data,
applying error correction decoding. Irreversibility is based
on the computational difficulty to retrieve either the key
or the biometric data from the stored Helper Data. Unlink-
ability and revocability are based on employing different
keys.

The recognition accuracy of biometric cryptosystems is
worse than the systems without protection, also known as the
baseline systems. Hence, their security is very much lower
than a cryptographic system because their False Acceptance
Rate (FAR) is not sufficiently small. Considering a brute-
force attack (also known as FAR attack), FAR should be
smaller than 2−N to achieve at least N-bit security. However,
the FAR of biometric systems usually ranges from 10−5

(17 bits) to 10−7 (24 bits) [4]. Therefore, multibiometric
fusion should be employed to improve security. Another
limitation of biometric cryptosystems that forces the use
of multibiometric fusion is the low entropy of biometric
traits [4].

In the feature transformation approach, the biometric tem-
plate is protected by a transformation function, which is
applied at the registration and the verification phases. There-
fore, biometric data are compared in the protected domain.
Transformations can be non-invertible or invertible (salt-
ing). Transformation functions proposed in the literature
are BioHashing [7], Alignment-Robust Hashing (ARH) [8],
re-mapping and warping [9], and Bloom filters [10]. Unlinka-
bility and revocability are based on the variation of the param-
eters of the transformation functions. Irreversibility depends
on the difficulty to obtain the original biometric data from the
transformed data.

Transformed templates often contain less information than
the original templates. Hence, the usual consequence is a
recognition performance degradation compared to the base-
line version (without transformation) [7]–[11]. As in biomet-
ric cryptosystems, multibiometric fusion should be employed
to improve security [12].

The accuracy obtained with the transformation can be
improved due to the entropy added by a user-specific secret
key as in salting schemes. In fact, the advantage of salting
schemes, such as BioHashing [7], is that, theoretically, there
is the possibility of achieving a 0% error rate due to the
use of a dual recognition based on the biometric information
and the user-specific secret key. However, this is risky and
not advisable because an attacker can use the device with
the user-specific secret key to improve the chances of suc-
cessful authentication. This is known as the Stolen Token
scenario [7]. Besides, as happens to biometric cryptosystems,
a limitation of many salting schemes is that their security is
very much lower than a cryptographic system because they
are not robust to FAR attacks [13].

In the other side, most of cancelable biometric schemes
apply similarity-preserving transformations, also called
Locality Sensitive Hashing, in order to preserve in the pro-
tected domain the accuracy performance obtained in the
unprotected domain [14], [15]. The problem is that this
similarity or distance-preserving property (distances between
unprotected samples are nearly the same as the distances
between protected samples) can be exploited by similarity-
based attacks that break these schemes. If an attacker can
access the protected template, he/she can apply a search
algorithm to generate first guesses randomly, transform them
to the protected domain, compute the distances with the pro-
tected template, use the information to improve the probabil-
ity of success with new guesses, and repeat the process until
reaching a successful guess. The work in [15] confirms the
vulnerability of BioHashing and Bloom-filter schemes to a
Genetic Algorithm enabled similarity-based attack. The work
in [14] introduces non-linearity in the transformation with
the aid of a deep neural network, but this requires retraining
whenever a new user is enrolled.

An alternative approach recently proposed to preserve
the accuracy of baseline systems is homomorphic encryp-
tion [16]. When it is employed in a biometric application,
the template and the input biometric data are encrypted by
using a public key. The comparison is performed in the
encrypted domain by means of an encrypted score compu-
tation operation. Thus, the resulting score after comparison
is encrypted. In order to obtain the final score, a decryption
operation by using a private key should be applied.

The practical implementation of Fully Homomorphic
Encryption schemes is still a challenge because not all the
operations needed to obtain an encrypted score are feasi-
ble due to their high cost in computational and memory
requirements [2]. The practical proposals of biometric Homo-
morphic Encryption schemes only allow a limited subset
of operations (additions or multiplications) in the encrypted
domain. The most used approach is the additively homo-
morphic scheme and, specifically, the Paillier homomorphic
encryption scheme [17]. In the schemes based on Paillier
homomorphic encryption, the security of the operations
employed are based on hard problems that cannot be solved
nowadays in polynomial time, such as the Discrete Logarithm
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Problem and the Integer Factorization Problem. However,
these problems are not so complex for quantum computers,
which is a relevant threat to consider, because protected
schemes that nowadays are considered secure will not be so
in the future.

Among the systems believed to resist the attacks of
quantum computers, lattice-based cryptography has attracted
most interest. Lattice cryptography uses high-dimensional
geometric structures to hide information creating problems
that are considered impossible to solve if the private key
is unknown, even for quantum computers. Homomorphic
encryption can be also constructed on the lattice problem fun-
damentals. In [18], two variants of Homomorphic Encryption
are employed based on ideal-lattice and, particularly, ring-
LWE (ring Learning With Errors) schemes, which are an
example of ideal lattice cryptography.

The drawback of homomorphic encryption-based
approaches is not only their high computational cost but also
their memory requirements since the size of the protected
template is around two order of magnitude greater than
the unprotected template [18]. In addition, a simple attack
algorithm has been reported to the authentication server that
computes the final decrypted score. The biometric data can
be revealed in at most 2N−T queries, where N is the bit-
length of the biometric template and T is the authentication
threshold [19].

In this work, we propose a post-quantum lightweight solu-
tion based on lattice cryptography. Specifically, Learning Par-
ity with Noise (LPN) commitments are employed to protect
biometric data. Our proposal of biometric LPN commitments
uses a public generator matrix to convert biometric data
to linear codewords that then are randomized with a user-
specific secret. LPN commitments are not opened (the secrets
are not revealed) but compared in the protected domain.
The commitments using impostor secrets are detected and
directly rejected without proceeding to calculate a biometric
similarity score. Hence, False Acceptance Rate is 0%.

In comparison, conventional Fuzzy Commitments also
uses a public generator matrix but to convert a secret to a
linear codeword that is then combined with the biometric
data. Biometric cryptosystems using Fuzzy Commitments
accept an individual if the commitment can be opened (the
secret can be reconstructed) because the biometric data pro-
vided at verification is enough similar to the data provided at
enrollment. Hence, FAR is not 0% and FAR attacks can be
successful.

LPN-based schemes have been applied to pseudorandom
generators, symmetric key encryption, secret-key authentica-
tion protocols, public-key identification, and zero-knowledge
proofs [20], [21]. However, to the best of our knowledge, this
is the first proposal of LPN-based cryptography for biometric
template protection. The main contributions of this paper are
the following:
• The first biometric template protection scheme based on
LPN commitments, whose hardness is a NP complete
problem to classical and quantum computers.

• A low cost solution in terms of computational and mem-
ory requirements for protected template generation and
storage (lower than approaches based on homomorphic
encryption).

• High security against attacks to recover the biomet-
ric data, because comparison is done in the protected
domain, using efficient cryptographic protocols.

• Resistance to similarity-based attacks because LPN
commitments are random (computationally hiding) and,
hence, do not preserve the distance values obtained
between unprotected samples with respect to the dis-
tance values obtained between protected samples.

• A recognition accuracy with a FAR of 0% because
user-specific secret keys are employed in the biometric
LPN commitments. In case of the Stolen Token sce-
nario, where an attacker uses a client device with a
user-specific secret key, the accuracy of the unprotected
approach is preserved.

• A security level comparable to a cryptographic system,
even with unibiometric systems.

• Experimental results are included from a practical
implementation in Matlab.

• The proposed solution was applied to a finger vein-
based biometric system, compared to other systems,
and evaluated in terms of irreversibility, revocabil-
ity and unlinkability, as established in the standard
ISO/IEC 24745.

This work is structured as follows. Section II describes our
proposal of application of LPN commitments to biometric
template protection. The operations required are defined,
and a security analysis is carried out, considering a dis-
tributed scenariowith cloud-based serviceswhere our scheme
is included in an authentication protocol proposed in the
literature. The implementation of biometric LPN commit-
ments by using Matlab functions is explained in Section III.
Parameters are selected to achieve several security levels and
performance is evaluated in terms of execution time, template
storage and operation complexity. In addition, a compari-
son to homomorphic encryption-based proposals is included.
A practical realization is presented in Section IV by using
finger veins. Accuracy, irreversibility, revocability, unlink-
ability, and resistance to attacks are proven and compared
to other proposals of biometric template protection schemes
applied to finger veins. Finally, Section V concludes the
work.

II. PROPOSAL OF BIOMETRIC TEMPLATE PROTECTION
BASED ON LPN COMMITMENTS
A. DEFINITION OF BIOMETRIC LPN COMMITMENTS
Commitment schemes are fundamental cryptographic prim-
itives for cryptographic protocols. A commitment scheme
allows a party to commit to a message by using a secret
key to maintain it hidden to others. The security properties
required by a commitment are the hiding and binding proper-
ties. Hiding means that one cannot learn anything about the
committed message from the commitment. Binding means
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that the commitment created for a message is different to the
commitment created for a different message.

An LPN commitment is based on encoding a message
(in our proposal, biometric data) by using a random linear
code with some noise added to the codeword. Formally,
the LPN commitment to an m-bit message B ∈ {0, 1}m is as
follows [21]:

Com (B) = A · (r||B)⊕ e (1)

where · applies the bitwise AND and XOR operations; || is
the concatenation of two vectors;⊕ is the bitwise XOR oper-
ation; r is a uniformly random vector ∈ {0, 1}l included to
add randomness; e is a low-weight uniformly random vector
∈ {0, 1}n following a Bernoulli distribution with parameter τ
(0 < τ < 1/2), i.e., every bit in e has a probability τ of being
1 and probability (1−τ ) of being 0 (e [i] has Pr [e [i] = 1] = τ
and Pr [e [i] = 0] = 1 − τ ); and A is a uniformly random
matrix A = A′||A

′′

∈ {0, 1}n×k with k = l + m and n ≥ k .
The resulting Com (B) is a vector ∈ {0, 1}n. The weight w

of e is determined by the HammingWeight (HW) of e (that is,
w =

∑n
i=1 e[i]). When the weight of e is exactly nτ , instead

of expected, the LPN problem is named as exact LPN (xLPN
for short) [21].

Using the same notation as above, the search version of the
LPN problem with parameters k ∈ N (the length of a secret
s), τ ∈ R (the noise rate in the e [i]), and n ∈ N (the number of
samples), asks to find a k-bit secret s from the n noisy linear
equations resulting from b = A · s ⊕ e, where A is public.
In our case, r and B (the biometric data) concatenated form
the secret. The computationally hard problem underlying the
security (i.e., the computational hiding property) of the LPN
commitment scheme is the search LPN problem, which can
be stated as the NP complete problem of decoding random
linear codes [22]. Since the decoding problem in random
linear codes is known to be robust for quantum as well as for
classical computers, the search LPN problem is suitable for
the construction of quantum-resistant commitments of secret
biometric data B.
Setting n = θ (k) = θ (l + m) large enough, the commit-

ment scheme becomes computationally hiding and perfectly
binding (with overwhelming probability over the choice of
A). On the one hand, the binding property is satisfied by the
large distance of the code generated by the random matrix A.
On the other hand, the hiding property is satisfied by the LPN
assumption which implies that A · s⊕ e is pseudorandom.
Let us define a linear code C as a k-dimensional subspace

of {0, 1}n. In the decoding problem, the input is a noisy
version of a codeword c ∈ C, c ⊕ e, with error vector
e ∈ {0, 1}n of Hamming weight w. In a typical setting,
the weight w is upper bounded by the code distance d , which
is the minimum Hamming distance between two codewords
(full distance decoding). The target of decoding is to recover
the codeword c (which is equivalent to find e).
Every instance of the LPN problem is an instance of a

syndrome decoding problem where n is the length of the
codeword, k is the linear code rank, A is the generator matrix,

and w is the linear code distance (d) obtained from an error
parameter τ as w = nτ . Let n be the number of samples,
we can write an LPN instance as the following matrix-vector
tuple:

A · s ∈ {0, 1}n×k × {0, 1}k satisfying A · s = b⊕ e (2)

where e = (e1, . . . , en) and the ith row of A and b represent
the ith LPN sample.
Nowadays, the best algorithms for decoding random binary

linear codes formulated as a syndrome decoding problem
are based on Information Set Decoding (ISD) [23], a prob-
abilistic decoding strategy that essentially tries to guess k
correct positions in the noisy received word, b. The running
time, T , of decoding algorithms is typically a function of the
parameters n, k and w. If the Gilbert-Varshamow bound is
used, w is a function of n and k , and therefore the running
time can be expressed as a function of n and k only. For
all Information Set Decoding algorithms, the highest running
time is achieved when the code rate k/n is slightly below
1/2. In that case, the ISD algorithms offer exponential run-
ning times of the form T (n) = 2an where α is a constant
which can be used as a metric to compare the different
algorithms.

B. COMPARISON OF BIOMETRIC LPN COMMITMENTS
IN THE PROTECTED DOMAIN
In general, the algorithms of a commitment scheme are:
key generation (KGen), which results a public commitment
key; commitment generation (Com), which outputs a com-
mitment for a message; and verification Ver , which verifies
the commitment. In the LPN commitment scheme proposed
in [21], KGen generates the public key A; Com outputs the
randomness r and the commitment from the public key A
and a message m: Com (m) = A · (r||m) ⊕ e; and Ver
takes the key A, the randomness r , the commitment Com (m),
and the message m, and outputs 1 (successful verification) if
Com(m)⊕A · (r||m) has weight w, and 0 (failed verification)
otherwise.

In our proposal of biometric LPN commitments, the mes-
sage is the biometric data, Bt at enrollment, and Bv at match-
ing, which should be always protected. Therefore, in our
proposal, KGen generates the public matrix A, Com outputs
rt and Com (Bt) = A · (rt ||Bt )⊕ et at enrollment, and rv and
Com (Bv) = A · (rv||Bv)⊕ev at matching, and Ver is modified
to work only with protected data, that is, with commitments.
Our verifier combines the biometric LPN commitments by a
XOR operation as follows:

Com (Bt)⊕ Com (Bv) = A · [(rt ||Bt )⊕ (rv||Bv)]⊕et ⊕ ev
(3)

This result can be considered as a system of linear
equations with A as coefficient matrix and A|[Com (Bt) ⊕
Com (Bv)] as augmented matrix. If Com (Bt) and Com (Bv)
are generated from the genuine prover, et = ev. Hence,
the XOR operation applied to genuine commitments results
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FIGURE 1. Enrollment phase of the authentication protocol based on biometric LPN commitments.

[Com (Bt)⊕Com (Bv)] = A · [(rt ||Bt )⊕ (rv||Bv)]. Solving the
system of linear equations (by means of Gaussian elimina-
tion, for instance), [(rt ||Bt )⊕ (rv||Bv)] = (rt ⊕ rv||Bt ⊕ Bv)
is obtained.

Since rt and rv can be known by the verifier, it can be
checked if (r t ⊕ rv) is correct. Then, the verifier employs
(Bt ⊕ Bv) to compute the score measurement of the template
and the input features. Typically, the score is based on the
Fractional Hamming Distance (FHD), which can be com-
puted as follows:

FHD (Bt ,Bv) =
HD(Bt ,Bv)

m
=

∑m
i=1 (Bt [i]⊕ Bv [i])

m
(4)

whereHD is the Hamming Distance andm is the total number
of bits in the biometric data.

In addition, the score can be based on the Jaccard Distance
(JD), which can be computed as follows:

JD(Bt ,Bv) =
2 · FHD(Bt ,Bv)

FHD (Bt ,Bv)+ FHW (Bt )+ FHW (Bv)
(5)

where FHW is the Fractional Hamming Weight (that is
FHW (B) = (

∑m
i=1 B [i])/m).

In the case of Jaccard distance, theHammingweights of the
biometric data are needed, but this is not a problem since they
do not reveal any sensitive information about biometric data.
If the score calculated (based on FHD (Bt ,Bv) or JD(Bt ,Bv))
is below an authentication threshold, the verification outputs
1 (success), and outputs 0 (failure), otherwise.

If Com (Bt) and Com (Bv) are generated from genuine and
impostor provers, et 6= ev. In this case, the system of linear
equations with A as coefficient matrix and A|[Com (Bt) ⊕
Com (Bv)] as augmented matrix cannot be solved, because
the rank of the augmented matrix is higher than the rank
of the coefficient matrix. As stated by the Rouché–Frobenius
theorem, the system has solution if and only if the ranks of
the coefficient matrix and the augmented matrix are equal.
Therefore, the impostor is directly rejected without proceed-
ing to a score measurement.

C. USE OF BIOMETRIC LPN COMMITMENTS IN AN
AUTHENTICATION PROTOCOL
In this work, we apply biometric LPN commitments in the
typical scenario where cloud-based services and distributed
architectures are employed, as proposed in [13]. The entities
involved are: 1) N users (i = 1, . . . ,N ), each one with a
client device; 2) a client device which obtains user biometrics,
identities and keys; 3) an authentication server in charge of
the verification of biometric LPN commitments; and 4) a
database server for (cloud) storage. In this protocol, there
are two authentication factors: 1) the biometrics, and 2) the
knowledge of a user key or the possession of a token with the
user key stored in a secure memory or reconstructed with a
Physical Unclonable Function (PUF) [24]. In the following,
the knowledge of a user key is considered, as being more
general [13].

The enrollment and verification phases are illustrated
in Fig. 1 and Fig. 2. During the enrollment phase, the client
device acquires the biometric samples sti, the user key ki
and the user identity IDi. From the biometric samples sti,
the client device extracts the biometric features Bti. ei is
derived by using what we call a Weighted Key Derivation
Function (WKDF) from the user key ki and the user identity
IDi. This function starts from an all-zero vector of n elements.
Since the resulting vector ei must have a constant weight w,
as commented in Subsection II.A, it means that w = nτ ones
are inserted in the sequence of zeros. The positions in which
the w ones are introduced follow a uniform distribution of
random values in the range [1, n] provided by a deterministic
random generator. The deterministic random generator pro-
vides the same positions if the user introduces the same ki
and IDi. If a random position is repeated, it is discarded, and
a new position is generated until w ones are inserted. More
details about this function are given in the following Section.
A practical implementation can be seen in [25].

The random vector rti is generated by using a Random
Number Generator (RNG). The public matrix Ai, which is
obtained by the KGen algorithm, can be stored locally in
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FIGURE 2. Verification phase of the authentication protocol based on biometric LPN commitments.

the client device. Then, the associated biometric LPN com-
mitment Com (Bti) = Ai · (rti||Bti) ⊕ ei is created. The
client device sends (IDi, Com (Bti) , rti) to the authentication
server. The authentication server maps IDi to a unique index i,
stores (i, IDi) in its local database and sends (i,Com (Bti) , rti)
to the database server for storage.

During the verification phase, the client device acquires the
biometric samples svi, the user key ki and the user identity IDi.
The input biometric features Bvi are extracted from the bio-
metric samples svi, ei is derived by using the WKDF from the
input user key ki and the user identity IDi, and rvi is generated
by using the RNG. Then, the associated biometric LPN com-
mitment Com (Bvi) = Ai · (rvi||Bvi) ⊕ ei is created using the
retrieved Ai. The client device sends (IDi, Com (Bvi) , rvi) to
the authentication server, and also Ai (although this is a public
matrix that could be obtained in another way). The authenti-
cation server recovers i from its local database associated to
the received IDi and (Com (Bti) , rti) from the database server
by using a private information retrieval (PIR) scheme. Then,
the authentication server carries out the verification algo-
rithm as described in Subsection II.B. A Private Information
Retrieval (PIR) is a protocol that allows the authentication
server to retrieve an element of the database server without the
owner of the database being able to determine which element
was queried. A secure PIR is employed together with the
database anonymization, as proposed in [13], to satisfy the
user identity privacy.

The communication channels among the protocol entities
are assumed to be secure, which is a usual scenario. This
means that an external adversary cannot intercept or modify
a message which is communicated through the channels.
Besides, the client device is assumed to be trusted, that is,
we do not consider it stores user IDs, keys or biometric
samples, or executes a malicious software. Finally, at the
enrollment phases, all the entities are assumed to behave
honestly.

However, an external adversary can use the client device
to carry out impersonation attacks, which is the Stolen Token
scenario commented in Introduction, and can attack also the

information stored in the database server. Biometric LPN
commitments are robust to these attacks as described in the
following section.

In addition, since external adversaries cannot obtain more
information than the internal ones, the protocol considers
malicious authentication and database servers at the verifica-
tion phase. If the authentication server is malicious, the tar-
get is to learn the user biometrics or keys. However, this
is not possible because the authentication server does not
have access to this information. If the database is malicious,
the target is to obtain the link between the commitment and
the user identity. However, since the database is anonymized
and a PIR protocol is employed, the user identity privacy is
satisfied.

D. SECURITY ANALYSIS OF THE BIOMETRIC LPN
COMMITMENT AS TEMPLATE PROTECTION SCHEME
According to the ISO/IEC 24745:2011 standard on biometric
information protection [1], the biometric template protection
schemes should fully meet the security requirements of irre-
versibility, revocability (or renewability) and unlinkability.

Irreversibility is related to the difficulty to recover the
original biometric features from the protected template. Irre-
versibility in an LPN commitment is based on the security of
the LPN problem, which is the hardness of decoding random
linear codes (a NP complete problem resistant to quantum
algorithms) [20]. Since A and e are both random, the resulting
LPN commitment is random. Hence, in terms of Shannon
entropy, the entropy in bits of the biometric LPN commit-
ments is practically 100%, independently of the biometric
feature. The entropy provided by Fuzzy Commitments is
lower, as depicted in Table 1, with data taken from [5].

Revocability (or renewability) is related to the ability to
create a new and different protected template from the same
biometric features of the same individual i by using different
keys. This security requirement is associated to the binding
property of an LPN commitment [21]. If Com (Bti) = Ai ·
(rti||Bti) ⊕ ei is created from the biometric features Bti and
another randomCom′ (Bti) = A′i ·(r

′
ti||Bti)⊕e′i can be created
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TABLE 1. Entropy in bits of fuzzy commitments [5] and LPN commitments.

from the same biometric features Bti, Com (Bti) 6= Com′ (Bti)
with Com (Bti) and Com′ (Bti) random (computationally hid-
ing). This is also true if Ai = A′i.

Unlinkability avoids possible cross-comparisons with
other databases, thus ensuring the individual privacy. This
property is related to the difficulty to determine if two pro-
tected templates created from different biometric samples of
the same individual i and different keys belong to the same
individual. Similarly to revocability, Com (Bti) 6= Com(B′ti)
with Com (Bti) and Com(B′ti) random (computationally hid-
ing) if Com (Bti) = Ai · (rti||Bti) ⊕ ei and Com

(
B′ti
)
=

A′i · (r
′
ti||B′ti)⊕ e′i. This is also true if Ai = A′i.

The decodability based cross-matching attack presented in
[26] for Fuzzy Commitments is based on XOR-ing two Fuzzy
Commitments created with the same linear Error Correction
Code. The attack checks whether the result is decodable
and, hence, detects that the biometric features are similar.
In biometric LPN Commitments this attack is not possible
since ei and e′i should be equal to decode the system of linear
equations.

FAR attack occurs due to interclass correlation between
biometric samples from different individuals that are very
similar. It reduces considerably the security of Fuzzy Com-
mitments and salting schemes, as commented in Introduc-
tion. For LPN biometric commitments, if the value of e
is unknown, the A|[Com (Bt) ⊕ Com (Bv)]-based equation
system cannot be resolved although the biometric features
Bt and Bv were similar. Therefore, FAR attacks are avoided
by a biometric LPN commitment-based template protection
scheme.

In addition to these security requirements, a template pro-
tection scheme should maintain the security under the named
Stolen Token scenario. Originally, the Stolen Token scenario
comes from the Biohashing technique [27], where a physical
device or token stores the user key. In our context application,
this scenario is possible since an attacker can access the client
device and employ it for recognition during the verification
phase. The commitment is created with ev = et and the
verifier obtains a matching score from [Bt ⊕ Bv]. However,
Bt belongs to the genuine individual and Bv belongs to the
impostor individual. Therefore, the recognition results are the
same as in the unprotected system.

Concerning similarity-based attacks, if an attacker knows
the protected template Com (Bti) = Ai · (rti||Bti) ⊕ ei, gen-
erates first guesses randomnly, and transforms them to the
protected domain, Com

(
B′
)
= Ai · (r ′||B′)⊕ e′, the distance

between Com (Bti) and Com
(
B′
)
does not reveal information

about the distance between Bti and B′, because Com (Bti)

and Com
(
B′
)
are random (computationally hiding). To carry

out a similarity-based attack in the authentication protocol
described above, the attacker should be successful to discover
the association between a commitment and a user identity,
that is, the attacker should break the database anonymization
and, in addition, should employ the client device of that user,
that is, should be in the Stolen Token scenario. Only then,
the attacker is able to generate Com

(
B′
)
= Ai · (r ′||B′) ⊕

ei, and from the distance between Com (Bti) and Com
(
B′
)

is able to extract information about the distance between
Bti and B′.

III. IMPLEMENTATION AND PERFORMANCE
EVALUATION
A. SOFTWARE IMPLEMENTATION OF THE BIOMETRIC
LPN COMMITMENT-BASED PROTECTION SCHEME
Our proposal has been developed in Matlab and thus the
implementation of operations is based on Matlab functions.
The first step to create a biometric LPN commitment is to
generate the keys. The generation of the n · (l+m)-bit matrix
A requires a uniformly distributed random generator. This
is possible by employing the Matlab function rand if the
result is rounded. The generation of the n-bit vector e requires
a weighted uniform random bit generator with Hamming
weight equals to nτ . The Matlab function randperm deter-
mines randomly the positions of the nτ elements of e with
value 1. The rest of the elements are established to 0. A seed
is employed by randperm which is associated to the user
identity and key. In this way, the Matlab function randperm
acts as a Weighted Key Derivation Function (WKDF).

The LPN commitment Com (B) = A · (r||B) ⊕ e is com-
posed of binary (AND) multiplications and binary (XOR)
additions. The LPN commitment operation is translated to
Matlab code as a 2-modulo operation applied to the addition
of A · (r||B) and e. Previously, the biometric features B
are extracted and concatenated to r . The generation of l-bit
vectors r is performed with a uniformly distributed random
generator based on the Matlab function rand.

At the verification phase, the authentication server has to
solve the system of linear equations composed of A as coeffi-
cient matrix, [Com (Bt)⊕Com (Bv)] as matrix of independent
terms and A|[Com (Bt) ⊕ Com (Bv)] as augmented matrix.
In order to employ Gaussian elimination, superior matrix
triangularization is applied to A. The gflineqMatlab function
used for this operation finds a particular solution over prime
Galois field of two elements. Two types of operations are
required: 1) swap a current row with a row containing a major
element, and 2) clear all non-zero elements in the column
except the major element and set the major element to one by
adding to one row a scalar multiple of another and applying a
2-module operation. Given the independent terms composed
of [Com (Bt)⊕ Com (Bv)], the authentication server checks
firstly if the rank of the augmented matrix A|[Com (Bt) ⊕
Com (Bv)] is k (like the coefficient matrix A). If the ranks are
different, the authentication server finishes the verification
with a failure.
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TABLE 2. Performance of biometric LPN commitment-based protection schemes.

TABLE 3. Comparison of template storage and operation requirements.

B. BIOMETRIC LPN COMMITMENT PARAMETERS AND
PERFORMANCE
The LPN commitment parameters can be selected accord-
ing to the latest results on Information Set Decoding (ISD)
algorithms presented in [23]. In that work, the worst-case
running time obtained for decoding random binary lin-
ear codes (considering full distance decoding) is 20.0885·n,
which means a security level of 0.0885·n bits. It is achieved
for k/n= 0.46 with relative distance w/n= d/n= 0.1237,
by using an improved proposal of the BJMM decoding algo-
rithm of Becker et al. [28]. The value of n is selected to
achieve the security level and then k and w are obtained. For
different security levels, Table 2 shows execution times of
the main operations in the LPN commitment-based template
protection schemes. Execution times correspond to average
of ten runs, executing the software implementation described
above in an Intel Core 3.3 GHz i5-7400 CPU. The most
timing consuming operation is the triangularization of the
matrix A. However, the operations and the values required for
the superior matrix triangularization can be pre-calculated at
the enrollment phase and can be known by the authentication
server to speed up the comparison of biometric LPN commit-
ments at the verification phase.

Table 3 shows a comparison of our proposal to others
proposals from the literature based on homomorphic encryp-
tion. The proposal in [18] offers a security level as high
as ours (more than 80-bit security against exhaustive-search
and birthday attacks). The results of our proposal consider
the parameters selected in Table 2. The n values determine
the protected vector length while the k values determine the
unprotected vector length. The storage requirements of our
proposal are the lowest. Regarding the cost of the opera-
tions at the verification phase, encryptions and decryptions
are the most costly operations for homomorphic encryption
approaches [29]. In contrast, our proposal does not require
decryption and the operations involved are the simplest.

IV. PRACTICAL REALIZATION WITH FINGER VEINS
A. BIOMETRIC RECOGNITION BASED ON FINGER VEINS
Although our proposal can be applied to any biometric trait
represented by binary features, this Section proposes an

example of realization to protect finger vein features. The
extractor of finger veins employed is based on the Wide Line
Detector, which is a state-of-art finger vein extractor [30]
initially proposed in [31].

The input to the Wide Line Detector is the brightness of a
finger-vein image F and the output is a binary feature image
V whose background pixels have the logic value ‘0’ and the
vein pixels have the logic value ‘1’. A circular neighborhood
regionN with radius r is defined for each center pixel (x0, y0)
from F as follows:

N (x0, y0) =
{
(x, y) | (x − x0)2 + (y− y0)2 ≤ r2

}
(6)

and the brightness similarity between two pixels is mea-
sured by:

b (x, y, x0, y0, u) =
{
0 F (x, y)− F (x0, y0) > u
1 otherwise

}
(7)

where u is a brightness contrast threshold.
Then, each pixel (x0, y0) in V is defined as follows:

V (x0, y0) =

{
0, if m (x0, y0) > g
1, otherwise

(8)

where m is the summation of the similarities within the
circular neighborhood region:

m(x0, y0) =
∑

(x,y)∈N (x0,y0)
b (x, y, x0, y0, u) (9)

and g is a geometric threshold defined as half themaximum
value that m can take.
Since the feature vectors extracted are unbalanced (with a

great difference for the number of 1’s and 0’s), we propose
to measure the matching score with the Jaccard distance,
which is the score already commented in Subsection II.B as
Equation (5). With the knowledge of FHW (Bt ) and
FHW (Bv), the authentication server can compute this score
from the biometric LPN commitments, and compare it with
a threshold to output a success or a failure. We point out that
our matching score is normalized, while that proposed in [32]
is not.
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B. ACCURACY ANALYSIS OF THE
UNPROTECTED APPROACH
In order to obtain biometric recognition results, we applied
the Wide Line Detector to extract features from the fin-
ger vein images from the Tsinghua University Finger Vein
database [33], in particular from THU-FVFDT3 FV3_Test
(which contains 4 samples of finger vein images for each
610 individuals).We use theWide LineDetector implementa-
tion from [34] with the parameters r = 5, u = 1 and g = 41.
Matching experiments were performed following the

FVC (Fingerprint Verification Competition) protocol [35]:
Genuine comparisons were made between every pair of sam-
ples corresponding to the same individual (in total, (4· 3/2)·
610 = 3,660 comparisons). Impostor comparisons were
made between the first sample of an individual and the
first sample of the rest of the individuals (in total, (610·
609/2) = 185,745 comparisons).

The finger vein image has 370 · 576 pixels, but the area
centered on the middle of the image, which corresponds
roughly to the middle phalanx, is usually described as the
most stable and the most discriminant area for finger vein
recognition, as indicated in [3]. Hence, we have evaluated
feature vectors of finger veins formed by 32 · 64 bits (that is,
2,048 bits), and no displacements were applied to the feature
vectors, as in [3]. The EER (Equal Error Rate) obtained (when
the False Rejection Rate equals to the False Acceptance Rate)
was 0.34 %.

C. RECOGNITION ACCURACY ANALYSIS OF THE
PROTECTED APPROACH
The analysis is performed by considering the parameters
selected in Table 2 for an 80-bit security with k = 416,
which determines the number of divisions of the unprotected
feature vector, and n = 904, which determines the protected
feature vector length according to the number of divisions of
the unprotected feature vector. For a 2,048-bit unprotected
feature vector, eight 256-bit divisions are considered (with
l = 160,m = 256 and k = l + m = 416). The
time to compare two commitments is 101,84 ms using the
above described Matlab implementation. Although this time
is competitive, it can be reduced considerably if the code is
optimized.

Table 4 shows a comparison of the recognition accuracy of
our proposal and other template protection schemes based on
finger veins. Our proposal is the only one that does not reduce
the recognition accuracy in the protected domain. The False
Acceptance Rate of the protected approach is 0% because an
impostor, who does not know the user-specific secret key (the
user key in the authentication protocol in Subsection II.C),
is directly rejected. The False Rejection Rate (FRR) can be
adjusted depending on the authentication threshold selected
for the biometric data. If the authentication threshold of the
EER of the unprotected domain is also used in the protected
approach, the FRR= 0.34%, as shown in Table 4. In that case,
in the Stolen Token scenario, the EER = 0.34% is preserved.

TABLE 4. Comparison of recognition accuracy of the unprotected and
protected approaches applied to finger veins wide line detector.

In all the other proposals, the recognition accuracy when
using the protected approach is always reduced.

D. SECURITY ANALYSIS OF THE PROTECTED APPROACH
In order to evaluate unlinkability, we applied the framework
proposed in [36] by considering the distributions of mated
and non-mated instances. The Jaccard distances of mated
instances are computed with the commitments of templates
extracted from different samples of the same instance by
using different e values. The Jaccard distances of non-mated
instances are computed with the commitments of templates
extracted from samples of different instances by using differ-
ent e values. If both distributions coincide, the unlinkability
of a scenario is proven. Fig. 3 proves the unlinkability of our
proposal.

The revocability property is satisfied if different protected
templates can be generated from the same sample by using
different e values. The results are shown in Fig. 3. This
distribution overlaps extensively with the two above, and,
therefore, the revocability of our proposal is also proven.

Regarding unlinkability, our proposal outperforms the
results obtained by using re-mapping, warping and
Alignment-Robust Hashing proposals included in [8]. The
rest of the proposals do not provide unlinkability results.
Revocability results are not provided by the proposals
considered.

The evaluation of the resistance to similarity-based attacks
of the biometric LPN commitments was performed accord-
ing to [14], which considers that protected templates are
secure only if the mutual information between the normalized
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FIGURE 3. Score distributions for the evaluation of revocability and
unlinkability.

FIGURE 4. Correlation between the impostor unprotected distances and
the impostor protected distances.

FIGURE 5. DET Curve for the unprotected and the Stolen Token
approaches.

distances of the impostor data in the protected and unpro-
tected domains is very small. In [14], mutual information
is assumed to be upper bounded by the variance of the
distribution of the impostor protected distances. The results
obtained are shown in Fig. 4. It illustrates that the impostor
protected distances (y-axis) do not change with respect to

their impostor unprotected distances (x-axis), that is, their
correlation is quite small. In fact, the variance of the impostor
protected distances was 4.104·10−5, much lower than the
variance obtained for the solution proposed in [14] whose
value is 0.31425. Therefore, it is very difficult for an attacker
to infer the unprotected distances.

Regarding the Stolen Token scenario, let us consider a sce-
nario where an attacker is able to generate the biometric LPN
commitment at the verification phase using the same values
for A and e. As expected, Fig. 5 illustrates through the DET
curve that the recognition results from the unprotected and the
Stolen Token approaches are the same. In [7], the recognition
performance in the Stolen Token scenario is significantly
worse because the recognition results are affected by the
dimensionality reduction of the BioHashing transformation.

V. CONCLUSION
In this work, we have proposed the use of LPN commitments
to construct a biometric template protection scheme. To the
best of our knowledge, this is the first proposal of such
schemes based on the LPN problem. Its use is described with
a dual factor authentication in a distributed scenario where
authentication and database servers can be malicious.

Irreversibility is based on the LPN problem, which is the
difficulty of decoding random linear codes. Parameters are
selected to obtain security of 80, 128, 256 and 512 bits.
The analysis of execution times (of the order of milliseconds
using a non-optimized code for the verification of biomet-
ric LPN commitments), template storage (with a length of
the protected vector of, approximately, 2 times the length
of the unprotected vector), and operation complexity (based
on ANDs and XORs) shows that a practical realization has
low cost. Hence, this scheme is feasible for hardware with
constrained resources and verification at real time. Accu-
racy performance is achieved with a FAR of 0% and a
FRR that can be adjusted depending on the authentication
threshold selected for the biometric data and can be set to
preserve the accuracy of the unprotected scheme in the Stolen
Token scenario. Revocability, unlinkability, and resistance to
FAR, cross-matching, and similarity-based attacks are also
achieved. Experimental results are compared to other pro-
posals from the literature based on homomorphic encryption,
transformation, and biometric cryptosystems.

The application of biometric LPN commitments is possible
for any biometric trait represented by binary features. In this
work, the biometric LPN commitments are applied to finger
veins extracted by the Wide Line Detector. For this realiza-
tion, we have proposed a comparison of finger veins based on
the Jaccard distance (more suitable for binary feature vectors
with an unbalanced number of ones and zeros).
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