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ABSTRACT Random numbers play a vital role in communications and cryptography. However, most
existing true random number generators have difficulty in satisfying the requirements of high-speed commu-
nications due to their complexity and bulkiness, or low speed limitations due to equipment bandwidth. Then,
the all-electron true random number generator was presented based on GaAs/Al0.45Ga0.55As superlattices
conducted under direct current bias at room temperature, which not only possesses the characteristics of
miniaturization but also generates random numbers at rates up to the Gbit/s. However, the bit rate of random
number generators based on superlattices is still much slower compared to chaotic laser random number
generators. In order to generate higher-rate random numbers, we modified a DC-excited superlattice and
then redirected the signal generated by the superlattice back into itself, thus introducing a self-feedback,
and achieved a self-feedback superlattice true random number generator. This improvement makes the
superlattice have a more detailed signal shape, a more effective signal amplitude, and with lower power
consumption. Therefore, these advances made the self-feedback superlattice more suitable for generating
random numbers. Moreover, we propose a new post-processing method, called the adjacent bits reversal
exclusive-or. This method can reduce the sequence bias and correlation without discarding any random bit.
The random number obtained by the self-feedback superlattice at a sampling rate of 10 GS/s passed the triple
standard deviation test and the random number standard test (NIST SP 800-22), indicating that it possessed
good statistical properties as a miniaturized random number generator.

INDEX TERMS True random number generator, superlattices, self-feedback, bits-reversal.

I. INTRODUCTION
Random numbers play a vital role in Monte Carlo simulation,
cryptography, digital authentication, secure communications,
and various other fields [1], [2]. In protected communica-
tions, when cryptographic technologies used such methods
as symmetric passwords, public key passwords, message
authentication codes, digital signatures, etc., a key is required.
Generally, randomnumbers are used as the keys to encrypt the
original information. Shannon’s theory [3] proves that as long
as the key is completely random, consistent with the length of
the information to be encrypted, and appears only once, called
the one-time pad. It is theoretically impossible to decipher,
so the rapid generation of safe and reliable random numbers
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is pivotal to the security of communication systems. Depend-
ing on the method of generation, random numbers can be
divided into true random numbers and pseudo-random num-
bers. Pseudo-random numbers are generated by deterministic
algorithms, with periodicity and reproducibility [4], [5].

The true random number generator (TRNG) is based on
the unpredictable physical random phenomenon [6], which
can generate unpredictable and unreproducible true random
numbers. Representative TRNGs are mainly based on phys-
ical entropy sources such as circuit thermal noise [7], [8],
oscillators [9], and chaotic circuits [10], [11]. But the rate of
these random number generators is mostly at the Mbit/s level,
which makes it difficult to meet the demands of modern com-
munication systems for high-speed random numbers gener-
ation. In recent years, using chaotic lasers as the source of
physical entropy, rates of generation of up to 100 Gbit/s [12],

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 182693

https://orcid.org/0000-0002-8372-0307
https://orcid.org/0000-0002-7231-5496
https://orcid.org/0000-0002-3885-7005
https://orcid.org/0000-0003-3547-5543
https://orcid.org/0000-0002-8095-399X


Y. Liu et al.: Fast True Random Number Generator Based on Chaotic Oscillation in Self-Feedback Weakly Coupled Superlattices

300 Gbit/s [2] off-line, and rates up to 14 Gbit/s [13] and
20 Gbit/s [14] in real-time have been obtained. However,
chaotic lasers have high costs and are complex systems,
which involve electro-optical and optical-electrical conver-
sion, and can be easily interfered with by external fac-
tors. These factors make chaotic laser-based random number
generators face many challenges in practical applications.
Therefore, an all-solid-state fast physical noise source with
high bandwidth, miniaturization, and low power consumption
is urgently needed.

Semiconductor superlattices (SLs), first proposed by
IBM’s L.Esaki and R.Tsu, is an all-solid-state electronic
device which is periodically grown by two semiconductor
materials with proper lattice matching [15]. Yaohui Zhang’s
team from the Chinese Academy of Sciences was the first
in the world to discover the spontaneous chaos oscillation
phenomenon of the GaAs/Al0.45Ga0.55As SL in the liquid
nitrogen temperature range and room temperature conditions
[16]–[18]. Many scholars over the world have confirmed that
this SL was an ideal source of chaotic noise by exploring the
structure of the GaAs/Al0.45Ga0.55As SL and the spontaneous
chaos oscillation phenomenon, which could be used to gen-
erate true random numbers [19]. The rate of random number
generation could be up to 6.25 Gbit/s by means of a single
SL chip, and the rate could be increased to 80 Gbit/s when
combined with six SL chips [20].

To generate faster random numbers, the signal generated
by the SL itself was re-injected into the SL through an
adjustable attenuator and bias-tee to form the self-feedback
SL random number generator. Contributing to this change,
the performance of the superlattice TRNG has been improved
a lot, such as quicker changes, larger signal amplitude, and
lower power consumption. These improvements made the
self-feedback SL random number generator more conducive
to the random number generation. In this paper, we propose a
new post-processing method, called the adjacent bits reversal
exclusive-or (XOR) method, which will take full advantage
of the new SL signal to generate higher-rate random numbers.
The self-feedback SL random number generator generates a
random number at a sampling rate of 10 GS/s. The lowest
4 bits are selected, which means a rate of 40 Gbit/s. These
random numbers passed the triple standard deviation test and
the random number standard test (NIST SP 800-22). It is
expected to promote the further application of SLs in the field
of random numbers generator.

II. SL STRUCTURE AND PRINCIPLE
The structure of the investigated sample is schematically
shown in Fig. 1, and consists of a 50-period, weakly
coupled GaAs/Al0.45Ga0.55As SLs with CaAs wells and
Al0.45Ga0.55As barriers. The mole fraction of Al in the
barriers was selected at 0.45 to suppress the thermal leak-
age current though the X Valley [21], [22]. The conductor
SL was deposited by molecular beam epitaxy (VG V80H)
on a 2-inch Si-doped GaAs substrate (Wafer Technology
Ltd.) [23]. It was packaged into a dual in-line package type for

FIGURE 1. Schematic diagram of SL chip structure.

facilitating the experiment. Its core size is only
1.5 mm×1.5 mm. From a microcosmic aspect, the SL is
sandwiched between two 300nm silicon-based GaAs layers,
forming an n+-n-n+ diode structure. The thickness of the
Al0.45Ga0.55As barrier layer is 4nm, and the total thickness
of the GaAs potential well layer is 7nm, in which there are
2nm thick undoped GaAs layers on both sides of the doped
silicon-based GaAs layer to prevent the diffusion of silicon
(Si) atoms to the adjacent Al0 .45Ga0.55As barrier layer [20].
Although these structures are periodic, during the growth
process, their layer thickness, doping concentration, etc.
inevitably introduce random fluctuations, thus constituting
a random nonlinear system with a tremendous degree of
freedom. The alternately grown GaAs and Al0.45Ga0.55As
materials constitute the well and barrier of the quantum well,
respectively. The charge is confined to each quantum well in
a weakly coupled SL, and the transport of charge is achieved
by resonance tunneling between each adjacent quantum well.
The sequential resonant tunneling effect of the weakly cou-
pled SL introduces a negative differential conductance effect,
which makes the behavior of electrons in the electric field
non-linear, so the electrons lose their phase information,
forming a particularly complicated random process.

III. EXPERIMENT DESIGN
The Schematic diagram SL random number generator is
shown in Fig. 2, improved from the SL random number
generator under the DC bias voltage. The system can be
divided into two sections: the SL physical entropy source
and the random number extraction. The physical entropy
source section was obtained by injecting the signal of the SL
back to the SL with a DC bias voltage appended to the SL.
The random number extraction section digitizes the physical
entropy source signal and finally generates detectable random
bits after post-processing. In this paper, we use a digital
source meter (DSM, Keithley-2400) to provide the voltage
regulation to the SL device and measure the corresponding
current and voltage and output a linear sweep voltage to
measure the I-V characteristics. The voltage sweep of the
Keithley 2400 digital source meter was used to measure and
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FIGURE 2. Schematic diagram of self-feedback SL random number generation.

plot the I-V characteristics. We set the voltage type to linear,
from 0 V to 6 V, and set the step size to 1 mV, and the source
table upper limit current was set to within 20 mA to ensure
the protection of the SL device.

The DSM connected a bias-tee (Mini-Circuits ZFBT-6G+,
50 �, 10 to 6000 MHz) before connecting the SL,
in order to avoid the influence of parasitic capacitance on
high-frequency signals. The bias-tee consists of an ultra-
bandwidth, near-ideal inductor L and capacitor C. The induc-
tance prevents high-frequency signals from leaking into the
DC power supply system, and the capacitor prevents the
DC voltage from leaking into the high-frequency circuits
and measurement instruments [24]. The connections between
each device of the physical entropy source are the Small A
Type (SMA) interface high-frequency coaxial cables with a
bandwidth of 6 GHz. The SL was connected to the bias-tee
through SMA coaxial cables to obtain a DC power supply
and then grounded after a 50 � SMA copper-nickel coaxial
load for resistance matching. The signal between the negative
electrode of the SL and the load resistance was sent to the
capacitor of the bias-tee through a coaxial cable to form a self-
feedback. A variable attenuator is added to the path to inves-
tigate the process of the feedback signal from small to large.
The attenuator has six settings: 16 dB, 8 dB, 4 dB, 2 dB, 1 dB,
and 0 dB (when no button is pressed), and it will produce the
corresponding attenuation when the button is pressed. The
signal generated from the SL was observed and measured
by the oscilloscope (OSC, Lecroy, HDO 9404-MS, 40 GS/s).
Sampling and quantization were carried out in 10-bit mode,
and the 4 least significant bits (LSBs) were selected for
adjacent bits reversal XOR (ABRX) processing, and finally,
a random sequence was obtained for detection.

IV. ANALYSIS OF SL SIGNAL
According to previous research results [19], [20], the signals
output from the GaAs/Al0.45Ga0.55As SL at different bias
voltages represent different characteristics, and the chaotic
oscillation signal only appears in a specific voltage range.
The SLs under DC can be regarded as the amplitude of the
feedback signal is infinitesimal (the attenuation coefficient is
infinite). The amplitude of the feedback signal increases with
the decrease of the attenuation coefficient. We continuously
increased the feedback signal until no attenuation was added,
and measured the I-V characteristics of the SLs with different
feedback attenuation coefficients and DC bias.

When the scanning voltage of the source table is close
to the chaotic oscillation region, the slope of the I-V curve
increases sharply at first, then decreases, and the negative dif-
ferential phenomenon appears (Fig. 3). Note that the chaotic
oscillation region here does not refer to the oscillation of the
I-V curve, but to the voltage range in which the SL device
will produce a time-domain trace oscillation. The negative
differential conductance effect is caused by the resonance
tunneling effect of the electrons in the SL. The current in the
semiconductor increases with the increase of voltage under
normal conditions. However, the current decreases with the
increase of voltage in the negative differential voltage range,
which leads to the generation of the oscillation of the SL
signal.

The oscillation range was about 3 V, when the amplitude
of the feedback signal was very small (and the attenuation
coefficient was large). While the chaotic oscillation region
moves into the region of about 1V, when the feedback sig-
nal continued to increase (and the attenuation coefficient
became smaller). These voltage ranges are described in detail
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FIGURE 3. I-V characteristic curves of self feedback SLs, from back to
front, the I-V curves of DC, 16dB, 8dB, 4dB, 2dB, 1dB, 0dB attenuation
coefficient. The region indicated by the arrow is the voltage range where
the SL oscillates.

in Table 1. When the feedback attenuation coefficient was
between infinity to 4 dB, the maximum power of the SL was
14.39 mW. But the maximum power was only 3.53 mWwhen
the attenuation coefficient was 2 to 0 dB, which was less than
1/4 of the former’s power. So, from the point of view of power
consumption, it was better to select a feedback coefficient of
between 2 and 0 dB.

TABLE 1. Voltage range and maximum power.

The I-V characteristics, waveform shape, and amplitude of
the SL with 16-4 dB feedback coefficient are very similar
to those under DC. When the feedback signal continued
to increase (2–0 dB), the SL waveform changed signifi-
cantly, and the waveform amplitude increased along with the
increase of the feedback signal. Therefore, the self-feedback
SL without attenuation (0 dB) was a better option for the
entropy source of the randomnumbers, both in terms of power
consumption and waveform amplitude.

The three most representative traces of the SL are shown
in Fig. 4. The three signals are DC period, DC chaotic oscil-
lation, and 0 dB self-feedback chaotic oscillation. It is easy
to find the periodicity of the signal by observing the signal
trace produced by the SL in Fig. 4 (a), and a waveform
with the same shape repeatedly appears, similar to a pulse.
In the frequency domain, the signal also has the character-
istic of a discrete periodic signal, and the peak appears at
the integral multiple of the basic frequency. So this signal
can not be used for random numbers due to periodicity.
The latter two are chaotic oscillation signals, quite different

from the previous periodic signals. The chaotic oscillation
signal in Fig. 4 (b) is similar to a time-varying pulse. The
width of the peak is 3 ns, and the interspike interval (ISI) is
about 7 ns, with the amplitude of the peak exceeding 90 mV.
The noise amplitude between the peaks is at least one order of
magnitude lower than the amplitude of the peak. These noises
may come from the background noise of the test equipment
and the thermal noise or scattering noise inside the SL [25].
The voltage between each peak is very low, equivalent to
a ‘‘blank area’’. In order to avoid continuous acquisition in
this area, the sampling interval has to be increased, which
limits the sample rate leading to the rate of random number
generation lower than expected. The power spectrum of the
chaotic signal under DC is not as discrete as the previous
DC periodic signal. As shown in Fig. 4 (e), it is continuous
and has a bandwidth of hundreds of MHz. Fig. 4 (c) displays
the 100 ns trace of the self-feedback SL signal. The ‘‘blank
area’’ between two peaks under DC bias disappears, meaning
that the self-feedback signal contains more information, and
higher sampling frequency can be adopted for a higher rate of
random numbers. More importantly, the amplitude and shape
of the signal change more dramatically under self-feedback
than under DC chaotic.

Fig. 5(a) presents the calculated probability density func-
tion (PDF) for the amplitude of the waveform generated by
superlattices. Although the PDF resembles a Gaussian distri-
bution, the PDF is clearly identified by comparing it with the
fitted Gaussian (blue curve in Fig. 5(a)), which means that
keeping all the 10-bit of data cannot pass the statistical tests
of randomness. Therefore, to extract random bits from the
entropy, post-processing should be employed. The autocor-
relation trace for the SL signal is shown in Fig. 5(b). The cor-
relation coefficient after zero-graduation decays to 0 rapidly,
indicating that the signal has almost no autocorrelation.

Fig.6 shows the chaotic attractors [26] of the superlattice
signal. The existence of chaotic attractors means that the pro-
posed entropy source is chaotic and can be used to generate
true random numbers.

V. POST PROCESSING
Generally, the random number quantized by direct sampling
does not meet the requirements of statistical characteristics.
In order to make up for the non-uniformity of quantitative
data distribution and further eliminate the autocorrelation,
various post-processing is needed.

A. SELECT THE LEAST SIGNIFICANT BITS
Shannon entropy [27] and minimum entropy [28] are effec-
tive tools to depict the statistical characteristics of random
numbers. Shannon entropy can quantitatively evaluate the
effective information in a random sequence, and the inde-
pendence and uncertainty of each bit. The larger the value,
the more information it contains. The minimum entropy
means that the system with the minimum entropy is in a
reliable state, which represents the difficulty of predicting
random numbers. Shannon entropy andminimum entropy are
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FIGURE 4. Three types 100 ns trace of SL oscillations digitized at 40 GHz.(a)DC period (b)DC chaotic(c)self-feedback chaotic. Three types
power spectrum of the oscillations(d)DC-period (e)DC-chaotic(f)self-feedback- chaotic.

FIGURE 5. Statistical properties of SL chaos. (a) PDF and
(b) autocorrelation of the SL waveforms. The blue curve in (a) denotes the
fitted Gaussian.

defined:

Hn(X ) = −
2n∑
i=1

pi log2 pi (1)

FIGURE 6. Chaotic attractors of superlattice signal. X and Y represent the
voltage on the superlattice and the load, respectively.

Hmin(X ) = − log2max {pi} (2)

where Hn is the Shannon entropy, and Hmin is the minimum
entropy, and X is a discrete random variable in the range R =
{x1, x2, x3, . . . , x2n}, and pi is the probability of value when
X = xi. It can be obtained by calculation that when the ran-
dom number sequence corresponds to a uniform distribution,
pi = 1/2n, the Shannon entropy value of the sequence reaches
the maximum value Hn (X ) = n, and at the same time makes
Hmin(X ) have a minimum value = n. The Shannon entropy
value reaches the maximum value so that the random number
sequence has the maximum information entropy. Meanwhile,
it has themaximum stability withminimum entropy. Shannon
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entropy and minimum entropy both indicate that the random
number sequence should conform to a uniform distribution.

In order to make up for the non-uniformity of quanti-
fied data distribution and further eliminate autocorrelation,
selecting the m least significant bits (LSBs) is a relatively
common and simple method to improve the uniformity of
distribution [29]. Hirano et al. [30], Nguimdo et al. [31],
and Li and Chan [32] selected the 6, 4, and 3 LSBs,
respectively, and obtained uniformly distributed random bits.
Oliver et al. [33] pointed out that it is effective to esti-
mate the appropriate number of bits by drawing histograms
of amplitude-frequency distributions of different digits, and
successively lowering the value of m bit a flat frequency
distribution histogram is obtained within the allowed sta-
tistical variation range. Consistent with the descriptions in
references [29], [33], when more high bits are continuously
discarded, and fewer LSBs are selected, the unevenness of
distribution is greatly improved, gradually approaching a
uniform distribution. When m = 4, the amplitude distribu-
tion of the quantized result and the uniform distribution are
almost consistent, as shown in Fig. 7. The quantized output
bits of the multi-bit ADC determine the speed of random
number generation. The more digits are reserved, the higher
the rate. Therefore, when extracting m LSBs as a random
number output, it is necessary to make the value of m as
large as possible under the premise of satisfying the quantized
amplitude distribution of the balance, at the same time taking
into account the rate of random number generation.

FIGURE 7. Probability distribution histogram of different 4 LSBs.

B. ADJACENT BITS REVERSAL XOR
The random bits processed by the LSBs method do not
mean that they can pass all the statistical tests of randomness
because there are still obvious deviations or correlations in
the generated random bits. So it is still necessary to combine
with other post-processing steps to ensure that the random
numbers meet the requirements for good randomness. Ido
Kanter [2] adopts an 8-bit ADC to sample and quantize
the signal converted from chaotic lasers to voltage at a rate

of 40 GS/s, then performed multi-order differentials, and
selected m LSBs to ensure passing the random number test.
The schematic diagram of the device Ido Kanter operated is
quoted in Fig. 8(a). Additionally, Sze Chun Chan directly per-
forms XOR on the 3 LSBs of adjacent signals after obtaining
ADC quantization as quoted in Fig. 8(b).

FIGURE 8. (a)Post-processing methods of Ido Kanter, reproduced from
ref [2]. (b) Post-processing methods of ISze-Chun Chan, reproduced from
ref [28].

The method proposed by Ido Kanter is very effective and
achieves a breakthrough 300 Gbit /s random generator under
the laboratory conditions, which is a historic breakthrough
in the rate of random numbers generation. However, due to
the large number of calculations and the need for a large
amount of cache, it is difficult to realize such a rate in reality.
Conversely, Sze Chun Chan’s method has almost no compu-
tation, and only selects LSBs and conducts XOR, without any
multi-step differential calculation. But half of the random bits
are discarded during the XOR operation.

Therefore, we need post-processing which can meet the
following three conditions. Firstly, it can reduce the bias
and correlation of random sequences to ensure that it can
pass the random number test. Secondly, it only needs a few
calculations to facilitate real-time processing. Thirdly, it does
not need to discard the random bits to improve the random
number generation rate.

As XOR is considered to be a very important method
to process random numbers, we will analyze it here. Sup-
pose that the values of two random variables X and Y are
0 or 1, and their mathematical expectation values are µ and ν
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FIGURE 9. Schematic diagram of adjacent bits reversal XOR operation.

respectively. We carry out an XOR operation between X and
Y to obtain a new random variable Z , and so its mathematical
expectation value is as follows [34]:

E(Z ) =
1
2
− 2

(
µ−

1
2

)(
v−

1
2

)
−2ρ

√
µ(1− µ)v(1− v) (3)

where ρ is the cross-correlation coefficient of X and Y ,
representing the degree of correlation between them. When
the correlation degree of random variables X and Y is very
small so that ρ can be ignored. Because X and Y are random
variables,µ and ν are very close to 0.5, and (µ-10.5)×(ν-0.5)
is much less than either of (µ-10.5) or (ν-0.5). So when X and
Y are independent, the error of the sequence after XOR will
be less than any of the original sequence. If we find a way to
make the two adjacent random numbers lose correlation, then
we would treat random numbers by direct XOR.

The Hamming distance [35] between different binary
sequences can reflect the independence between them. If the
hamming distance is closer to 0.5, their independence is
stronger. Table 2 shows the hamming distance between the
different bits(1 Gbit data at 10GS/s).

TABLE 2. Hamming distance of bits.

Therefore, we propose a new method, called adjacent bits
reversal XOR, which is illustrated in Fig. 9. And there is no
correlation between the first bit and the last bit of the data
collected by ADC [36]. Firstly, the original data is processed
with m LSB and the least 4 bit data is selected to improve its
uniformity. Secondly, reverse the original 4-bit bits at time t,

and then XOR them directly with the four bits sampled from
t+1 the following time, then output the result. According
to this method, input 4 (n + 1) bit data, and finally obtain
4 n bit data. When n is very large, it can be considered that
there is no need to discard random bits during the adjacent
bits reversal XOR process, and the random bit generation
rate will not decrease. But the deviation and correlation of
random bits is reduced greatly. Compared with the previous
method, the adjacent bits reversal XOR is quite different
because the former needs to discard half of the random
numbers. However, our method only needs to reverse the
data for XOR (change the byte high-order and low-order
read order), without introducing complex calculations such
as multi-level difference and other resource-consuming cal-
culations. This post-processing, as presented is easy, and is
also easy to conduct in the Embedded hardware. In summary,
the adjacent bits reversal XOR can greatly reduce the random
sequence deviation and autocorrelation coefficient without
losing random numbers and greatly reduces the number of
post-processing calculations.

VI. RANDOMNESS TEST
A. TRIPLE STANDARD RANDOM TEST
Triple standard deviation test (3σ criterion) [37] based on the
feature of ideal random bits is a common method to validate
random numbers. Amodel that generates random numbers by
tossing a coin under ideal conditions is set up for 3σ criterion.
The probability of either side of the coin landing face up is
equal, and in the equation the positive side represents 1 and
the negative side represents 0.

Under the same initial conditions, n repeated coin tossing
experiments are carried out to obtain a random sequence X of
length n. As the number of coin flips n increases, the proba-
bility of the event gradually approaches the Gaussian distri-
bution from the binomial distribution. The variance (D(x)) of
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the sequence X is:

D(x) = E
(
x2
)
− E2(x) =

1
4n

(4)

where E(x) is the mathematical expectation. According to the
central limit theorem: when n→∞.

p[e(n)] = N
(
0,

1
2
√
n

)
=

1
√
2πσe

e
−
e(n)2

2σ2e (5)

where p[e(N )] is possibility of e(N ), with σe = 1/2
√
n,

e(N ) = E(X )-0.5.
To calculate the first-order autocorrelation coefficient

(a1(n)) of sequence X :

a1(n) =

n∑
i=1

[xi − E(x)] [xi+1 − E(x)]

n∑
i=1

[xi − E(x)]2

∣∣∣∣∣∣∣∣
xi={1,0}

(6)

Because of xi = 0, 1, x2 = x, E(x2) = E(x), the numerator
of the formula can be simplified according to the values of xi
and xi+1 shown in Table 3.

a1(n) =

n∑
i=1

yi

∣∣∣∣
yi=

{(
1
2+e

)2
,
(
1
2−e

)2
,− 1

4+e
2
}

n
(
1
4 + e

2
)

≈

4
n∑
i=i
yi

∣∣∣∣
y1=

{
−

1
4 ,

1
4

}
n

=

n∑
i=1

yi

∣∣∣∣
yi={−1,1}

n
(7)

where x and y is a random sequence. With the help of the coin
toss model, it is simple to calculate a1(n), but the difference is
that the positive side represents 1 and the negative side repre-
sents−1. So the distribution of the first-order autocorrelation
coefficient a1 is:

p [a1(n)] = N
(
0,

1
√
n

)
=

1
√
2πσa

e
−
a1(n)

2

2σ2a (8)

According to the principle of hypothesis testing, within the
range [−3σ , 3σ ], the area enclosed by the probability func-
tion and the x-axis is 99.7%. This means that the probability
that the offset of a true random sequence of length n falls
within the range [−1.5/

√
n, 1.5/

√
n] is 99.7%. Similarly,

the first-order autocorrelation coefficient of the random
sequence should also fall within the range [−3/

√
n, 3/
√
n].

By comparing the deviation and autocorrelation coefficient of
the random sequence to be detected with the sequence devia-
tion and autocorrelation coefficient of the coin-tossingmodel,
it is very easy to determine whether the random sequence
meets the triple standard error test.

1 Gbit data from SL, with and without the adjacent bits
reversal XOR method, was examined at a sampling rate
of 10 GS/s to validate the method proposed in this paper.
This 1 Gbit data was obtained by selecting only 4 LSBs.
We recorded the deviation of data |e(N )|disposed by adja-
cent bits reversal XOR and |e(N )| without using this process

TABLE 3. simplified formula.

in Fig. 10(a). The first-order autocorrelation coefficient a1 of
this 1 Gbit data, recorded respectively |a1(N )|and |a1(N )|.
The curve of |e(N )| was always below the 3σe, but the |e(N )|
exceeded the ideal random curve, so it did not pass the 3σ
criterion. Like the former, |a1(N )|was always below 3σa1 , but
|a1(N )| exceeded the 3σa1as shown in Fig. 10(b).

FIGURE 10. 3σ criterion of 1 G bit random sequences.(a) Sequence bias
|e(N)| (b) first-order autocorrelation coefficient of the sequence |a1(N)|.

B. NIST STATISTICAL TESTSUITE
The statistical test suite 800-22 from the National Institute
of Standards and Technology(NIST) [38] is a recognized
standard for testing random numbers. Sowe used it for further
testing and verification of the quality of the random bits of the
final output. The random bit sequence passed the NIST sta-
tistical test using 1000 bitstreams of 1 Mbit length. Test items
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TABLE 4. Results of NIST statistical test.

TABLE 5. The performances of different trng.

and outcomes, pass rate, and p-values are shown in Table 4.
It lists the P-values of all 15 sub-test items and corresponding
pass rates at the sampling rates of 2.5 Gs/s, 5 Gs/s, and 10Gs/s
in turn. We extracted the 4LSBs from each 10-bit sample, and
converted sampling rates to the rates of random bits, which
were respectively 10 Gbit/s, 20 Gbit/s and 40 Gbit/s. And as
the sampling rate continued to increase, the NIST test failed.
An all-electronic physical random number generator at rates
up to 40 Gbit/s is realized by a single SL chip. Usually the
significant level α = 0.01, when the P-Value > α, can it be
considered to have passed the test. The possibility of P-Value
> 0.01 should fall in the range of [0.9805,0.9995] [39]. All
of the tests succeeded, and it showed that the random num-
ber from self-feedback SL has good statistical randomness.
In summary, a single SL chip generates random numbers with
a rate of up to 40 Gbit/s and can pass 3σ deviation and NIST
tests.

Table 5 includes the TRNG system, post-processing, speed
of random bits, etc., to compare the different performances of
advanced TRNG in recent years. Although The superlattice
TRNG has been greatly improved, there is still a gap between
superlattice TRNG and laser TRNG in speed.

VII. CONCLUSION
Random numbers are crucial for communications and cryp-
tography. And superlattice TRNG is a new generator in recent

years. In order to generate higher-rate random numbers,
we presented a self-feedback superlattice TRNG, which can
generate random bits at rates up to 40 Gbit/s with adjacent
bits reversal exclusive-or method for post-processing. It is
expected to play a vital role in the field of random numbers
with its ultra-low power consumption, small size and high
speed.
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