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ABSTRACT A genetic algorithm and Taguchi method were used to optimize parameters for the residual-
current device (RCD) snubber circuit of a DC-DC flyback converter. The most suitable algorithm was
determined by using test functions to compare performance in three multi-objective optimization methods:
non-dominated sort genetic algorithm-II (NSGA-II), multi-objective particle swarm optimization (MOPSO),
and multi-objective differential evolution algorithm (MODE). Comparisons of coverage rate, distance
between non-dominant solutions, andmaximumwalking distance showed that NSGA-II was superior to both
MOPSO and MODE. Therefore, NSGA-II was used to obtain parameter values for the RCD snubber circuit.
However, practical application of the parameter values was limited because the values could not meet the
specifications required for real-world circuits. Thus, the parameter values obtained by NSGA-II were used
in further factor-level experiments performed by Taguchi method. The experimental results indicated that,
compared to previous design methods, the proposed NSGA-II and Taguchi method obtains better parameter
values for the RCD snubber circuit.

INDEX TERMS Multi-objective optimization, Taguchi method, RCD snubber circuit.

I. INTRODUCTION
The residual-current device (RCD) snubber is usually used
in flyback converter, in order to limit the voltage spikes
caused by leakage inductance of the transformer [1]–[3]. This
converter is an essential power electronics product that is
widely used in many industries, including manufacturing,
medicine, aerospace, and the defense. The stable, high quality
power supplied from this converter directly enhances per-
formance and safety in many electronic products. Therefore,
how to select the proper snubber circuit and obtain the optimal
design is an issue worth investigating [4], [5]. Sun et al. [4]
proposed an improved genetic algorithm to optimize the
design of AC-DC converter with snubber in switching
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power amplifier. Huang et al. [5] gave a single-objective
optimal design method of DC-DC converter with an RCD
snubber by using a genetic algorithm and the Taguchimethod.
An economical, practical, and efficient circuit design pro-
cedure is provided by Huang et al. [5], [6]. However,
Huang et al. [5] only considered the single-objective problem
of reducing the spike voltage. Reducing energy loss on the
RCD snubber circuit is also an issue worth investigating.
However, to the authors’ best knowledge, there are no litera-
tures to studying the optimal problem of reducing both spike
voltage and energy loss on the RCD snubber circuit.

As the intelligent manufacturing industry evolves, single-
objective optimization methods have increasingly revealed
limitations in meeting industrial demands. Therefore, multi-
objective optimization has been widely used in the prod-
uct design and production processes of various industries in
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recent years. The main purpose of multi-objective optimiza-
tion is to resolve conflicts among various objectives [7]–[10].
Multi-objective optimization methods currently used in
the industry are often derived from single-objective opti-
mization methods such as genetic algorithm (GA), parti-
cle swarm optimization (PSO) and differential evolution
algorithm (DEA).

The first multi-objective optimization algorithm, vec-
tor evaluated genetic algorithm (VEGA), was proposed by
Schaffer [11]. The VEGA is easy to apply but can only find
the best solution for a single objective. Improvements in
VEGA proposed by Hajela and Lin [12] and by Fonseca and
Fleming [13] resulted in the weight-based genetic algorithm
and the multi-objective genetic algorithm (MOGA), respec-
tively. The non-dominated sorting genetic algorithm (NSGA)
was introduced by Deb and Srinivas from MOGA [14] and
further refined by Deb et al. [15]. The original NSGA had two
shortcomings: it was incapable of finding the best solution,
and it tended to fall into the regional solution. The second
generation NSGA (NSGA-II) addressed these shortcomings
by applying an elite dominated strategy [15]. Themany appli-
cations of NSGA-II have included pipe routing for aviation
engines [16] and electricity price prediction [17]. Coello
and Lechunga [18] proposed grid-based multi-objective par-
ticle swarm optimization (MOPSO) based on grid selection.
A modification of MOPSO in 2004 enhanced its search capa-
bility by considering domination and non-domination rela-
tionships and by applying perturb and observe method [19].
A notable application of MOPSO is in cloud comput-
ing [20] to maximize broker profit while minimizing time
cost. Abbass et al. [21] proposed the Pareto differential
evolution algorithm (PDEA), which applied the dominance
relation in DEA. Babu and Jehan [22] proposed the use of
DEA in multi-objective optimization (MODE). Kukkonen
and Lampinen [23] introduced the third evolution of DEA,
which increased diversity of understanding. Huang et al. [24]
proposed the self-adaptive differential evolution algorithm
and Mirjalili [25] proposed a multi-objective optimization
method based on dragonfly algorithm [26]. The MODE has
been used to optimize the operating point of an auxiliary
power unit to reduce its emissions [25].

Nowadays, one of popular solutions for the multi-
objective optimal design problem is combined experimental
design method with multi-objective optimization algorithm.
Le Chau et al. [27] combined Taguchi method with DEA to
solve the multi-objective optimization problem for a leaf
compliant joint for micro-positioning systems. Dao and
Huang [28] integrated Taguchi method with fuzzy logic to
optimize a broad self-amplified 2-DOF monolithic mecha-
nism. Dao et al. [29] utilized Taguchi method to obtain ranges
for parameters, and then cuckoo search algorithm find the
optimal parameter values according to the ranges obtained by
Taguchi method. Huang and Dao [30], and Huynh et al. [31]
exploited Taguchi method with grey relational analysis to
optimize design of a 2-DOF flexure-based mechanism and
the compliant mechanism flexure hinge, respectively. The

validation results from those methods dovetailed nicely with
the simulations.

Since follow-up studies have not adequately addressed the
multi-objective optimal design problem of RCD snubber, this
study proposes a multi-objective method for simultaneous
optimization of reducing both spike voltage and energy loss
on the RCD snubber circuit. The proposed multi-objective
optimization method has many potential applications in cir-
cuit design. The experiment in this study used a flyback con-
verter circuit as an example to verify the proposed approach.

Because the best solution found by the meta-heuristic opti-
mization method cannot be directly used in practical appli-
cations, to meet the real-world component configuration,
the best solution found by the meta-heuristic optimization
method corresponds to several numerically approximated
components, and then use the Taguchi method to find the
most suitable configuration of real components and produce
an approximate best solution that fits the real world.

This paper is organized as follows. Section 2 introduces
the experimental design of the system. Section 3 introduces
the design and implementation of three common multi-
objective optimization methods. Section 4 presents the pro-
cedure for using Taguchi method to optimize the parameters
and the design of RCD snubber circuit hardware. Finally,
Section 5 concludes the study.

II. EXPERIMENTAL DESIGN
A. INTRODUCTION OF EXPERIMENTAL OBJECTS
The flyback converter circuit has several advantages,
including its low cost and simple structure. Because it can
implement multiple outputs, this circuit is widely used in
auxiliary power systems that supply power to the whole sys-
tem. To enhance power and to meet safety standards, practical
applications of converter circuit designs must isolate input
and output. The flyback buck-boost converter uses a coupled
inductor for energy conversion. The storage and release of
magnetic energy must be considered in the overall circuit
design. Since the circuit structure of the flyback converter
has no vibration characteristics, electrical isolation of the
circuit is not required. Figure 1 shows the basic flyback
converter equivalent circuit, where Vin is input voltage; Q
is an N channel MOSFET power switch; Lm and Le are the
transformer primary side excitation inductor and transformer
primary leakage inductance, respectively; n is the transformer
turn ratio; and Do, Co, and Vo are the output diode, output
capacitor, and output voltage, respectively.

A major limitation of the basic flyback converter is that
magnetic inductor Lm and leakage inductance Le in the trans-
former itself. To reduce voltage spikes and ringing noise,
Hren added a basic flyback converter to an RCD snubber
in Hren et al. [32]. Adding the flyback converter not only
reduces noise and ringing phenomena, it also provides an
energy path for the release of leakage inductance on two
sides, which is essential for sharing the cross voltage for the
power switch. Figure 2 shows the loop circuit, which is also
known as a soft-switched flyback converter.
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FIGURE 1. Basic flyback converter.

FIGURE 2. Transformer with RCD snubber.

Energy loss in the RCD snubber circuit can be divided into
two stages. This study considered both stages. Stage 1 is t1
to t . When the dipole is directed, the energy stored leakage
inductance Le is released through dipole Ds to capacitor Cs.
According to the law of conservation of energy, energy loss
in the circuit (W1) can be indexed by subtracting the energy
stored in the leakage inductance of transformer Le and the
energy on capacitor Cs from the energy on the transformer as
shown in (2.1) below:

W1 = nVo

t∫
t1

idt − Cs

v(t)∫
v(t1)

vdv− Le

i(t)∫
i(t1)

idi

= nVo · Cs(VcH − Vcp)−
1
2
Cs(VcH 2

− Vcp2)+
1
2
LeIQ2

(2.1)

where IQ denotes the peak voltage of the power switch, Vcp
is the initial voltage of capacitor Cs; VcH is the conduction
state of the dipole. The final voltage value for capacitance Cs
is defined as follows:

Vcs(t1) = Vcp, (2.2)

Vds_pk ∼= Vin + Vcp (2.3)

lnVcp − lnVcH = −
T

CsRs
(2.4)

Stage 2 is t to t1. When the energy stored in Cs is released
at Rs, energy loss W2 from resistance Rs at this time can be
defined as

W2 =
1
2
Cs(VcH 2

− Vcp2) (2.5)

The total energy loss Ploss on the RCD snubber circuit can
be defined as

Ploss = f s · (W1 +W2)

= fs · [nVo · Cs(VcH − Vcp)+
1
2
LeIQ2] (2.6)

B. LOSS FUNCTION SELECTION
This study considered the optimal design of the smaller the
better of two conflicting targets in the RCD snubber circuit:

(1) Reducing the peak voltage on the power switch;
(2) Reducing the energy loss on the RCD snubber circuit.

The objective functions are as follows:
Objective function 1 (peak voltage):

min Vds_pk = Vin + nVo +

 1
2RsCs

· nVo√(
1

2RsCs

)
2 − 1

LeCs

+
IQ√(

1
2RsCs

)
2 − 1

LeCs
· Cs



× exp

− π · 1
2RsCs

2 ·

√(
1

2RsCs

)
2 − 1

LeCs

 (2.7)

Objective function 2 (total energy loss in snubber circuit):

min Ploss = fs · [nVo · Cs(VcH − Vcp)+
1
2
LeIQ2] (2.8)

C. SELECTION FOR CONTROL PARAMETERS
Based on the above objective functions analysis, the peak
value of power switch Vds_pk and total energy loss Ploss are
affect by electricity leakage Le, snubber capacitor Cs and
resistance Rs. The control parameters considered in this paper
are the three circuit components Rs, Cs and Le.
The range of resistance Rs and capacitance Cs is the main

consideration in ready-made products on the market, where
Rs is [1 - 10] (unit: K�), Cs is [1 - 100] (unit: nF), and
Le is [32, 43.5, 58] (unit: µH ) from three self-winding
transformers according to the parameters calculated in this
experiment.

Figures 3 and 4 show that two objectives change with
snubber resistance Rs and that two objectives change with
snubber capacity Cs, respectively. Figure 3 shows that,
as Rs increases, peak voltage increases but loss decreases.
Figure 4 further shows that, as Cs increases, peak voltage
decreases, but loss increases, however, the increase is not
obvious. Figures 5-6 show how the efficiency of the converter
increase with Rs and Cs, respectively.
The above discussion reveals that the optimal design must

resolve the conflict between the two objectives. Therefore,
this study used a multi-objective optimization method to
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FIGURE 3. Objective changes with RS .

FIGURE 4. Objective changes with CS .

FIGURE 5. Efficiency increases with increases in Rs.

design the optimal circuit given the conflict between two tar-
gets. The effect of reducing voltage surge Vds_pk and snubber
loss Ploss on power switch Q were then determined.

D. PARAMETER SETTINGS FOR OPTIMIZATION
This study compared three multi-objective optimization
methods: NSGA-II, MOPSO and MODE. Table 1 shows the
parameter settings used in the comparisons. In the experi-
ment, the three multi-objective optimization methods were
used to calculate the optimal solution space when using the
parameters shown in Table 1. The number of function eval-
uation is a critical criterion to compare optimization meth-
ods. The number of function evaluation is the number of
evaluating main objective functions during iteration. In the

FIGURE 6. Efficiency increases with increases in Cs.

TABLE 1. Parameter settings for optimization.

study, the greatest number of function evaluations is 6× 104.
NSGA-II does not adopt an external storage (archive) for
the Pareto optimality. Instead, each generation first per-
forms genetic operations on the population to obtain sub-
populations and then merges the two populations to perform
non-inferior ranking and crowding distance ranking to obtain
a new generation of populations until the end of the calcula-
tion. Therefore, there is no need to set the number of archives
in NSGA-II.

III. DESIGN AND IMPLEMENTATION OF
MULTI-OBJECTIVE OPTIMIZATION METHODS
A. NON-DOMINATED SORTING GENETIC ALGORITHM
BASED ON ELITE STRATEGY (NSGA-II)
The NSGA-II was proposed by Deb and Srinivas [14] and
Deb et al. [15]. The novel feature of NSGA-II is that non-
dominated sorting and clustering are used to form several dif-
ferent levels of Pareto front solutions in the solution set. The
NSGA-II adds the concept of crowding distance and compet-
itive choice. The algorithm not only reduces computational
complexity, it also overcomes the limitation of the original
NSGA, which is its tendency to fall into regional solutions.
The NSGA-II also reduces computational complexity to
O(mN2). The procedure of the NSGA-II is roughly similar
to that of the GA. That is, it generates offspring groups by
selection, crossover, and mutation, and then performs union
actions with the parents. Then, the chromosomes of offspring
groups and parents are sorted by the non-dominated solu-
tion, and the crowding degree of each non-dominated level
parameter is calculated. Finally, according to non-dominated
relationship and crowding degree, the best chromosome is
chosen to enter the next generation until the termination
condition is met. Figure 7 shows a flowchart of the NSGA-II.

The crossover and mutation operations of the NSGA-II
were performed by simulated binary crossover [33]
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FIGURE 7. Flowchart of non-dominated sort genetic algorithm-II.

TABLE 2. Parameters and values in NSGA-II.

and polynomial mutation operator [34], respectively. These
two operators are used to deal with the upper and lower
bound. The settings for NSGA-II controllable parameters
would be strongly affected the responses. The authors have
many experiences using the Taguchi experimental method to
set parameters to improve system performances [35]–[37].
Therefore, in the study, the Taguchi method was used to
arrange the settings for controllable parameters. The settings
for NSGA-II were crossover rate = 0.9, mutation rate = 0.1,
ηc = 20, and ηm = 20. Figure 8 shows the best solution
space obtained. Table 2 shows the 10 sets of representative
parameters chosen from 200 sets in the solution space.

B. MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION (MOPSO)
The main architecture of the evolution process in this study
was MOPSO, which was first proposed by Coello et al. [19].
This optimization method uses external temporary data to

FIGURE 8. Non-dominated solution set obtained by NSGA-II.

FIGURE 9. Flowchart of multi-objective particle swarm optimization.

retain the non-dominated solution set in each iteration. The
particles are then guided to the best solution by the non-
dominated solution in the external temporary data. This opti-
mizationmethod increases the capability to search for the best
solution. Figure 9 is a flow chart of the MOPSO used in this
study.

In MOPSO, c1, c2, and χ are set to 2.05, 2.05,
and 0.73, respectively, obtained by the Taguchi method.
Figure 10 shows the best solution space obtained byMOPSO.
Table 3 shows the ten representative parameter sets chosen
from the 200 parameter sets in the solution space.

C. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
ALGORITHM (MODE)
Many different methods of applying MODE have been pro-
posed in recent years [21]. This study used the MODE
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FIGURE 10. Non-dominated solution set obtained by MOPSO.

TABLE 3. Parameters and values in MOPSO.

TABLE 4. Parameters and values in MODE.

architecture proposed byHuang et al. as themain architecture
of the evolutionary process [24]. Figure 11 is a flowchart
showing how MODE applies the concept of external tempo-
rary data. The crossover rate of the MODE in this study was
set to 0.6 and F was set to [0, 2], obtained by the Taguchi
method. Figure 12 shows the best solution space obtained by
MODE, and Table 4 shows the 10 representative parameter
sets chosen from 200 sets in the solution space.

D. COMPARISON OF OPTIMIZATION METHODS
Figure 13 compares the performance of the three multi-
objective optimization methods. Figure 13 shows that
NSGA-II outperformed MODE and MOPSO. The MODE
had the worst diversity. Since human judgement of
optimization performance is unreliable, this study applied

FIGURE 11. Flowchart of multi-objective differential evolution algorithm.

FIGURE 12. Non-dominated solution set obtained by MODE.

and discussed optimization performance evaluation methods
described in the literature.

1) COVERAGE METRICS
For a clear performance comparison of different algorithms,
the best non-dominated solutions obtained by multi-objective
optimization were analyzed and compared. Here, coverage
metrics (C) were calculated by two non-dominated solu-
tions [38]. The calculation was the ratio of all solutions in
non-dominated solution set V to all solutions dominated atU.
The function was as follows:

C (U ,V )=
|{b ∈ V |∃a ∈ U , a ≤ b}|

|V |
, C ∈ [0, 1] (3.1)

where C (U ,V ) = 1 means that all the non-dominated
solution sets in V are dominated by U . Otherwise,
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TABLE 5. Distance between non-dominated solutions and maximum dispersion distance.

FIGURE 13. Performance comparison of three optimization methods.

C (U ,V ) = 0 means that all non-dominated solution sets
in V are not dominated by U .

2) INTERVAL OF NON-DOMINATED SOLUTIONS (S)
The objective function values must be normalized before
calculating the distance between the non-dominated solutions
and the maximum dispersion distance. The distance between
non-dominated solutions is calculated mainly to evaluate the
distribution density of non-dominated solutions [39].

S =

√√√√ 1
N − 1

N∑
i=1

(di − d̄)2 (3.2)

di = min
K∑
m=1

∣∣∣f im − f jm∣∣∣, i 6= j (3.3)

where fm is the objective function value of the non-dominated
solution.

3) MAXIMUM DISPERSAL DISTANCE
The maximum dispersal distance (D) is defined as farthest
distance between two non-dominated solutions in the set of

non-dominated solutions. A large value for D indicates a
wide distribution of optimization results. The calculation is
as follows.

D =

√√√√ K∑
m=1

(max f im −min f im)2, i = 1, . . . ,N (3.4)

To evaluate optimization performance, the interval
between non-dominated solutions and the maximum disper-
sal distance is calculated for each of the three optimization
methods. The coverage metrics between the optimizations
is then calculated. For each of the three optimization meth-
ods, Table 5 shows the interval between the non-dominated
solutions and the maximum dispersal distance. Table 6
further compares the coverage metrics between NSGA-II
and MOPSO, between NSGA-II and MODE, and between
MODE and MOPSO.

4) CONCLUSIONS OF PERFORMANCE EVALUATION
The experimental results in Tables V-VI show that each of the
three multi-objective optimization methods revealed advan-
tages and disadvantages. The average values obtained for
the 10 representative parameter sets were used for the per-
formance comparisons. The performance comparison results
were as follows:
Coverage rate C (bigger the better):

NSGA-II >MODE >MOPSO.
Maximum dispersal distance D (bigger the better):

NSGA-II >MOPSO >MODE.
Non-dominated solution space S (smaller the better):

NSGA-II <MOPSO <MODE.
From above results and discussion, NSGA-II has better

performance than MODE and MOPSO. Therefore, this paper
used NSGA-II to optimize the design of an RCD buffer
circuit.

E. TAGUCHI METHOD
The Taguchi method is a quality design method compiled
and proposed by Taguchi [40]. Its main concept is to conduct
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TABLE 6. Coverage metrics between optimizations.

experimental design in a systematic way to understand the
causes of product function variation in the most efficient
way and try to find the ideal quality. The Taguchi method
can effectively reduce experimental costs and obtain high-
quality products. The use of orthogonal arrays for experimen-
tal planning is the most important step of the Taguchi method.
Generally speaking, La(bc) is the symbol of the orthogonal
array, a represents the number of experiments, b is the level
number, and c is the number of factors that can be placed.
Therefore, according to the needs, the appropriate orthogonal
array can be selected for experimental configuration. Table 7
is a commonly used orthogonal array of L8(27). After the
experiment configuration is completed and the experiment is
executed, Table 8 is an example of L8(27). In Table 8,A1 is the
first level of factor A, A2 is the second level of factor A, and
the other factors and levels can be deduced by analogy; y is the
experimental result, and η is the S/N ratio converted from the
experimental result. Then, start to make a response table and
draw a response chart. Table 9 and Figure 14 are examples
of the response table and response chart, respectively. The
response values of each level of each factor are averaged
from the experimental results corresponding to the level. For
example, the response value of A1 in the response table is
averaged from η1, η2, η3, and η4, as shown in Eq. (3.5).

A1 = (η1 + η2 + η3 + η4)÷ 4 (3.5)

The response values of other factors and their levels are
also calculated in the same way. The response chart is drawn
from each response value in the response table. Finally,
the best combination of factors can be obtained through the
response table and response chart.

IV. OPTIMAL DESIGN OF RCD SNUBBER CIRCUIT
This study then used the NSGA-II to optimize the design of
an RCD snubber circuit in a flyback converter. Figure 15 is
a flowchart showing how the NSGA-II multi-objective opti-
mization method searches within the wide range of the
solution space and then converges the best non-dominated
solutions in the best solution space. To obtain the optimal

TABLE 7. An orthogonal array of L8(27).

TABLE 8. An example of L8(27) orthogonal array with Results.

TABLE 9. A respond table of table 8.

design, the parameter combination most suitable for the user
is then selected from the solution set and adjusted by the
Taguchi method with actual passive components.

Although there are some softwares, like GAMS that is non-
linear optimizer, the GAMS is a solver for single-objective
problems. However, this study is a multiple-objective prob-
lem including both objectives of Vds and Ploss. The classical
algorithms for multi-objective problems include NSGA-II,
MOPSO, and MODE. Therefore, this study used the three
algorithms to solve the RCD buffer circuit problem and
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FIGURE 14. An Example of response chart.

FIGURE 15. Flowchart of multi-objective optimization for circuit design.

TABLE 10. Parameters obtained by NSGA-II and previous design.

compared them in term of performance. From the results,
NSGA-II has better performance among the three algorithms.

Comparisons of the three algorithms confirmed the supe-
rior performance of the NSGA-II. Therefore, NSGA-II was
then used to find the optimal solution space. Since multi-
objective optimization obtains elastic sets of solutions instead
of a single optimal solution, users can choose suitable solu-
tions from the solution set according to their needs. Since
the two objectives in this experiment had equal importance,
the trade-off parameters were selected as the snubber param-
eters of the flyback converter. Table 10 shows a set of param-
eters obtained by NSGA-II and previous design. Figure 16
shows the optimization results.

The results in Table 10 are continuous theoretical values.
In a real-world application, components with these best-case
parameters would probably be unavailable. Therefore, the
orthogonal experiment in this study was performed using
the actual values for three commercially available models

FIGURE 16. Comparison of results obtained by Trade-off and previous
design parameters.

TABLE 11. Parameters obtained by NSGA-II and previous design.

TABLE 12. The L9(34) orthogonal array and experimental values.

to approximate the theoretical values obtained by NSGA-II.
Table 11 shows the control factors and levels.

Since the three-factor experiment with three levels requires
6 degrees of freedom, the orthogonal array selects L9(34).
In this case, the S/N ratio of the smaller the better was
adopted. The Vds and Ploss were obtained by direct measure-
ment. To prevent the use of different units from affecting the
results, data for the two objectives were normalized before
the experiment was executed. Table 12 shows the orthogonal
array and data.

Table 13 and Figure 17 are the response table and chart,
respectively, obtained according to the S/N ratios in each
experiment. The data in the table and figure show that the
best parameter combination in the experiments was A1B3C1.

Finally, a validation experiment was performed using
the best parameter combination. Table 14 shows the
trade-off best results, obtained by the NSGA-II, MOPSO,
and MODE, and the optimal results, achieved from the
method obtained by NSGA-II and tuned by the Taguchi
(NSGA-II-Taguchi) method, and comparison with the previ-
ous designmethod. Figure 18 shows the actual circuit with the
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TABLE 13. Response table from orthogonal array and experimental
values.

FIGURE 17. Response chart according to results in response table.

TABLE 14. Comparison of trade-off parameter and result obtained by
different methods (considered two objectives).

optimized parameters. Figure 19 shows the Vds waveform
with Vdsp = 162V . A comparison with the waveform
before optimization (Figure 20 with Vdsp = 190V ) reveals a
substantial improvement. Reduction percentages, compared
with the previous design result, for Vds and Ploss by the
NSGA-II-Taguchi method are 14.74% and 2.31%, respec-
tively. Reduction percentages, compared with the previous
design result, for Vds obtained by the NSGA-II, MOPSO,
and MODE are 13.68%, 11.58%, and 13.16%, and for Ploss
obtained by the NSGA-II, MOPSO, and MODE are 1.87%,
1.60%, and 0.77%, respectively. From Table 14, the trade-off
best result obtained the NSGA-II-Taguchi method has better
performance.

Huang et al. [5], [6] used a GA-related algorithm and
the Taguchi method to optimize the design of DC-DC con-
verter for spike voltage reduction. In this paper, the authors
attempt to just consider the influence of peak voltage.
For comparing performances between the NSGA-II-Taguchi
method and the method of Huang et al. [5], [6], the Vds is
regarded as the objective. The Vds can be obtained 125V

FIGURE 18. Circuit fabricated with optimized parameters.

FIGURE 19. The Vda waveform for circuit fabricated with optimized
parameters (Vdsp = 162V).

TABLE 15. Comparison of parameter and result obtained by different
methods (only considered Vds).

with Rs = 1 k�, Cs = 100 nF , and Le = 32 µH by
the NSGA-II-Taguchi method. Table 15 shows the experi-
mental results obtained by the NSGA-II-Taguchi method and
the method of Huang et al. [5], [6] and comparison with the
previous design method. Figure 21 shows the Vds waveform
with Vdsp = 125V , and it also indicates a more substan-
tial improvement by contrast with Figure 20. The optimized
result is also better than that with Vdsp = 138V obtained by
the method of Huang et al. [5], [6]. Reduction percentage,
compared with the previous design result, for Vds obtained
by the method Huang et al. [5], [6] is 27.37% and for Vds
obtained by the NOTT is 34.21%. Therefore, the optimal
method obtained by theNSGA-II-Taguchimethod for design-
ing a DC-DC converter with an RCD snubber is effective
and feasible.
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FIGURE 20. The Vds waveform for circuit fabricated without optimized
parameters (Vdsp = 190V).

FIGURE 21. The Vds waveform for circuit fabricated with optimized
parameters (Vdsp = 125V).

V. CONCLUSION
This study used NSGA-II and Taguchi method to optimize
the parameter values for an RCD snubber circuit of a DC-
DC flyback converter. The above discussion of the work-
ing principle of the RCD snubber circuit in the flyback
converter described the circuit components that affect the
power switch voltage loss and circuit energy loss, which were
used as parameters. Three multi-objective optimization meth-
ods were implemented and analyzed: NSGA-II, MOPSO,
and MODE. Comparisons confirmed the superior perfor-
mance of NSGA-II. Additionally, the specific steps needed
to implement a practical design after the optimal solution
space is calculated by the NSGA-II algorithm. By com-
bining NSGA-II algorithm with Taguchi method, the pro-
posed method can obtain the optimal design without the
need for practical experience or trial-and-error method. At
the same time, the proposed method solves the problem of
theoretical optimization results being restricted by the cur-
rently existing component specifications. The design results
were realized in the fabrication of a printed circuit board.
The experiment verified that performance with the proposed
parameter optimization is superior to those without parameter
optimization as well as with parameter optimization given
by Huang et al. [5], [6]. Notably, the process required only
nine experiments, which substantially reduced circuit design

time and cost. For application in industries, the proposed
NSGA-II-Taguchi method can quickly find design param-
eters and reduce the complexity of considering both spike
voltage and energy loss on the RCD snubber circuit. From
the real applied responses of Metal Industries Research and
Development Centre (www.mirdc.org.tw) and cooperation
manufacturers, it has been approved that the RCD snubber
circuit designed by the proposed NSGA-II-Taguchi method
can improve the effectiveness of the equipment in reducing
spike voltage and energy loss. Thus, the proposed optimiza-
tion method is both economical and practical.
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