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ABSTRACT The maximum curvature of a steerable needle in soft tissue is highly sensitive to needle shaft
stiffness, which has motivated use of small diameter needles in the past. However, desired needle payloads
constrainminimum shaft diameters, and shearing along the needle shaft can occur at small diameters and high
curvatures. We provide a new way to adjust needle shaft stiffness (thereby enhancing maximum curvature,
i.e. ‘‘steerability’’) at diameters selected based on needle payload requirements. We propose helical dovetail
laser patterning to increase needle steerability without reducing shaft diameter. Experiments in phantoms
and ex vivo animal muscle, brain, liver, and inflated lung tissues demonstrate high steerability in soft
tissues. These experiments use needle diameters suitable for various clinical scenarios, and which have been
previously limited by steering challenges without helical dovetail patterning. We show that steerable needle
targeting remains accurate with established controllers and demonstrate interventional payload delivery
(brachytherapy seeds and radiofrequency ablation) through the needle. Helical dovetail patterning decouples
steerability from diameter in needle design. It enables diameter to be selected based on clinical requirements
rather than being carefully tuned to tissue properties. These results pave the way for new sensors and
interventional tools to be integrated into high-curvature steerable needles.

INDEX TERMS Medical robotics, steerable needles, surgical robotics, medical devices.

I. INTRODUCTION
Bevel tip steerable needles can be used to accurately target
desired locations in tissue and travel along curved paths
that are useful for avoiding obstacles [1]–[3]. Steerable nee-
dles have been proposed for interventions in the liver [4],
lungs [5], kidneys [4], prostate [6], and brain [7]. In combi-
nation with motion planning, robotic needle steering enables
the needle to follow curvilinear, collision-free paths to reach
hard-to-access target locations [8]–[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

Since the advent of bevel tip steerable needles, effort has
been devoted to increasing needle maximum curvature (i.e.
‘‘steerability’’) in tissue by changing needle design (see [11]
for a review). Initial research studied the effects of varying
tip geometric parameters and insertion speed [12]. Design
innovations quickly followed, including incorporating larger
tips on smaller shafts and adding a pre-bend or ‘‘kink’’ just
behind the needle tip to increase steerability in phantoms [13]
and cadaver brain [7]. The effects of parameters (including
kinked tip length and angle) on needle performance were
subsequently characterized in liver tissue [14]. A flexure
hinge was incorporated to obtain the beneficial effects of the
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FIGURE 1. Laser cut needle design with helical dovetail patterning on the shaft. Geometric parameters of the design include the bevel tip angle,
the hinge offset, the hinge stop angle, the flexure element thickness, the helix offset, and the helical pitch angle.

kink, but with less tissue damage during axial rotation [15]. A
variable-length flexure was proposed in [16], which requires
a small-diameter stylet shaft. A pull-wire was incorporated to
enable direct control over the flexure angle [17], [18], at the
cost of increased mechanical complexity.

The above discussion of needle design innovations con-
siders only bevel tip steerable needles, where insertion com-
bined with axial shaft rotation is used to steer the needle.
There are a number of other noteworthy steerable needle
designs including (but not limited to) use of a curved stylet
in conjunction with an outer cannula proposed in [19] and
then later adapted with variations in stiffness and insertion
approaches by others [20], [21], a programmable bevel which
eliminates the need for axial rotation [22], and shape memory
alloy actuation [23], among other innovative designs which
are reviewed in [11]. Each of these prior steerable needle
designs has its own unique strengths and weaknesses. Here,
we restrict our attention solely to bevel tip steerable needles
that are controlled using insertion and axial rotation.We focus
on bevel tip steerable needles because they have been shown
to be effective and are mechanically simple, in that they only
require two degrees of freedom to actuate and do not have
active components in the needle itself.

To achieve high steerability for bevel tip steerable nee-
dles, the stiffness of the needle must be tuned relative to
the properties of the tissue into which it is inserted. This is
typically achieved by reducing shaft diameter until the needle
steers well, and hence very small diameter needles have
often been used in the past [13], [16], [24]–[26]. However,
there are drawbacks to reducing shaft diameter in order to
enhance needle steerability. First, as we show in this paper,
with too great a reduction in needle diameter (i.e. to within
the ranges previously suggested for high curvature needles in
biological tissues) it is possible for the needle to shear through
tissue along the shaft (see Fig. 4), potentially causing serious
damage to the tissue. Second, the needle has to be adequately
sized to perform a desired intervention such as diagnostic
tissue collection or the delivery of sensors or therapy. While
this can be done in a two-step process with an outer sheath
[4], [5], it is also sometimes desirable to deliver the therapy
directly through the bevel tip steerable needle itself (e.g. to

preclude movement of the sheath within tissue while the
secondary tool is being inserted). While therapy delivery
has been demonstrated in bevel tip steerable needles [14],
the radiofrequency ablation wire used is a special case among
interventional payloads, since its diameter can be adjusted
to suit the needs of the steerable needle (especially if one is
not factoring specific ablation zone size objectives into the
design process). To enable integration of other interventional
tools or therapies (e.g. brachytherapy seeds, other types of
ablators with fixed diameters, etc.) it is desirable to have
independent control of needle diameter and steerability in the
design process.

The purpose of this paper is to propose helical dovetail
laser patterning to achieve this by adjusting needle shaft
stiffness through an approach other than adjusting needle
diameter. The helical dovetail is a pattern, similar to a repeat-
ing series of interlocking puzzle pieces, that winds helically
around the needle shaft (see Fig. 1). It was previously sug-
gested for use in catheters, with the goal of reducing bending
stiffness while maintaining good axial and torsional stiff-
ness [27]. We apply this pattern to a steerable needle for the
first time in this paper. We incorporate this helical dovetail
just proximal to a flexure hinge of the type proposed in [15],
with design enhancements to prevent unintended flexing in
the wrong direction and angled surfaces that contact one
another at full articulation in the correct direction. To demon-
strate that the helical dovetail enhances steerability, we per-
form insertions in artificial tissue phantoms, as well as ex vivo
porcine muscle, lung tissue, bovine liver, and ovine brain. We
experimentally show that needles of the same tube dimen-
sionswith patterning performwith higher steerability in every
attempted tissue type over needles that don’t have patterning.
We also show that this needle is capable of delivering a
variety of interventional therapies including brachytherapy
seeds and thermal ablation probes, which would be too large
to deliver through existing small-diameter, high-curvature
needles.

II. NEEDLE DESIGN
The helical dovetail needle concept we propose is shown
schematically in Fig. 1, and a photograph of a prototype is
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FIGURE 2. A photograph of a curved, helically patterned needle. The
insets show the helical patterning and the hinge design under a
microscope.

FIGURE 3. Illustration of the stiffness difference between two needles of
the same size with and without helical patterning. The two needles are
cantilevered and bend under self-weight.

shown in Fig. 2. The helical dovetail pattern and hinge are
laser cut into the shaft of the needle.

To visually illustrate the helical dovetail pattern’s ability
to modify shaft stiffness, Fig. 3 shows how a helical dovetail
patterned needle bends under its own weight, compared to
the same needle with no patterning. The needles shown are
the same as those used in the experiments in Sections IV, V,
and VI, with parameters for the helical patterning and hinge
as shown in Table 1.

The prototypes in this paper are made from superelastic
Nitinol tubing (Euroflex GmbH) that was laser cut by MDI
LLC. (Medical Device Imagineering, Inc., Somerset, NJ)
using a fiber laser (Rofin Inc.).We incorporate a flexure hinge
in the needles in this paper as proposed in [15]. The motiva-
tion for such a hinge is to obtain the enhanced steerability
associated with previous kinked tip designs while reducing
tissue damage during axial rotation. Prior flexure tip designs
have been fabricated either by gluing small Nitinol wires
side-by-side [15], or by cutting a square notch in the shaft
[28], [29]. The flexure design we propose here is laser cut into
the shaft and incorporates two additional beneficial features.
First, for safety purposes, we include a hard stop to prevent
the hinge from bending in the wrong direction (i.e. toward the
bevel, rather than away), which could damage prior designs
– especially the notched designs. Note that such bending

TABLE 1. Geometric needle parameters for the bevel tip needle with
helical dovetail shaft patterning used in the experiments in this
paper.

would not happen under intended use of the needle, but might
accidentally occur as the needle was being handled prior
to insertion in a real-world operating room. Second, a stop
angle for desired hinge bending is defined by two angled
surfaces. These provide a more stable surface contact when
the hinge closes, rather than the point contact seen in prior
designs.

Note that this helical dovetail needle design provides many
parameters for future optimization studies (see Table 1).
In this paper, our purpose is not to suggest that we have
optimized all relevant parameters, but rather to propose the
new design concept and illustrate its value in (1) enhanc-
ing needle steerability at a fixed diameter, and (2) enabling
integration of interventional payloads. But first, we illustrate
a negative phenomenon that can occur with small-diameter,
high-curvature steerable needles under certain circumstances,
which motivates that smaller is not necessarily better, regard-
less of whether an interventional tool is being integrated or
not.

III. ILLUSTRATION OF SHEARING AT SMALL DIAMETERS
In this section, we demonstrate experimentally that shearing
can occur at small needle shaft diameters and high cur-
vatures. This example further motivates a shift away from
using shaft diameter for tuning steerable needle properties
to tissue requirements. The shearing effect occurs along the
needle shaft, when the shaft slices through tissue due to
lateral forces imparted to the tissue after the needle’s tip has
passed.

To illustrate this, consider a needle with a 0.36 mm OD
and 0.24 mm ID, to which is affixed a larger, kinked tip
made of stainless steel (1.0 mm OD). This needle design
and these dimensions are similar to those previously used
in e.g. [13], [24], among others. We inserted this needle
into 10% by weight Knox gelatin (Kraft Foods Global Inc.,
IL), which is a commonly used phantom tissue in needle
steering research [24]. The results are shown in the right-
hand images in Fig. 4 (a) and (b), where the sheared cavity is
highlighted with red dye. By increasing the diameter of the
needle and applying the helical dovetail pattern (i.e. using
the needle described by Table 1), we can maintain high
curvature in this particular phantom tissue, while eliminating
the shearing effect, as shown in the left-hand images in the
figure.
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TABLE 2. Average radius of curvature (in mm) values for the helically patterned needles with and without a flexure hinge, and the unpatterned needles
with an identical flexure hinge and without a hinge in phantom and ex vivo tissues. All tube dimensions were identical.

FIGURE 4. Helically patterned needle inserted in tissue vs. a needle with
a small diameter shaft (0.36 mm OD, 0.24 mm ID) with a large bent tip.
(a) shows the patterned needle (left) and the small shaft needle (right)
inserted in the gelatin. (b) shows the tissue damage caused by each
insertion. Red dye was injected into the path created by each needle after
the needle was removed from the gelatin.

IV. THE EFFECT OF PATTERNING ON NEEDLE
STEERABILITY IN TISSUE
We performed a series of needle insertions into various
tissue types to demonstrate that helical dovetail patterning
enhances needle steerability. These experiments demonstrate
that needles of fixed diameters, useful for interventional tool
integration (see Section VI), achieve high steerability with
patterning when they would otherwise not steer well in these
tissues. The steerable needles were the same tube dimen-
sions as those mentioned in previous sections, with geomet-
ric parameters of the helical patterning and flexure hinge
described in Table 1. We compared four different needles:
helically patterned with a hinge, helically patterned without a
hinge, no patterning with a hinge, and no patterning or hinge.
All needle designs had a beveled tip.We performed insertions
using a steerable needle robot [30], and integrated a 6-DOF
magnetic tracking coil (Northern Digital Inc., Canada) into

the tip of the needle, which was used to measure radius of
curvature. We integrated the sensor distal to the flexure hinge
(where a hinge exists) to position it as close to the needle tip
as possible.

To evaluate the needle curvature in tissues of varying stiff-
ness, we used 3 different phantom materials and 3 different
ex vivo animal tissues. For phantom tissues, we used 10%
by weight Knox Gelatin (used as a phantom tissue in [15]),
6.1% by weight Knox Gelatin (used as a stand-in for brain
tissue in [13], [31]), and polyvinyl chloride (PVC)mixed at an
80% plastic/20% softener ratio (used as a stand-in for prostate
tissue in [2], [18], [32]). We also evaluated steerability in
three ex vivo animal tissues: porcine loin (used, for example,
in [15]), bovine liver (used, for example in [25]), and ovine
brain. For each tissue type, we performed five insertions
and measured the radius of curvature. The results are shown
in Table 2. These insertions were conducted at a velocity
of 5 mm/s to an insertion depth of 75 mm for all samples
except the ovine brain, where we inserted to 50 mm due to
the small size of the organ.

Despite the wide range of tissue stiffness in these exper-
iments, the helically patterned needles consistently demon-
strated higher steerability (i.e. lower radius of curvature)
compared to needles without the helical patterning. However,
the point here is not to build the highest curvature needles
ever produced, but rather that these curvatures were achieved
in prototypes with diameters that otherwise would not steer
well in these tissues, as shown in the two columns marked
‘‘unpatterned’’ in Table 2. The table shows the results of
insertions of needles that are identical in other ways (diame-
ter, hinge parameters, etc.), where the only difference is the
presence or absence of helical dovetail patterning and a hinge.
Note that the needles exhibited very low steerability without
the helical dovetail patterning. The helically patterned needle
with a hinge outperforms all the other designs, although even
without a hinge we see an improvement in curvature over
the needles without patterning. These results demonstrate the
ability to substantially improve the steerability of a needle of
fixed diameter.

V. CLOSED-LOOP CONTROL IN INFLATED PORCINE LUNG
In this section, we describe targeting experiments in ex vivo
porcine lung tissue. The purpose is to demonstrate that the
helical dovetail needles can be steered to desired target loca-
tions with an established closed-loop controller [33].
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FIGURE 5. A photograph of the experimental setup for our ex vivo
porcine lung targeting experiments.

We first determined the radius of curvature of the needle
in inflated lung tissue. Due to the many airways and other
obstacles present in lung tissue, we scanned the lung using
the CT scanner shown in Fig. 5 (The Xoran xCAT, Xoran
Technologies, USA), and performed segmentation according
to [34]. We then selected a region where the needle could be
inserted without rotation and with no collisions, and inserted
along this path. Using magnetic tracker measurements col-
lected during insertion, we measured the radius of curvature
in inflated lung as 100 mm. Note that the best prior radius
of curvature result we have achieved in deflated lung tissue
was 255 mm [5], [9]. Inflation reduces lung density, making
needles steer with worse curvature in inflated lung. These
results underscore the value of helical dovetail patterning in
very soft tissues, such as inflated lung.

We performed a set of targeting experiments in ex vivo
porcine lung, as follows.We used the actuation unit described
in [30], integrated with the overall system concept in [5],
in which the needle is delivered through a bronchoscope.
After inflating the lung via an endotracheal tube, we captured
a preoperative CT scan using a portable CT scanner (Xoran
Technologies, USA) and performed lung segmentation as
described in [34]. We then manually selected target points
in the peripheral lung and steered our needle to each. The
experimental setup was as shown in Fig. 5. Final tip error in
magnetic tracker space was as shown in Table 3. The mean
targeting error for all 14 runs was 1.92 mm. The excellent
targeting error is consistent with prior results in the litera-
ture [7], [25], [33]. This illustrates that the helical patterning
has not interfered with closed loop control.

VI. INTEGRATION OF INTERVENTIONAL PAYLOADS
To demonstrate the advantage of decoupling needle stiff-
ness (and hence steerability) from shaft diameter, we pro-
vide two examples of delivering interventional tools with
the helically patterned steerable needle: brachytherapy and
radiofrequency (RF) ablation. Brachytherapy seeds are
small implants that locally deliver radiation to tumors.

TABLE 3. Final targeting error for each of the insertions under
closed-loop control in inflated ex vivo porcine lung tissue.

FIGURE 6. Helically patterned needle steering through Knox gelatin.
We deployed five cylinders the size of brachytherapy seeds (4.5 mm ×

0.8 mm) to different locations.

FIGURE 7. The needle was inserted into chicken breast and an ablation
tool (20 gauge wire) was deployed through it. We successfully locally
ablated the tissue around the tool through the needle.

Since radiation is localized around the seed, accurate place-
ment is vital for the success of the overall procedure. Fur-
thermore, the seeds have a pre-defined cylindrical shape
with a fixed diameter, which places constraints on nee-
dle diameter. Fig. 6 shows several needle trajectories in
gelatin, in which we delivered small cylinders representing
brachytherapy seeds into phantom tissue. One standard clin-
ical size for brachytherapy seeds is 0.8 mm in diameter and
4.5 mm long [35]. To replicate this, we cut segments of this
length and diameter from nitinol wire, and deployed them
through our needle.

We also successfully integrated an RF ablation probe into
our steerable needle, as shown in Fig. 7. Here, we used a
2 MHz RF generator (Basco India, Tamilnadu State, India)
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with a 20 gauge nitinol wire to thermally ablate chicken
breast. Note that ablation probes exist in a range of sizes
(12-24 gauge). Larger probe sizes produce larger ablation
zones [36], which can be desirable based on the clinical
application. Our purpose herewas not to optimize the ablation
zone, but simply to demonstrate that a probe with a clini-
cally realistic diameter can be integrated with our needle and
used to deliver RF energy to tissue. Note that in the future,
helical dovetail patterning will enable the ablation zone to be
considered in the design process, rather than having the wire
diameter (and hence ablation zone volume) constrained to be
small in order to optimize needle steerability.

VII. CONCLUSION
This paper describes a new way to decouple needle steer-
ability from needle shaft diameter. This newfound flexibility
expands the options available in the design process, which
is particularly useful when one is interested in integrating
interventional or diagnostic and therapeutic interventions into
a steerable needle. We showed that helical dovetail patterning
can make needles that would otherwise steer minimally in
a given soft tissue steer with high curvature. We proved
that this is true in a variety of phantoms and ex vivo tis-
sues, and is particularly useful in lung tissue, demonstrat-
ing much higher steerability in inflated lung tissue than
has ever previously been demonstrated – even in deflated
lung. We also showed that helical dovetail patterning does
not interfere with accurate robotic control and demonstrated
steering to desired targets in inflated ex vivo porcine lung
tissue.

In future work, the design parameters of the helical dovetail
needle can be optimized for specific tissues, diameters, and/or
payloads. Future work will also involve ex vivo and in vivo
experiments in a variety of tissue types with paths that steer
around anatomical obstacles (e.g., blood vessels, airways,
sensitive tissues). The results in this paper serve to pave the
way for interventional tool integration in steerable needles
designed for diverse applications throughout the human body.
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