
Received September 19, 2020, accepted September 27, 2020, date of publication October 2, 2020, date of current version October 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028370

Review of Android Malware Detection
Based on Deep Learning
ZHIQIANG WANG 1,2, QIAN LIU1, AND YAPING CHI1
1Department of Cyberspace Security, Beijing Electronic Science and Technology Institute, Beijing 100071, China
2State Information Center, Beijing 100000, China

Corresponding author: Zhiqiang Wang (wangzq@besti.edu.cn)

This work was supported in part by the Key Lab of Information Network Security, Ministry of Public Security, under Grant C19614, in part
by the Fundamental Research Funds for the Central Universities under Grant 328201910, and in part by the China Postdoctoral Science
Foundation under Grant 2019M650606.

ABSTRACT At present, smartphones running the Android operating system have occupied the leading
market share. However, due to the Android operating system’s open-source nature, Android malware has
increased dramatically. Malware can steal user privacy and even maliciously charge fees and steal funds.
It has posed a severe threat to cyberspace security because traditional detection methods have many
limitations. With the widespread application of deep learning in recent years, the method of detecting
Android malware using deep learning has gradually attracted widespread attention from scholars at home
and abroad. Although scholars have researched Android malware detection using deep learning, there is
currently a lack of a detailed and comprehensive introduction to malware detection’s latest research results
based on deep learning. In order to solve this problem, this study analyzes and summarizes the latest research
results by investigating a large number of the latest domestic and international academic papers, summarizing
malware detection architecture and detection schemes, and analyzing existing problems and challenges. This
review will help researchers better understand the research status and future research directions in this field.

INDEX TERMS Android, malware, deep learning, review.

I. INTRODUCTION
With the rapid development of the mobile Internet,
the Android operating system has become the most widely
used intelligent terminal operating system in the world due
to its many advantages such as open-source, scalability,
and convenience. However, because of Android’s openness,
many benign applications in the Android market hide much
malware, and mobile malware has constituted a severe threat
to cyberspace security. Specifically, while users enjoy the
convenience brought by various Android applications, per-
sonal privacy information and essential data (such as pay-
ment account information and passwords) are also threatened
continuously.

A research report released by the 360 Internet Secu-
rity Center shows that in the third quarter of 2019,
the 360 Internet Security Center intercepted approximately
365,000 new malicious program samples on the Android
platform, an increase of 11,000 from the second quarter

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang .

of 2019 (354,000). On average, about 44,000 new mobile
phone malicious program samples are detected every day.
Figure 1 shows the statistics of new and intercepted mobile
malware in the third quarter of 2019.

FIGURE 1. Increment and interception of mobile malware in the third
quarter of 2019.

Besides, in the third quarter of 2019, new types of mali-
cious programs on the Android platformweremainly expense
consumption, accounting for up to 66.5%, followed by

181102
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1789-8414
https://orcid.org/0000-0002-4870-1493

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

privacy theft (17.9%), remote control (10.6%), rogue behav-
ior (3.9%), malicious charge (1.1%), as shown in Figure 2.

FIGURE 2. Distribution of new types of malware on mobile devices in the
third quarter of 2019.

Traditional detection methods have many limitations. With
the widespread application of deep learning in recent years,
detecting Android malware using deep learning technolo-
gies has emerged, and the effectiveness of malware detec-
tion has been dramatically improved. In order to cope with
the explosive growth of Android malware, much research
has been conducted on the methods of Android malware
detection using deep learning at home and abroad. Schol-
ars have proposed various detection algorithms and solu-
tions using various deep neural network models and have
achieved many research results. However, there is currently
no comprehensive review paper detailing these latest research
findings. In order to deeply understand the principles, detec-
tion architecture, security and challenges, and future research
development trends of Android malware detection using deep
learning, and to grasp the new trends of domestic and foreign
research, it is significant to describe and summarize Android
malware detection based on deep learning technology.

The other chapters of this article are arranged as fol-
lows: Section II introduces the basic knowledge, Section III
describes and analyzes the research progress of Android mal-
ware detection based on deep learning in detail, Section IV
analyzes and discusses the research results, and Section V
introduces the Android malware detection architecture and
detection scheme. Section VI introduces the current problems
and challenges, Section VII introduces future research direc-
tions, and finally the conclusions of this study are presented
in Section VIII.

II. ANDROID MALWARE DETECTION
With the continuous upgrading of Android malware avoid-
ance detection technology, the Android malware detection
technology has also been continuously developed. The early
detection methods based on signature and feature-matching
cannot meet needs. Static analysis, dynamic analysis, and
hybrid analysis using feature engineering alone could not
effectively detect new malware. With artificial intelligence
development, the detection method using traditional machine

TABLE 1. APK file structure.

learning can not meet the needs, and the current detection
method using deep learning has become a research hotspot.

A. ANDROID APPLICATION
The Android application is programmed in Java, compiled
with the Android SDK, and all data and resource files are
packaged into an APK (Android Package) file. It is a com-
pressed file with the extension.apk. The APK file containing
all content of an Android application is a file used by the
Android platform to install the application. APK is a zip
compression package. Unpacking this APK package, there is
the following structure:

assets: It is used to store static files that need to be
packaged into the APK. The difference from res is that the
assets directory supports subdirectories of any depth. Users
can arbitrarily deploy the folder structure according to their
needs, and the files in the res directory can generate the
corresponding resource ID in the.R file. Assets cannot auto-
matically generate the corresponding ID. The AssetManager
class is required when accessing the assets directory.

lib: It stores the native library files on which the appli-
cation depends. It is generally programmed in C/C++. The
lib library may contain four different types. Depending on
the CPU model, it can be roughly divided into an ARM,
ARM-v7a, MIPS, X86 corresponding to the ARM archi-
tecture, ARM-V7 architecture, MIPS architecture, and
X86 architecture, respectively.

res: res is the abbreviation of the resource. This directory
stores resource files. All files stored in this folder will be
mapped to the Android project’s.R file, and the correspond-
ing ID will be generated. When accessing, the resource ID
is directly used as R.id.filename. The res folder can con-
tain multiple folders, where anim directory storing anima-
tion files, drawable directory storing image resources, layout
directory storing layout files, values directory storing some
characteristic values, colors.xml storing color values, and
dimens.xml defining the size value, string.xml defining the
value of the string, and styles.xml defining the style object,
the XML folder storing any XML file which can be read
by Resources.getXML () at runtime. The raw can be copied
directly to arbitrary files in the device, and they do not need
to be compiled.

META-INF: It saves the signature information of the
application. The signature information can verify the integrity
of the APK file. Android SDK calculates all files’ integrity in
the APK package when packaging the APK and saves this

VOLUME 8, 2020 181103

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

integrity to the META-INF folder. When the application is
installed, it first checks the integrity of the APK according to
the META-INF folder, so that every file in the APK cannot be
falsified. In this way, to ensure that APK applications are not
maliciously modified or infected by viruses, it is beneficial
to ensure the integrity of Android applications and the sys-
tem’s security. The files included in the META-INF directory
are CERT.RSA, CERT.DSA, CERT.SF and MANIFEST.MF.
Among them, CERT.RSA is a signature file that the devel-
oper uses to sign the APK with a private key. CERT.SF and
MANIFEST.MF record the SHA-1 hash value of the files.

AndroidManifest.xml: It is a configuration file for
Android applications. It is a configuration file used to
describe the ‘‘overall information’’ of Android applications.
In short, it is equivalent to a configuration file for the ‘‘self-
introduction’’ of Android applications to Android systems.
According to this ‘‘self-introduction,’’ the Android system
can fully understand the APK application’s information. Each
Android application must include an AndroidManifest.xml
file, and its name is fixed and cannot be modified. When
developing Android applications, it is general to register each
Activity, Service, Provider, and Receiver in the code into
AndroidManifest.xml. Only then can the system start the
corresponding components. Besides, this file also contains
some permission declarations and SDK version information.

classes.dex: Traditional Java programs. First, the Java file
is compiled into a class file. The byte code is stored in the
class file, which Java virtual machine can execute through
interpretation. The Dalvik virtual machine is optimized in
the Java virtual machine and executes Dalvik bytecode, con-
verted from Java bytecodes. Generally, it uses the dx tool in
the Android SDK to convert Java bytecode to Dalvik byte-
code when packaging Android applications. The dx tool can
merge, reorganize, and optimize multiple class files, reducing
the volume and shortening the running time.

resources.arsc: it records the mapping between resource
files and resource IDs and finds resources based on resource
IDs. The development of Android is divided into modules.
The res directory is used to store resource files. When
resource files need to be called in the code, it only needs
to call findviewbyId () to get the resource files. Whenever
putting a file into the res folder, the corresponding ID will
be automatically generated by the Android Asset Packaging
Tool and saved in the.R file. The.R file only guarantees that
the compiler does not report an error. When the program is
running, the system will look for the corresponding resource
path based on the ID and the resources.arsc file is a file
used to record the correspondence between these IDs and the
resource file location.

B. ANDROID MALWARE DETECTION
1) STATIC ANALYSIS
Static analysis [1] focuses on analyzing the static infor-
mation obtained without running the application, such as
the executable file and source code. It is based on the

decompilation technology to perform reverse analysis of the
code. The advantage of static analysis is that the calculation
overhead is relatively low, and the detection speed is fast. The
disadvantage is that malware using obfuscation technology
cannot be adequately analyzed by static analysis.

Android applications are released on the applications
market in the form of APKs. In terms of static analysis,
APKtool is used to decompile the APK files and parses the
AndroidManifest.xml file to extract the permissions, pack-
age names, components, environment, and intent features.
Figure 3 shows the permissions, four major components, and
the environment features of the Android application. IDA Pro
decompiles the APK file and parses the shared library.so file
to obtain the shared library function opcode andARMopcode
features.

Android applications are developed using Java. The devel-
opment environment (such as Eclipse) converts Java source
code into Dalvik executable files (dex files). These files can
run on Android’s Dalvik virtual machine. Dex is a file format
containing compiled code programmed for Android and can
be interpreted by the Dalvik virtual machine but cannot be
read. In order to convert the dex file to a readable format,
smali provides readable code in the smali language. Smali
code is the intermediate code for interpretation between Java
and Dalvik virtual machines. It can use the baksmali tool to
decompile the classes.dex file to obtain the smali file. Parsing
the smali code can obtain the Dalvik opcode, API call, string,
control flow graph, and data flow graph features.

In addition to parsing smali code for feature extraction,
it can also access Java source code files to extract features
such as API calls. It is decompressing the APK file to obtain
the classes.dex file, it can use the dex2jar tool to convert the
dex file into a jar file, and then use the JD-GUI tool to convert
the jar file into a java source file.

2) DYNAMIC ANALYSIS
Dynamic analysis [2] is to run an application in a sandbox
environment or on a real device. Monitoring the applica-
tion’s status when it is running collects information about
the application’s behavior and analyzes a series of data infor-
mation (log, network traffic). Application behavior is typi-
cally monitored by accessing private data or using restricted
API calls. Dynamic analysis can identify malicious behaviors
that are not detected by static analysis methods. The advan-
tage of dynamic analysis is that it can deal with malware
using obfuscation techniques, but the disadvantages are that
the analysis and detection time is long, and the calculation
cost is high.

The dynamic analysis method collects behavior informa-
tion when the Android application is running and transforms
it into features. The dynamic analysis method uses system
calls, file access information, network traffic information [3],
encryption operation, service opening, telephone call [4],
user interaction, system components [5], and other dynamic
features resistant to obfuscation. Besides, most researchers
collect malicious behavior information within the limited

181104 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

FIGURE 3. Android application static features.

running time of Android applications. Malicious soft-
ware may not carry out malicious activities during this
time, so dynamic analysis needs a long time to analyze
software [6].

According to the technology used to trackAndroid applica-
tions’ behavior, the dynamic analysis method is divided into
the hook-based and log-based methods [7]. The log-based
dynamic analysis method is that Android applications are
executed in real devices or Android simulators to monitor
their behavior using well-known logging tools. The dynamic
analysis method based on the hook tool is that the monitor
point (hook) is embedded in code to record application activ-
ity during execution. These hooks canmonitor Android appli-
cations’ execution, collect information about behavior, track
instructions executed, retrieve event sequences, or monitor
stored data flows.

For the code coverage problem of dynamic analysis, it is
not easy to run all application branches during dynamic

analysis, so the hidden code that would be triggered in some
specific time or scenario will be ignored. It can lure Android
malicious applications to show malicious behavior through
some stimulation mechanisms and inducements. It can sim-
ulate the regular use of the application by using the user
interface event generation tool, simulate the regular interac-
tion between the user and the application, and avoid being
detected by a malicious application running in an Android
emulator.

3) HYBRID ANALYSIS
The hybrid analysis combines static analysis and dynamic
analysis and analyzes the application to extract static and
dynamic features, thereby improving recognition accuracy.
Its advantage is that it is more comprehensive in application
analysis, combining the advantages of static analysis and
dynamic analysis. However, the disadvantages are that the
analysis and detection time is long, it takes up many system

VOLUME 8, 2020 181105

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

FIGURE 4. Static and dynamic analysis of android applications.

resources, and the calculation overhead is enormous. Android
application static analysis and dynamic analysis are shown
in Figure 4.

We can decompile the application to extract static fea-
tures from the source code, install the software in an iso-
lated environment, and Android simulator or a real device,
to extract dynamic features [8], [9]. Therefore, the hybrid
analysis method can not only improve the code coverage
but also combat code obfuscation or encryption. Although
its high cost and high implementation complexity limit its
deployment, the hybrid analysis method is still considered the
most profound and comprehensive method.

C. DEEP LEARNING
Deep learning [10] belongs to the sub-fields of Artificial
Neural Networks and machine learning [11]. Deep learning is
at the pinnacle of development and is widely used in computer
vision, speech recognition, and natural language processing.
The application of deep learning to Android malware detec-
tion has become a significant trend.

A typical deep learning model is a very deep neural net-
work that uses multiple hidden layers of many interconnected
neurons to process data. Each layer comprises many different
neurons in deep neural networks, each with different weights
and possibly different activation functions.

When the data is applied to a neural network, the loss
function calculates the prediction error. The optimizer is used
to update the weights to reduce the loss function error and
improve the accuracy gradually. It trains the data and evalu-
ates the accuracy on the test set.

The most significant value of deep learning lies in the auto-
matic extraction and abstraction of features, eliminating the

tediousness ofmanually extracting features and automatically
finding sophisticated and useful high-order features. Each
time the neural network deepens, the features that can be
extracted become more abstract.

By summarizing the deep learning models used in Android
malware detection, it is found that the current detection mod-
els are mainly deep belief network (DBN), convolutional
neural network (CNN), recurrent neural network (RNN), and
deep autoencoder (DAE). The following introduces various
deep learning models and analyzes their advantages and dis-
advantages.

Geoffrey Hinton proposed the deep belief network in 2006.
DBN can be used in unsupervised learning, using layer by
layer training to solve multi-layer neural networks’ opti-
mization problem and provide good initial weight. It is
divided into two stages: one is the unsupervised pre-training
stage, the other is the supervised backpropagation stage.
In the pre-training stage, multiple Restricted Boltzmann
Machines (RBM) are superposed, and the multi-layer neural
network is used as the hidden variable model to complete
the high-level representation of DBN. In the backpropagation
phase, the pre-trained DBN is fine-tuned in a supervisedman-
ner with labeled samples. RBM is an undirected probability
graph model with one layer of observable variables and one
layer of hidden variables. The training time is long when
using the DBN method, which cannot be effectively used in
large-scale learning.

A convolution neural network is a kind of neural network
which is used to process data with a similar grid structure,
such as image data. The network uses convolution. Con-
volution is a unique linear operation [12]. The convolution
neural network’s general structure includes the convolution

181106 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

layer, pooling layer, full connection layer, and output layer.
Compared with other deep learning models, the convolu-
tional neural network can give better results in image and
speech recognition. Compared with other deep and feedfor-
ward neural networks, convolution neural networks use fewer
parameters but can obtain higher performance. Convolution
neural network uses a convolution kernel to share parameters,
which significantly reduces the number of parameters and
uses location information. CNN can map low-dimensional
features to high-dimensional features and deal with the local
related input data well.

A recurrent neural network is a kind of neural network
used to process sequence data. Recurrent neural networks
have been successfully applied to many temporal problems,
such as natural language processing, speech recognition, and
machine translation. The RNN performs the same operation
on each element in the sequence and the previously calculated
output. Therefore, RNN has two inputs: the current state
and the previous state, combined to determine the network’s
final output. RNN has the problem of gradient dispersion
and calculation cost. Therefore, some variants of RNN are
proposed, such as Long Short-TermMemory (LSTM), Gated
Recurrent Unit (GRU). LSTM can effectively solve the prob-
lem of long-term dependence of information. Compared with
the traditional RNN, the unique feature of LSTM in structure
is that it designs the loop body structure skillfully. However,
LSTM also has some shortcomings, such as complex struc-
ture and high computational complexity. The GRU reduces
the calculation cost and simplifies LSTM, so it has higher
calculation efficiency and less memory.

The deep autoencoder is an unsupervised neural network.
It can use its high-order features to encode itself. Its input
and output are consistent. It uses the idea of sparse encoding
to reconstruct itself by recombining some sparse high-order
features. Many kinds of research using API call graph and
control flow graph as features have applied deep autoencoder,
which can reduce dimension. DAE’s function is not limited to
the initialization of some neural network weights, which are
difficult to train. It is also possible to use it directly for feature
extraction and analysis. The main difference between DAE
and other unsupervised learning models is that it does not
cluster, but extracts the most useful and frequent high-order
features.

III. RESEARCH PROGRESS
As the Android operating system occupies a significant mar-
ket share and its open-source nature, its security is increas-
ingly threatened and challenged. Researchers have conducted
much research on Android malware detection based on deep
learning. The following introduces the relevant research
progress.

A. MALWARE DETECTION USING DEEP LEARNING BASED
ON STATIC ANALYSIS
Abdurrahman Pektaş et al. [13] proposed a deep net-
work for Android malware detection. The deep network

combines opcode sequence convolution and recursive net-
work of training graph features and optimizes network param-
eters by applying grid search methods. It extracts the instruc-
tion call graph from the application to derive the instruction
call sequence and applies pseudo-dynamic analysis, which
analyses all execution paths through code analysis. Detection
accuracy of 91.42% was achieved on a data set consisting
of 24,650 malicious samples and 25,000 benign samples.

Abdurrahman Pektaş et al.compared the proposed
method with a method based on support vector machine,
random forest, logistic regression, and K-nearest neighbor
algorithm. The experimental results show that the proposed
method’s performance metric is better than the method based
on traditional machine learning technology.

Yuan et al. [14] used a deep belief network model for
malware detection through hybrid analysis and compared
the detection results under different network model archi-
tectures and machine learning models. The experimental
results show that the detection method using deep learning
is better than the machine learning technology using sup-
port vector machine, C4.5, Naïve Bayes, Logistic Regres-
sion, multi-layer perceptron, and the detection accuracy is at
least 7% higher.

Su et al. [15] proposed a deep learning model for Android
malware detection, which extracts the requested permissions,
used permissions, sensitive API calls, opcodes, and appli-
cation component features through static analysis. A total
of 32,247 features were extracted. The deep learning model
based on a deep belief network was used to learn the most
typical and essential features, and the support vector machine
algorithm was used to classify Android benign and malware.
On the data set of 3986 benign applications and 3986 mal-
ware, the model’s detection accuracy reaches 97.5%.

Kim et al. [16] proposed a multi-modal deep learning
malware detection model, which extracts multiple feature
types to reflect the attributes of the android application from
various aspects and uses feature extraction methods based
on presence or similarity to refine these features and to
achieve effective feature representation in malware detec-
tion. It extracts seven types of static features: permissions,
components, environment, strings, Dalvik opcode sequences,
API call sequences, and shared library function opcode fea-
tures. Each type of feature is respectively used to train the
initial network of the corresponding deep neural network.
Training results of the initial network are then used to train the
final network. On the data set composed of 13075 malicious
samples and 19747 benign samples, the model achieves 98%
detection accuracy.

Wang et al. [17] proposed a hybrid model based on a
deep autoencoder and a convolutional neural network. It uses
a deep autoencoder as a pre-training method for convo-
lutional neural networks to reduce training time. Experi-
ments were performed on 10,000 benign applications and
13,000 malware, extracting seven static features(requested
permissions, filtering intent, restricted API calls, hardware
functions, code-related patterns, and suspicious API calls),

VOLUME 8, 2020 181107

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

and processing the feature set to reduce 34570 features to 413.
They use two different CNN architecture called CNN-S and
CNN-P model. The detection accuracy of CNN-S is higher
than that of CNN-P, reaching 99.82%. DAE-CNN-S model
achieves 98.6% detection accuracy, and its training time is
83% less than that of the CNN-S model.

Zhang et al. [18] proposed a prototype system DeepClas-
sifyDroid based on a convolutional neural network. This sys-
tem first performs a static analysis of the application through
the feature extraction module and extracts features from the
AndroidManifest.xml file and the disassembled Dex file.
It generates four different feature sets (permissions, intent
filters, API calls, a string constant). It uses feature embedding
models to map feature sets of different dimensions into the
joint vector space, and finally performs malware detection
based on the convolutional neural network. On the data
set of 5546 malicious samples and 5224 benign samples,
the model’s detection accuracy is 97.4%.

Karbab et al. [19] proposed an automatic Android malware
detection and malware family classification system called
MalDozer, which uses deep learning to identify Android
malware by extracting the original sequence features of the
application’s API method calls. On a data set consisting
of 33K malware and 38K benign applications, the F1 score is
96% -99%, and the false-positive rate is 0.06% -2%. Besides,
the system can be deployed on servers and mobile devices
and even IoT devices.

Luo et al. [20] proposed an Android malware analysis and
detection method based on Attention-Convolutional Neural
Network-Long Short Term Memory. The texture fingerprint
features of the Android malware are extracted to reflect the
similarity of the malware binary file blocks. AndroidMain-
fest.xml is regarded as a text document, and its contextual
text features are extracted through natural language process-
ing. The above features are filtered using a deep belief net-
work. An end-to-end local correlation feature is extracted
based on a one-dimensional time-domain convolutional net-
work, and an LSTM model with higher time series model-
ing capabilities is used to analyze and detect Android mali-
cious code. It achieves 96.4% detection accuracy on Drebin’s
open-source malware dataset.

Booz et al. [21] applied deep neural networks to implement
Android malware classification by extracting core Android
permissions and user-defined permissions and distinguish-
ing between optional and required permissions. Grid search
technology was used to test many combinations of tunable
parameters for deep learning models. The best model was
determined by adjusting six different hyperparameters to
achieve 95% detection accuracy.

Android malware detection and malicious code local-
ization methods based on deep learning are proposed,
which obtains behavior sequence features from Android
applications and uses bi-directional long short term memory
networks to analyze the semantics of behavior sequence seg-
ments automatically. By processing the opcode, the bytecode
in the APK file, and traversing all the calling procedures in

an orderly manner, the method achieves 97.22% accuracy and
98.21% F1 score on the data set composed of 9616 malicious
applications and 11982 benign applications [22].

Two end-to-end detection methods of Android malware
without human intervention based on deep learning, Dex-
CNN, and DexCRNN, are proposed. The classes.dex file of
an Android application was preprocessed into a fixed-size
sequence using two resampler methods as input to the deep
learning model. In the data set containing 8K benign appli-
cation and 8K malicious application, the DexCNN method
can achieve 93.4% detection accuracy, and the DexCRNN
method can achieve 95.8% detection accuracy. Simultane-
ously, both methods are not limited by the input file’s size,
do not need artificial feature engineering, and low resource
consumption [23].

An Android malware detection method using deep learn-
ing is proposed. Firstly, 240 features, including permission,
intention, sensitive API calls, and strings, are extracted, and
they are sorted by Mean Decrease Impurity of the random
forest to reduce the dimension of features and select features
with higher importance. Secondly, the feature is transformed
into a compact vector based on Word2Vec word embeddings
to represent Android malware better. Finally, the classifier is
constructed based on the DBN deep learning model, and the
detection accuracy of it is 99.25% on the data set composed
of 3000 benign samples and 12000 malicious samples [24].

This article proposes a deep learning method for Android
malware detection. Through static analysis, it extracts 11 dif-
ferent behavior features, including component, intention,
requested permission, hardware, API call, protected API,
used permission, code module, string, authentication infor-
mation, and payload information. A total of 32,856 fea-
tures were extracted, unique features were learned using
a deep learning model based on a deep belief network,
and benign and malicious Android software were classified
using a support vector machine. On a data set consisting
of 3,986 benign applications and 3,986 malicious applica-
tions, the model’s detection accuracy reached 97.4% when
the ratio of benign to malicious applications was 1:1, and the
average cost is 6 seconds to analyze and detect each Android
application [25].

An Android malware detection scheme called ByteDroid
is proposed. ByteDroid directly processes the original Dalvik
bytecode, fills and cuts the bytecode, and represents it in
One-hot coding. It automatically extracts features and clas-
sifies them through a convolutional neural network. For
10479 kinds of malware that apply seven typical obfuscation
technologies (general obfuscation, class encryption, string
encryption, reflection, and their combination), Bytedroid suc-
cessfully detected 92.17% of them. ByteDroid maintained its
adaptability to obfuscation technology. Because ByteDroid is
a malware detection scheme based on static analysis, it can-
not detect the malware that dynamically starts the malicious
Dalvik bytecode or native code in the library [26].

This article proposes a detection method of Android
malware based on deep autoencoder. It designs a specific

181108 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

autoencoder structure that reduces the dimension of API
feature vectors extracted and transformed from APK, and
uses a logistic regression model for binary classification. The
experimental results show that the detection method has the
best effect when the weight ratio between benign training
samples and malicious training samples is 1:4 on the data
set composed of 5000 benign samples and 1200 malicious
samples, and the recall rate and F1 value can reach 93% and
64.3% respectively [27].

They propose an anti-obfuscation classification method
for Android malicious applications integrating Recurrent
Neural Network and Convolutional Neural Network, with
anti-obfuscation ability and lightness. This method extracts
application package name, authentication data, permission,
and intention features from multiple short strings. The
sample data set consists of 1152750 benign samples and
1279389malicious samples. Thismethod reduces the training
time of the RNN model and achieves a 97.7% true positive
rate when the false positive rate is 0.01 [28].

This article proposes a multi-mode malware detection
method based on multiple convolutional neural networks,
which uses permissions, API, and URL features to train sub-
networks. It uses a backtracking method to solve the limi-
tations of malware detection’s poor interpretability based on
neural networks. The backtracking method selects the most
important features that make vital contributions to classifi-
cation decision-making. This method reduces the detection
time and achieves 96.54% accuracy on the data set composed
of 10948 benign samples and 8652 malicious samples [29].

This article proposes a malware detector called MSNdroid
based on the native API call, permissions, system API call
features, and Deep Belief Network (DBN). It applies deep
learning to native code features to detect Android mal-
ware. It extracts 5154 features from a dataset composed
of 5442 malicious applications and 5215 benign applications.
The performance of MSNdroid is better than Random Forest
(RF), Decision Tree (DT), Support Vector Machine (SVM),
and K-Nearest Neighbor (KNN) machine learning model.
The accuracy of MSNdroid is 98.71%, and the false-negative
rate is 0.7% [30].

A detection system for Android mobile malware using
optimized convolutional neural network learning opcode
sequence features is proposed. In this system, an improved
static feature extraction method is adopted, and the k-max
pooling strategy is adopted in the pooling stage of the convo-
lution neural network, which makes the model retain impor-
tant feature information and relative position information
of features in the pooling stage. On the data set composed
of 12500 benign samples and 10000 malicious samples,
the system’s detection accuracy reaches 99% [31].

B. MALWARE DETECTION USING DEEP LEARNING BASED
ON DYNAMIC ANALYSIS
Hou et al. [32] proposed a new dynamic analysis method
called Component Traversal, which can automatically
execute code routines for a given Android application.

By extracting the Linux kernel system calls from the samples,
constructing a weighted directed graph, it applies a deep
learning framework with a stack-based autoencoder model
based on the graph’s features to detect unknown Android
malware. The detection accuracy of 93.68% was achieved
on a data set consisting of 1500 malicious samples and
1500 benign samples.

Martinelli et al. [33] designed a method based on convolu-
tional neural networks to detect system calls using dynamic
analysis. Many interactions and system events are generated
during application execution by running the application on
a real physical device. The original system call features are
extracted, and feature data is cleaned. It achieves 90% detec-
tion accuracy on a dataset consisting of 3536 benign samples
and 3564 malicious samples.

Yeh et al. [34] inserts monitoring functions into the target
application to record API call events during the preprocess-
ing stage. It uses DroidBox to analyze Android applica-
tions and marks activities dynamically and extracts dynamic
features. It converts a series of event logs into flat data
with two-dimensional features and uses a model based on
convolutional neural networks for malware detection. Using
16,000 benign and 16,000malware as training data, and using
1,000 benign and 1,000 malware as test data, its prediction
accuracy is 93.012%.

This article proposes a dynamic analysis system DL-Droid
based on deep learning for Android malware detection, which
uses a stateful input generation method to enhance code
coverage to achieve high detection performance. In the real
Android device, 31125 sample data are used for experiment
instead of Android simulator, and the first 420 API calls,
intents, and permission features are selected by information
gain algorithm to achieve a 97.8% detection rate, which is
better than the seven popular traditional machine learning
classifiers [35].

A fully connected deep neural network with dropout and
ReLu activation functions is proposed to classify mobile
malware using low-level monitoring features such as CPU
utilization, memory utilization, network data, sensor data.
The accuracy of 99.79% is achieved on a dataset composed
of 24343 benign samples and 8779 malicious samples [36].

This article proposes a method based on multiple dynamic
behaviors features to detect malware using integrated learn-
ing combined with multiple basic machine learning mod-
els. These features include system-level behavior tracking
and common application-level malicious behaviors, such
as personal information stealing, advanced service sub-
scription, and malicious service communication. Besides,
the Chi-square feature selection algorithm is used to remove
noise features, irrelevant features, and redundant features to
extract key behavior features. Based on 8806 benign sam-
ples and 5213 malicious samples, the best detection accu-
racy of 96.49% is achieved using the stacking integration
method. The proposed method only takes IP and port as
the features of network operation, which will result in the
loss of network-based malware. This method can only detect

VOLUME 8, 2020 181109

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

malicious behavior during the analysis process and can be
considered to improve dynamic analysis coverage [37].

C. MALWARE DETECTION USING DEEP LEARNING BASED
ON HYBRID ANALYSIS
Yuan et al. [38] combined static analysis with dynamic anal-
ysis to extract 192 features such as requested permissions
and sensitive API functions. By designing an online Android
malware detection engine (DroidDetector) based on a deep
belief network, it applies deep learning to distinguish between
malicious and benign applications. By comparing and ana-
lyzing the features extracted from malicious samples and
benign samples, analyzing the features with a high frequency
of occurrence and the features with significant differences,
it links the features in static analysis with the features in
dynamic analysis to better characterize Android malware
to build advanced representations. Experiments were per-
formed on a data set consisting of 20,000 benign samples
and 1760 malicious samples, and a detection accuracy rate
of 96.76% was achieved.

Yuan et al. [14] used static analysis to extract the
requested permissions and sensitive API static features and
used dynamic analysis to extract dynamic behavior features.
A total of 200 features were extracted for malware detection.
A deep belief network model was used to achieve 96% detec-
tion accuracy on a dataset consisting of 250 benign samples
and 250 malicious samples, and the detection results under
different network model architectures and different machine
learning models were compared.

This article proposes a hybrid analysis based detec-
tion method for Android malware, HADM, which extracts
requested permissions, permission request APIs, used per-
missions, advertising networks, intent filters, sensitive calls,
network APIs, providers, and low-level instruction sequences
static features, and system call sequences dynamic features.
HADM applies a deep neural network to learn the features
of the feature vector set, connects the new features with the
original features, and uses hierarchical multi-core learning to
build a hybrid classifier. It achieves 94.7% of the best clas-
sification accuracy on the data set composed of 4002 benign
samples and 1886 malicious samples [39].

D. MALWARE DETECTION USING DEEP LEARNING BASED
ON IMAGE PROCESSING
Zegzhda et al. [40] constructed a control flow graph through
a smali file to obtain the features of the API call sequence,
and mapped the corresponding protection level according to
the permissions required for the API call, and then converted
the API call sequence and protection level into pixels of the
RGB image. It used a convolutional neural network model
to detect malware. Classification accuracy of 93.64% was
achieved on a data set consisting of 7192 benign samples and
24461 malicious samples.

Ganesh et al. [41] used static analysis to extract
138 permission features in four categories, converted the
permission features into 12 × 12 PNG images, and used

convolutional neural networks for model training and detec-
tion. In 2500 Android applications, it achieved 93% detection
accuracy, including 2000 malicious samples and 500 benign
samples.

Huang et al. [42] converted the bytecodes of classes.dex
into RGB color codes and converted them into color images
with a fixed size. The color images were input to a convo-
lutional neural network for automatic feature extraction and
training. The data set was collected from January 2017 to
August 2017. About 2 million benign and malicious Android
applications were collected, achieving a detection accuracy
of 98.4225%.

Shiqi et al. [43] proposed a method based on texture fin-
gerprints to extract malware content features. This method
uses the information of the texture image extracted from
the sample application code. According to the texture image
method, these codes are mapped to the uncompressed gray
value and then combined with API call features to detect
the Android malware using the deep belief network. On the
data set of 6956 samples, the model achieves 95.6% detection
accuracy.

Yen and Sun et al. [44] proposed a method that can detect
the malware by visualizing the importance values of the
words in the APK code as images and then using a con-
volutional neural network to detect. They decompiled the
DEX file to get the Java source code. They used the term
frequency-inverse document frequency method to get each
word’s importance value and then used the simhash algo-
rithm and gjb2 algorithm to generate images. On the data set
composed of 720 benign samples and 720 malicious samples,
the model’s detection accuracy rate is 92.67%.

Xu et al. [45] used semantic graph representations, that is,
control flow graphs, data flow graphs, and their possible com-
binations as features to characterize Android applications.
The graphs are then encoded into matrices and used to train
a classification model via a convolutional neural network.
Samples were collected from four data sets: Marvin, Drebin,
VirusShare, and ContagioDump, achieving 99% detection
accuracy.

Pektaş et al. [46] used the API call graph as a graphical
representation of all possible execution paths that malware
can track during its runtime. The graph embedding method
was used to transform the API call graph’s embedding into
a low-dimensional numerical vector feature set, which was
introduced into the deep neural network. Evaluation exper-
iments were performed on different graph embedding algo-
rithms and network configuration parameters, and classifica-
tion accuracy of 98.86% was achieved on a dataset consisting
of 33,139 malicious samples and 25,000 benign samples.

E. MALWARE FAMILY MULTI-CLASSIFICATION USING
DEEP LEARNING
Li et al. [47] detect malware through a fine-grained mal-
ware detection engine based on deep neural networks,
which displays detailed family categories and other malware
information, not just whether the application is malicious

181110 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

or not. By extracting static features such as permission fea-
tures and API call features, the detection model achieves a
detection accuracy of 97.16% and a false positive rate of 0.1%
on the DREBIN dataset consisting of 5560malicious samples
and 123453 benign samples.

This article proposes an Android malware family classifi-
cation method based on the Dalvik executable file (DEXfile).
This method transforms the DEX file into RGB image and
plain text, then extracts the Generalized Search Trees(GIST)
texture features, color features, and plain text features of the
image as to features, and uses the feature fusion algorithm
for classification based on multi-core machine learning. 96%
classification accuracy is achieved on the Android malware
dataset (AMD) with 24553 malicious samples [48].

A method of static malicious sample detection based on
deep neural networks is proposed. The method obtains gray
images directly from executable samples and uses a gray
histogram to collect a group of features from each image to
build multiple classifiers. Experiments were carried out on
the real samples of 50,000 (24,553malware in 71 families and
25,447 benign samples) to detect whether the analyzed sam-
ples were malware, detect their families and related variants,
and achieve multi-classification of malware families with an
accuracy of 92.9% [49].

In this article, an image-based fine-tuning convolu-
tional neural network architecture for malware family’s
multi-classification is proposed. The original malware binary
files are transformed into color images. The accuracy in the
Malimg malware data set (9435 samples) is 98.82%, and the
accuracy of Android mobile data sets (14733 malware and
2486 benign samples) is over 97.35%. This method uses data
enhancement to improve the algorithm’s performance and can
detect malware processed by obfuscation technology [50].

Using the code’s gray image converted from the binary
bytecode of the malware DEX file, an Android malware fam-
ily classification method based on deep learning is proposed.
The deep learning classifier is constructed by reusing the
feature extraction layer of the convolutional neural network
Google perception V3, which has been successfully trained
on large datasets for traditional image classification tasks.
It can automatically learn and distinguish features from mal-
ware images and achieve 97.7% accuracy on the data sets
of 4892 malware samples and 30 malware families [51].

IV. RESEARCH STATUS ANALYSIS
Through the summary of the above the latest research work,
the current research situation is analyzed in detail.

Studies [15]–[31] combined static analysis and deep learn-
ing. It used APKTool, Dex2Jar, BackSmali, and other
decompilation tools to decompile and statically analyze the
Android APK file, extract static features, and use static fea-
ture vectorization as the input of the deep neural network
model. The training set is used to train the model itera-
tively, and the test set is used to test the model to realize
the detection of Android malware. The extracted features
are mainly permission features and API call features.

Component features, intent features, data flow features, and
opcode sequence features are all involved. However, mal-
ware behavior cannot be fully characterized by static features
alone, and dynamic feature extraction is also required.

[13], [16], [17], [20], [23], [27]–[29] adopt multi-modal
deep learning, that is, use multiple different deep neural
networkmodels for detection, each type of feature is specially
used to train the corresponding sub deep neural network, and
the training results of the sub neural network are used to train
the final neural network. In [13], [21], grid search technology
is used to test many combinations of adjustable grid search
technology is used to test many combinations of adjustable
parameters for deep learning neural network models, and
different super parameters are adjusted to determine the best
classification model. In contrast, the adjustment of artificial
super parameters takes much time. In [17], [27], the deep
automatic encoder is used as the deep neural network’s
pre-training method to reduce the original feature vector’s
dimension and shorten the training time. In [16], [17], [25],
it has processed the features, in [16], it uses the existing
or similarity-based feature extraction method to improve the
static features, to achieve the effective feature representation
inmalware detection. In [17], it codes all features and uses the
feature code to represent each application. In [25], it uses the
deep learning model based on the deep belief network to pro-
cess the feature, using a behavior feature learning algorithm
to select behavior features. The detection system proposed
by [19], [25], [28] is lightweight and can be deployed flexibly.
The system proposed by [19] can be deployed not only on
servers but also on mobile devices and even the Internet of
things devices. The proposed system spends an average of 6s
to analyze and detect each Android application [25], and the
scheme is light enough to be deployed on Android devices
with limited resources [28]. In [13], [18], [30], it compared
and analyzed the proposed method with the methods based
on support vector machine, random forest, logical regression,
and k-nearest-neighbor algorithm. The experimental results
show that the proposed method’s detection performance is
better than that of the method based on traditional machine
learning, showing the advantages of deep learning. In [22],
[24]–[26], [31], it adopts the method of one-hot coding to
vectorize the extracted static features. The feature vectors
obtained by one-hot coding are sparse and high-dimensional,
so further processing is needed to reduce the feature vectors’
dimension and sparsity. In [22], [26], [28], it can analyzeAPK
files processed by obfuscation technology and maintain the
adaptability to obfuscation technology.

Studies [32]–[37] combined dynamic analysis and deep
learning, extracted dynamic features such as system calls as
data input, and used deep neural network models for Android
malicious application detection. In [32]–[37], it only per-
formed dynamic analysis without static analysis and lacked
static features extraction, which could not fully characterize
malicious applications’ behavior. The system scheme pro-
posed in [32] has been integrated into commercial Android
anti-malware. Linux kernel system call is resistant tomalware

VOLUME 8, 2020 181111

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

evasion technology. The system uses a component traversal
method to automatically execute the whole application code
to perform all application program components for malware
analysis. Future work includes introducing the generation of
random events on each component to improve the compo-
nent traversal method further, further explore how to impose
sparse constraints on autoencoder to produce better detec-
tion performance, and study other deep learning models for
Android malware detection. The scheme proposed in [33]
uses real Android physical devices to conduct dynamic anal-
ysis on APK, and the other schemes proposed in the liter-
ature use Android simulators to analyze APK. Only from
the detection accuracy aspect, the detection effect based on
Android physical devices needs to be improved, and its detec-
tion accuracy is lower than that based on Android simula-
tors. The data set used in the detection scheme proposed
in [32], [33] is small, and the reliability of the detection
results needs to be further tested. In [34], a planarization
data input method is proposed. By combining attributes and
the proposed planarization input format, the convolutional
neural network can reduce the dimension of the k-skip-n-
gram. The convolutional neural network is applied to Android
malware detection, which opens the door to deep learning in
other fields. In [36], it uses a fully connected neural network
to detect applications by identifying low-level monitoring
features that can distinguish benign applications from mali-
cious applications. Its researchers plan to develop improved
anti-malware software based on deep learning in the future,
without requiring an Android device root or kernel level
modification.

In [14], [38], [39], it combines deep learning with hybrid
analysis to detect Android malware using static and dynamic
features. The number of malicious samples in the data set less
than 2000. Because the data set is small, the reliability of the
test results needs further study. In [38], it uses association
rule mining techniques to process the static and dynamic fea-
ture. A binary value represents each feature. When a feature
appears in the application, its value is 1. Otherwise, it is 0.
Its researchers pointed out that more fine-grained features
should be extracted to characterize Android applications.
Such feature sets can cover more aspects of Android malware
to characterize better and detectmalware. In [39], hierarchical
multi-core learning is applied to combine different kernel
learning results of different features, and static features are
transformed into vector-based representations, dynamic fea-
tures are transformed into n-gram vector and n-gram graph.
A deep neural network is trained for each feature vector
set, and advanced features learned by the neural network are
combined with original features to form new features vector
set.

In [40]–[46], it is based on the image method combined
with deep learning to detect Android malicious applica-
tions. In [40], [41], by converting the extracted features into
images, using an imaging method to vectorize the features,
the Android malware detection problem is converted into
an image classification problem, and the neural network

is trained by using image data. There are mature schemes
for image classification using a convolutional neural net-
work. The critical problem in the field of Android mal-
ware detection is vectorization representation. The specific
method of transforming features into images needs further
study. In [42]–[44], it processes code, including the bytecode
of classes.dex, application code, and words of APK code.
It does not involve the extraction of static or dynamic features
without decompilation technology and reverse engineering.
It directly processes the files in APK, converts the files into
images, and extracts image texture features from images
using a neural network. The specific method of convert-
ing code into image needs further analysis, discussion, and
research. In [45], [46], the method of graphical representation
is used. API call graph, control flow graph, and data flow
graph are taken as Android applications’ features. These
graphs are vectorized and encoded into a numerical vector
feature set.

In [47]–[51], it uses deep learning to classify Android
malicious application families. The detection results show
detailed family categories and other information of malicious
applications, not just whether the application is malicious.
In [48]–[51], it converts file codes into images, and use a
neural network to classify Android malware families. See
Table 2 for a detailed analysis and comparison. Table 2 is a
comparative study of using deep learning models to detect
Android malware, and it analyzes and discusses some latest
research results. The size and types of the publicly avail-
able Androidmalware familymulti-classification datasets are
minimal, which needs further research.

Most of the surveyed papers used CNN and DBN to detect
Android malware. The highest accuracy was 99.82% with
a 0.21% false positive rate obtained by CNN [17]. In [17],
the proposed model combines DAE with CNN and uses DAE
as a pre-training CNN method to reduce the training time.
In order to reduce the dimension of the dataset, the proposed
model encodes all seven kinds of static features and uses the
feature code to indicate each app. The limitation of this model
is that it cannot be resistant to obfuscating techniques. In [27],
the proposed method uses DAE to reduce the API feature
vector’s dimension and uses logistic regression binary classi-
fication model to detect malware. Using other deep learning
models instead of logistic regression classification model
may improve the detection accuracy. In [24], the proposed
method achieves a 99.25% precision rate by using DBN.
It extracts static features and ranks them by mean decrease
impurity in the random forest to select higher importance
features. Moreover, it transforms the features into high-level
representation using Word2Vec. In most of the surveyed
papers, one-hot encoding is used for vectorization of features.
When the number of extracted features is large, the feature
vector’s dimension using one-hot encoding is high, and the
feature vector is sparse. Word2Vec is used to generate dense
vectors to overcome the shortcomings of one-hot encoding.
Replacing one-hot encoding with Word2Vec may improve
the accuracy of the model. In [24], the number of benign

181112 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

TABLE 2. A comparison of deep learning models to detect Android malware.

samples is small compared with the number of malware
collected. To get an accurate estimation, more benign sam-
ples need to be collected. In [19], the original sequence of
API method calls extracted from the DEX assembly is used
as input to the model. The proposed model replaces each
API method call with an identifier, resulting in a sequence
of numbers. The proposed model can serve as a malware
detection system that is deployed on servers and mobile and
IoT devices. The proposed model may be the most practical
in the papers surveyed. It pushes toward portable detection
solutions, which enhances small devices’ security. The limi-
tation of this model is that it is not resilient against dynamic
code loading and reflection obfuscation.Most of the proposed
methods do not consider the actual deployment. These meth-
ods can be applied to anti-virus software to enhance the ability
of anti-virus software to detect malware.

As shown in Table 2, the research results are compared
and analyzed in detail from the extracted features, feature
processing methods, feature vectorization methods, deep

learning models, contributions, limitations, and prospects.
From the limitations and prospects of each study, we can find
ways and directions for improvement.

In these papers, many detection models use a combination
of various deep learningmodels for detection, such as CNN+
LSTM [23], DAE+CNN [17], RNN+CNN [28]. Compared
with the model using a deep learning model, the hybrid
detection model can also achieve satisfactory results. The
combination of various deep learning models makes use of
the advantages of each model, which can also be used as the
research direction in the future. The detection model based
on deep learning adopts static analysis, but it can detect
obfuscated malware [22], [26], [28]. In [28], the package
and certificate information of obfuscated malware variants
is available, and the proposed model identifies obfuscated
malware according to these features. In [22], the proposed
method deals with the opcode and the bytecode in the APK
files and analyzes various API sequences features. Whether
an application is obfuscated or not makes no difference in

VOLUME 8, 2020 181113

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

FIGURE 5. Android malware detection architecture based on deep learning.

their case. In [22], [28], they theoretically explain that the
detection model could detect obfuscated malware, but do not
use obfuscatedmalware to verify. In [26], the proposedmodel
uses Dalvik bytecode as a static feature. They train the CNN
model using the dataset provided by FalDroid [52], and use
the dataset from Android PRAGuard [53] for the evaluation,
which contains 10479 malware obfuscated by seven different
obfuscation techniques. The CNN model effectively detects
the malware applied with trivial obfuscation, which only
affects the string and does not change the bytecode’s instruc-
tions. As for the obfuscation techniques which affect the
bytecode sequence, the model has a poor performance. Since
these proposed methods are based on static analysis using
deep learning, they inherently fail to detect the malware that
dynamically loaded from native shared libraries such as.so
(shared object) files. The dynamic analysis technology can
effectively overcome this deficiency. However, most research
papers use static analysis technology, mainly due to the high
computational cost and long detection time of the dynamic
analysis model. Improving the ability of a static analysis
model based on deep learning to detect obfuscated malware
needs further research. In [33], the dynamic analysis model
based on deep learning uses real Android devices to conduct
dynamic analysis on APK. Most of the dynamic analysis
models based on deep learning in the research papers use an
Android simulator for analysis and detection. When malware

detects that it runs in the Android simulator, it will stop its
malicious behavior. Therefore, researchers should consider
using real Android devices in future research.

V. ANDROID MALWARE DETECTION BASED ON DEEP
LEARNING
Based on the analysis and summary of many domestic and
foreign academic papers, the system architecture and detec-
tion scheme of Android malware detection using deep learn-
ing technology are summarized.

Figure 5 shows the Androidmalware detection architecture
using deep learning. The decompilation and static analysis
of the Android APK file is performed using Androguard,
APKTool, Dex2Jar, BackSmali, and other decompilation
tools to extract the static features. It uses DroidBox to
dynamically analyze the Android application and extract
the dynamic features from the Android application run-
ning status and operation log. The image rule uses the
RGB image generation algorithm to convert the files in the
APK into RGB images, and it uses a deep learning-based
malware detection algorithm to extract image texture features
from the RGB images. It designs neural network models
in aspects of the loss function (cross-entropy), activation
function (ReLU [54]) and optimization algorithm (Stochastic
Gradient Descent algorithm [55], Adam algorithm) while
referring to existing deep learning models, such as

181114 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

Recurrent Neural Network, Deep Belief Network [24], Deep-
AutoEncoder [56], Convolutional Neural Network [57]. The
Android malware detection system is implemented based
on this through the automatic extraction of features and
the Android malware detection algorithm’s realization. The
system is trained according to the sample database, its per-
formance is tested according to performance metrics, and
various comparative experiments are performed to realize the
automation of the system detection.

Figure 6 shows Android malware detection scheme based
on deep learning. The process of detecting malicious Android
applications using deep learning is schematically illustrated
in detail. The detection scheme is divided into five stages:
data set construction, feature extraction, feature selection,
feature vectorization, training, and detection. The detection
scheme is obtained by summarizing the relevant research. The
actual research does not necessarily include all five stages.
For example, some researchers have no feature selection in
the detection scheme.

In the data set construction stage, benign applications are
downloaded through AndroZoo, Google App store, and other
platforms. Malicious applications are collected through the
Drebin data set, Android malware genome project, Android
malware dataset, and other data sets. APK samples in the
data set are divided into a training set, verification set, and
test set according to a certain proportion. The training set
is a sample for learning, which is used to train the neural
network model. The verification set is used to estimate the
generalization error in or after training and update the super
parameters. The test set is used to evaluate the neural network
model’s generalization error after the learning process.

In the feature extraction phase, tools such as IDA Pro and
APKtool are used to decompile APK files. The baksmali tool
is used to get the smali file from the classes.dex. Dex2jar
tool is used to get the jar file from the classes.dex, and then
use the JD-GUI tool to get the java file from the jar file.
The static features of Android applications are extracted from
AndroidManifest.xml, smali files, and java files. By using
DroidBox, SandBox, Android applications are installed in
Android Virtual Device to conduct dynamic analysis on its
operation, and dynamic features are extracted from the run-
ning log or using hook tools. The image-based method is
used to obtain image texture features from the image. The
binary byte sequence is obtained from Androidmanifest.xml
and classes.dex, binary byte sequence is used to obtain a pixel
matrix according to the RGB image generation algorithm,
an RGB image is finally obtained according to a pixel matrix.

In the feature selection stage, it processes the original
feature data set. It uses the association rule mining algorithm,
information gain algorithm, chi-square statistical algorithm,
and frequency sorting algorithm to select the appropriate
features from the original feature set and remove the noise,
irrelevant and redundant features.

In the feature vectorization stage, the features in the feature
data set are vectorized by the Word2Vec [58], one-hot encod-
ing [59], Euclid distance measurement [16], and identifier

mapping [60]. These vectors will be input into the neural
network model for model training. The vectorization process
is described in detail in Section V(C)’s feature vectorization
representation part.

Training and testing phase. The neural network model
consists of many layers of the neural network, which can be
generally divided into the input layer, hidden layer, and output
layer. By training the training set’s sample data, the neural
network model is trained to find the best combination of
super parameters. The super parameters of the neural network
model mainly include the number of layers of the neural
network, the number of neurons in each layer, the number of
iterations, the selection of optimizer, learning rate, batch size,
the selection of activation function, convolution kernel size,
convolution kernel number, pooling layer size, step length
and dropout rate. The neural network model is tested with
a test set to test its classification performance and generaliza-
tion ability.

We can use performance metrics to test system model
performance. The test results can be expressed in the form
of a table called a confusion matrix, as shown in Table 3,
which has four parameter types. True Positive (TP) refers to
samples that get marked positive that are positive or marking
a malicious file as malicious. False Positive (FP) refers to
samples that get marked positive that are NOT positive or
marking a benign file as malicious. True Negative (TN) refers
to samples that get marked negative that are negative or
marking a benign file as benign. False Negative (FN) refers
to samples that get marked negative that are NOT negative or
marking a malicious file as benign.

TABLE 3. Confusion Matrix.

The confusion matrix can show the detection results of
the system intuitively. To further evaluate the system’s per-
formance, based on the confusion matrix shown in Table 3,
the researchers calculated more evaluation indexes.

TPR, True Positive Rate, also known as sensitivity or recall
rate, is the proportion of positive samples detected to the
actual positive samples. The calculation formula is (1):

TPR =
TP
P
=

TP
TP+ FN

(1)

FNR, False Negative Rate, is the proportion of positive
samples detected as negative to the actual positive samples.
The calculation formula is (2):

FNR =
FN
P
=

FN
TP+ FN

(2)

FPR, False Positive Rate, is the proportion of negative
samples detected as positive to the actual negative samples.

VOLUME 8, 2020 181115

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

FIGURE 6. Android malware detection scheme based on deep learning.

181116 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

The calculation formula is (3):

FPR =
FP
N
=

FP
FP+ TN

(3)

TNR, True Negative Rate, is the proportion of negative
samples detected as negative to the actual negative samples,
the calculation formula is (4):

TNR =
TN
N
=

TN
FP+ TN

(4)

Accuracy, the system’s ability to detect the whole data set’s
samples, is the ability of the system to detect positive samples
as positive samples and negative samples as negative samples.
The calculation formula is (5):

Accuracy =
TP+ TN
P+ N

=
TP+ TN

TP+ FP+ TN + FN
(5)

Precision is the proportion of the number of samples that
are positive to the number of samples that are detected as
positive. The calculation formula is (6):

Precision =
TP

TP+ FP
(6)

F-measure, the weighted harmonic mean of precision and
recall, is closer to the smaller of the two. The calculation
formula is (7)(8):

F_measure =

(
α2 + 1

)
× Precision× Recall Rate

α2 × (Precision+ Recall Rate)
(7)

F1 =
2× Precision× Recall Rate
Precision+ Recall Rate

α = 1 (8)

To evaluate the generalization performance of the model,
we need not only a practical and feasible experimental esti-
mation method but also an evaluation standard to measure
the generalization ability of the model, which is called per-
formance measurement. Performance measurement reflects
the task requirements. When comparing different models’
capabilities, different performance measures often lead to
different evaluation results, which means that the model’s
performance is relative. What kind of model is fine depends
not only on the algorithm and data but also on the task
requirements. We have so many indicators to meet all tasks’
needs because accuracy can not meet all task requirements.
In the book ‘‘machine learning,’’ written by Zhou Zhihua,
it is mentioned that taking the watermelon problem as an
example, assuming that the watermelon farmers bring a cart
of watermelons, we use the trained model to discriminate
these watermelons. Accuracy measures how many propor-
tions of melons are correctly identified. However, if we are
concerned about ‘‘how many of the selected watermelons are
good melons’’ or ‘‘how many of all the good melons are
picked out,’’ recall and precision are more suitable perfor-
mance measures for such requirements. Therefore, it is not
comprehensive to consider only the accuracy index. Precision
refers to the prediction result, which indicates how many
samples that get marked positive are real positive samples.
The recall rate refers to the original sample, which indicates

how many positive examples in the sample are predicted
correctly. In short, precision means ‘‘finding rightly,’’ and
recall rate is ‘‘finding all.’’ Therefore, they are essential for
classification. When the probability of error classification
between different categories is not taken into account, indi-
cators such as accuracy are often misleading. Which index to
use depends on the specific situation. Achieving the highest
accuracy does not necessarily mean that the classifier can
correctly predict. Therefore, it is necessary to evaluate the
reliability of the proposed system in combination with other
indicators.

VI. PROBLEMS AND CHALLENGES
By investigating the latest papers of deep learning applied
to Android malware detection, the problems and challenges
faced by deep learning applied to malware detection are
summarized.

A. DATA SET UPDATE
In reality, most Android applications are non-malicious. This
basic fact brings significant challenges to the detection of
Android malware using deep learning. A large-scale and
continuously updated malicious sample data set is required to
take full advantage of deep learning. Most researchers’ data
set is still relatively small and old, and the sample data in the
data set cannot be updated in time.

The most commonly used data set is the DREBIN data
set [61], which consists of 5,560 malicious samples and
123,453 benign samples, but the collection time of this
sample was from August 2010 to October 2012. The
Android Malware Genome Project data set [62] consists
of 1260 malicious samples and 863 benign samples, of which
the malicious samples can be divided into 49 categories.
The collection time of the samples is from August 2010
to October 2011. The Contagio dataset consists of
1150 malicious samples collected in 2011. Android Mal-
ware Dataset [63], [64] is composed of 24553 malicious
samples, among which there are 135 categories of mali-
cious samples, which are collected from 2010 to 2016. The
VirusShare dataset is publicly available through the web
site, and the 2016 dataset contains 65536 malicious samples.
Android PRAGuard Dataset [53] consists of 10479 malicious
samples collected in 2015. Marvin data set [65] consists
of 10572 malicious samples and 75996 benign samples
collected in 2015. The ISCX Android Botnet Dataset [66]
consists of 1929 malicious samples, which can be divided
into 14 categories. The collection time of the samples is from
2010 to 2014. Details of these datasets are shown in Table 4.

Robin Nix et al. [59] used system API call sequences to
detect and classify Android applications and designed a con-
volutional neural network for sequence classification, achiev-
ing 99.4% detection accuracy on 216 malicious samples
and 1016 benign sample dataset. Zhenlong Yuan et al. [14]
used static analysis to extract the requested permissions and
sensitive API static features and used dynamic analysis to
extract dynamic behavior features. A total of 200 features

VOLUME 8, 2020 181117

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

TABLE 4. Comparison of different data sets.

were extracted for malware detection. A deep belief network
model was used to achieve a detection accuracy of 96% on a
dataset consisting of 250 malicious samples and 250 benign
samples. Robin Nix et al. [67] use a deep neural network
to identify and classify malware. It decompiles APK files
to obtain smali files and designs a parser to extract core
API call sequences from smali files, and then converts these
API call sequences into feature vectors used as input to the
convolutional neural network for classification. It achieved
99.4% detection accuracy on a dataset of 800 APK files.

Although the abovemethods achievemore than 95%detec-
tion accuracy, they are implemented on a small data sample
set, and the reference significance needs to be considered.

Since collecting sample data is a very time-consuming and
energy-consuming project, most researchers use their sample
database and do not want to make it public.

The more training samples and test samples in the dataset,
themore types ofmalware, and the real-time update of sample
data can improve the deep learning model’s generalization
ability, thereby achieving excellent accuracy in real-world
Android malware detection. As shown in Table 4, the cur-
rently used data sets’ size and collection time are uneven,
resulting in a lack of comparability between the research
results. It is very one-sided to rely on the performance met-
rics of the neural network model for evaluation. Therefore,
an open and standardized sample database is needed as the
standard.

B. FEATURE SELECTION
The Android malware detection used by deep learning is
mainly based on permission features, API call features, and
system call features. These features are not sufficient to com-
pletely summarize all the characteristics of Android appli-
cations. Selecting suitable and sufficient feature types has
a positive effect on improving deep learning-based malware
detection effectiveness.

Feature learning is essential for Android malware detec-
tion, and it can reduce feature size and improve detection
accuracy.

Yuan et al. [38] studied deep learning using associa-
tion rule mining technology to characterize the features of
Android malware and conducted experiments on the correla-
tion between 192 features to find associations often used only
by Android malware. The frequency of features in malicious
and benign samples only reflects the trend of feature differ-
ences between them.

Zhao et al. [69] proposed a feature extraction and selection
tool, which is a feature-based machine learning method for
malware detection on the Android platform. The tool selects
features based on how often they appear in Android appli-
cations, and it uses the selected features to detect Android
malware.

Chakradeo et al. [70] extracted 182 features through
static analysis. It relies on attribute-based selection: features
extracted independently and subset-based extraction, which
considers the dependencies between features.

Shabtai and Elovici et al. [71] used a feature ranking
algorithm to select a subset of features from 88 features and
the top 10, 20, and 50 features from the original data set.

Guoyin et al. [72] used permissions, API calls, compo-
nent declarations, and string information as features to be
extracted, and used association rules and chi-square statis-
tical methods to perform feature screening on all extracted
features, removing unaffected and redundant features.

Shabtai et al. [73] analyzed the network traffic data of
Android applications and used feature selection algorithms
to select the most useful features in the network traffic
data.

Cong et al. [74] used the Apriori algorithm of association
rules on the extracted permission features, namely connection
and pruning, to select and process the permission feature
set.

181118 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

Yanping et al. [75] used the information gain algorithm
in their research to select features and select important and
suitable features for detection.

Siqi et al. [76] used static analysis and dynamic analy-
sis to extract malicious code behavior and required permis-
sion features and used the chi-square test to pre-process the
extracted features to eliminate features that are not related to
the required features.

More detailed features should be extracted to charac-
terize Android applications. A more comprehensive and
fine-grained feature set can cover more aspects of Android
malware and be used to characterize better and detect mal-
ware, such as combining static and dynamic features to
improve malware detection accuracy.

C. FEATURE VECTORIZED REPRESENTATION
One method is to design a neural network model for Android
malware detection and train it from scratch. Using transfer
learning technology and using existing trained neural net-
works, and applying them to new and different data sets
to implement malware detection through feature extraction
and parameter tuning is another method. Transfer learning
refers to copying knowledge from a trained network to a new
network to solve similar problems. Currently, this method is
mainly used for malware detection using deep learning.

In order to use the existing trained deep neural network
to deal with the problem of Android malware detection,
the problem description needs to be converted into a vector,
because the use of deep learning in any field first needs to
solve the problem of vectorization. The input is converted into
a digital vector, and the existing deep neural network model
processes the vector.

The Android malware detection problem can be trans-
formed into a problem with proven solutions, such as con-
verting binary programfiles into images and then using image
recognition methods to classify and identify them [77].

Zegzhda et al. [40] constructed a control flow graph
through a smali file to obtain the features of the API call
sequence, then mapped the corresponding protection level
according to the permissions required for the API call, and
then converted the API call sequence and protection level
into pixels of the RGB image. A hash function is used to
calculate a 32-bit hash value according to the API call sig-
nature value, and the 24 least significant bits are obtained
from the hash value, and the protection level corresponding to
the permissions required by the API call is normalized. The
3-byte hash value and protection level are compiled into RGB
pixel values and Alpha channel values. Finally, the RGBA
pixels are converted into RGB images with black background
according to the function.

Ganesh et al. [41] used static analysis to extract 138 per-
mission features. According to the number, the extracted
permission features are numbered from 0 to 137 and then
correspond to the PNG image pixel point’s position number.
Because there are 138 features, the image size is 12 × 12,
and zero paddings are performed for the remaining 6 pixels.

When the application has the feature whose number is 2,
the value of the second pixel of the image is 1.

Huang and Kao [42] decompressed the APK file to obtain
the classes.dex file and displayed it in the form of bytecode.
Then hex was mapped from bytecode to the three channels
of RGB’s pixel values through rules, and then the DEX file
is converted into an RGB image according to the RGB pixel
values.

The above researchers have published some research
results using the image method. These results show that
malware’s image mode is not fixed, and some conversion
methods are simple. The use of image data to represent
malware requires further research.

The most common method is to convert the static and
dynamic features of Android applications into word vectors
and use some mathematical models for vectorized represen-
tation in addition to the image method. These mathematical
models mainly come from existing results in natural language
processing, such as Word2Vec [58], Glove [78].

Yuan et al. [38], Zhu et al. [79], Karbab et al. [19] all
use feature vector generation methods based on existence,
whose elements only represent the existence of features in
a malicious feature database, such as strings, permission,
component, and environment feature vectors. The feature
values in the malicious feature database correspond to the
feature vector elements, and each feature value is searched for
in the features extracted from the input application. If there is
no specific feature value in the extracted features, the absence
of the feature value is represented as 0; otherwise, the feature
value’s presence is represented as 1 in the vector.

Kim et al. [16] used the similarity-based feature vector
generation method, and the features were in the form of fre-
quency lists. The frequency values can be very different, so it
first uses the min-max scaling method to normalize the input
application features so that they are in the range [0, 1]. Then,
using the Euclidean distance metric, each malware represen-
tative (the centroid of the cluster) in the malware database is
compared with the input application features. Among each
malware representative’s distances, the minimum distance is
selected to be converted into similarity, and the calculated
similarity is recorded in the corresponding element of the
feature vector.

Li et al. [80] defined the | S | dimensional vector space to
map feature sets into Boolean expressions to capture these
features’ dependencies. The application x is mapped into this
space by constructing a vector V (x) so that for each feature
s extracted from x, the value of the corresponding dimension
is set to 1, and the values of all other dimensions are set to 0.

Nix et al. [59] use one-hot encoding to encode each API
call and convert the API call to an integer index and then to
the corresponding one-hot vector.

Juwono et al. [60] detect and classify the Cuckoo sand-
box’s dynamic behavior log. For each sample, the original
dynamic behavior report is JSON structured data converted to
text format. Each line in the text represents a dynamic behav-
ior. It reads all dynamic behavior logs to obtain all dynamic

VOLUME 8, 2020 181119

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

behaviors that have occurred and serve them as a lexicon.
Labeling each word in the lexicon with consecutive numbers,
it can get the mapping of dynamic behavior to the label id.
A fixed-length vector represents each word in the lexicon,
and the length of this vector is a selectable parameter. The
sample’s dynamic behavior is converted into a corresponding
id sequence via the lexicon, and then the sample is converted
into a two-dimensional matrix according to the id sequence
and the vector of each id in the lexicon.

How to efficiently and accurately vectorize the features
or programs affects the detection effect of malware. The
existing vectorization methods are relatively simple and can-
not wholly summarize the features of Android applications.
The feature vectors are too sparse. Using discrete numerical
features instead of binary numerical features for vectorized
representation of features can be considered in the future.
For example, if permission is requested three times or a
dynamic behavior occurs three times, their corresponding
feature values can be set to a discrete value of 3 instead of 1
(a binary value).

D. NEURAL NETWORK TRAINING
The neural network model is the core part of the implemen-
tation of malware detection systems. The design and opti-
mization of neural network models are the keys to improv-
ing malware detection systems’ detection and classification
capabilities. Neural networkmodels still have overfitting, dif-
ficult to adjust parameters, gradient vanishment, and initial-
ization problems. Although there are currently corresponding
solutions to these problems, these methods still need to be
improved and supplemented.

1) OVERFITTING
Overfitting is a common problem in deep learning. It means
that the accuracy of deep learning model prediction increases
on the training set, but decreases on the test set. It also shows
that the deep learningmodel onlymemorizes the training set’s
data features and has poor generalization performance.

To train a deep neural network, it must build a vast data set
to take advantage of deep learning to avoid overfitting. Over-
fitting is prone to occur when the data set is small. Transfer
learning can be used as a strategy to avoid overfitting, using
existing neural networks to detect Android malware on small
data sets.

2) PARAMETERS ARE DIFFICULT TO ADJUST
The deep learning model parameters are difficult to adjust,
and different parameter settings have a significant impact on
the experimental results obtained in the end. Deep learning is
usually not a convex optimization problem, and it is full of
locally optimal solutions. A deep learning model may have
many locally optimal solutions that can achieve the desired
effect, but the optimal global solution is easily overfitted.

For the parameter setting of deep learning models, it is nec-
essary to repeatedly adjust to reach the desired result, so adap-
tive methods such as Adam [81], Adadelta [82] appear, and

these methods can reduce the burden of adjusting parameters.
Besides, the grid search method can be used to find the
best parameters of the deep learning model. Nevertheless,
the difficulty of adjusting the parameters is still a severe
problem in deep learning.

3) GRADIENT VANISHMENT
Too deep a network will bring Gradient Vanishment problems
and affect deep neural network training. At the beginning
of neural network training, Sigmoid was used as the acti-
vation function. When the number of layers of the neural
network is large, the Sigmoid function’s gradient value will
gradually decrease in backpropagation, and it will decrease
exponentially after multi-layer transmission. The gradient
value becomes very small when passed to the previous layers.
In this case, updating the neural network parameters based on
the feedback of the training data will be very slow, and the
role of training cannot be achieved basically.

4) INITIALIZATION
The method of neural network initialization is also needed
to be considered. The initialization method is more important
or even critical for complex convolutional networks, recurrent
networks, or deeper fully-connected networks. Themethod of
neural network initialization will directly affect the network
training time and effect.

5) ADVERSARY ATTACK
Adversarial sample attacks based on a generative adversar-
ial network (GAN) pose a threat to the Android malware
detection system using deep learning [83], [84]. Like many
machine learning models, neural networks are be easily
manipulated by their inputs [85]. These operations take the
form of adversarial samples, that is, by adding selected and
usually artificially distinguished perturbations to the input
to force the target model to misclassify the samples. These
samples take advantage of the training phase’s defects and
the inherent linearity of the components used by the model,
even if the entire model is non-linear. This attack scenario
is mainly due to the lack of sufficient data for deep learning
models. When using a deep learning model for classification
tasks, because there is scarcely enough data to help the model
make decisions in the entire feature space, the discriminant
model will expand the distance between samples and deci-
sion boundaries to obtain better classification results. At the
same time, the area of each category in the feature space is
expanded. The advantage of this method is that it can make
classification easier. However, the disadvantage is that it
includes some logical feature spaces that do not belong to the
current category, allowing attackers to generate adversarial
samples from this feature space [86].

To a certain extent, it can protect the Android malware
detection system based on deep learning by deploying an
adversary sample detector to filter adversary samples. Heng
Li et al. [87]. proposed a new adversary sample attack
method based on bi-objective GAN. More than 95% of the

181120 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

adversary samples generated by this attack method success-
fully misled the Android malware detection system equipped
with an adversary sample detector. Heng Li et al. [87] used
bi-objective GAN to generate adversary samples with incom-
plete information. Bi-objective GAN extended the traditional
GAN by using two discriminators with different targets. The
generator generated candidate adversary samples. Discrimi-
nator 1 tried to distinguish between malicious samples and
benign samples. Discriminator 2 tried to distinguish between
adversary samples and benign samples. In the proposed GAN
model, two discriminator boot generators achieve two goals
simultaneously, namely, breaking through the firewall (adver-
sary sample detector) and avoiding malware detection.

6) EVASION ATTACK
In evasion attacks, the attacker manipulates malicious sam-
ples during testing so that a trained classifier will misclassify
them as benign without affecting the training data. Therefore,
whether it is a targeted attack or an indiscriminate attack,
it depends on whether the attacker targets a specific computer
or conducts an indiscriminate attack. The goal of the attacker
is to destroy system integrity [88].

Biggio et al. [89] proposed a simple algorithm for avoiding
classifierswith discriminative discriminant functions. Studies
show that even if the attacker’s knowledge of the classifica-
tion system being attacked is limited, the attacker can only
understand the classifier’s copy from a small proxy data set
and can still avoid the detection of the classification model
with a high probability.

7) CONCEPT DRIFT
Because attackers frequently change malware to avoid being
detected by deep learning models, when using a deep neural
network to classify malware, concept drift often occurs [90].
Deep learning faces the problem of concept drift [91], that
is, the detection effect of detection model based on deep
learning will decline over time [92]. On the premise that the
distribution of training data and test data is stable, the deep
learning model has good prediction performance. However,
malware usually changes constantly to avoid deep learning
model detection, leading to changes in data distribution and
degradation of deep learningmodels [93].When the detection
model based on deep learning uses the old data set, it is
prone to concept drift. In [94], they suggest updating models
and updating datasets to deal with concept drift. How to
effectively solve the problem of concept drift is a problem
to be solved.

8) POISONING ATTACK
A poisoning attack is a typical security threat in the pro-
cess of neural network training. In data poisoning attacks,
adversaries create artificial associations between inputs and
tags by interfering with inputs or modifying tags. In the
training process of the model, malicious data, namely toxic
data, is added. The machine learning model trained on toxic
data will learn the incorrect association between input and

label and become inaccurate for clean input, thus reducing
the model’s accuracy [95].

Many poisoning attacks have been found for various
machine learning models, such as [96], [97]. In [96], they
develop a Projected Gradient Ascent (PGA) algorithm to
compute Label Contamination Attack (LCA) on a family of
empirical riskminimizations and develop a defense algorithm
to identify the data points that are most likely to be attacked.
Feature selection is not clear whether its use may be ben-
eficial or even counterproductive when intelligent attackers
poison training data. In [97], they shed light on this issue by
providing a framework to investigate popular feature selec-
tion methods’ robustness. In [98], [99], they put forward the
countermeasures to prevent poisoning attack and realize the
purpose of detecting and filtering poisoning data. In [98],
they construct approximate upper bounds on the loss across
a broad family of attacks, for defenders that first perform
outlier removal followed by empirical risk minimization.
Their bound comes paired with a candidate attack that often
nearly matches the upper bound, giving them a powerful tool
for quickly assessing defenses on a given dataset. In [99],
they study the susceptibility of collaborative deep learning
systems to adversarial poisoning attacks. They demonstrate
that the attacks have a 99% success rate for misclassifying
specific target data while poisoning only 10% of the entire
training dataset for collaborative deep learning systems. They
propose a system that detects malicious users and generates
an accurate model to defend against poisoning attacks.

VII. FUTURE DIRECTIONS
The application of deep learning in Android malware detec-
tion has been a research hotspot in recent years. It has cru-
cial significance for cyberspace security and has attracted
widespread attention. Based on the existing problems in the
research of deep learning applied to Android malware detec-
tion, the following four future research directions are pointed
out:

A. DEFEND AGAINST ADVERSARIAL ATTACKS
Existing deep learning models for Android malware detec-
tion and classification are susceptible to threats from adver-
sarial attacks. Research on the adversarial attacks faced by
deep learning applied to Android malware detection is in its
infancy. The solution is mainly concentrated in the field of
computer vision. It is using adversarial generated adversarial
samples to retrain the deep learning classifier for adversary
training. The purpose of adversary training is to modify the
abstractness of the deep learning model. Choosing an appro-
priate number of adversary training samples is a challenge.

YanJinpei et al. [86] used several methods to defend
against adversary attacks. Firstly, regularization was added to
the deep learning model so that the model would not overfit
the training set and promote the closure of the benign sample
feature space. L2 regularization is used to maintain conser-
vative discrimination results for unknown feature spaces to
prevent adversarial samples using these feature spaces from

VOLUME 8, 2020 181121

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

deceiving malware detection classifiers. Secondly, adversar-
ial training is conducted by making adversarial samples in
advance, then using these samples to train deep learning
models through online learning, thereby enhancing deep
learning models’ ability to resist adversarial attacks. Thirdly,
using ensemble learning with different classifiers can prevent
adversarial attacks to a certain extent. Fourthly, selecting
features of a specific category, such as N-gram. Fifthly, using
themethod of gradient masking [100], the model outputs hard
decisions (predicted target categories), instead of outputting
the probabilities of different categories, so that it is difficult
for an attacker to obtain useful gradients to construct attack
samples.

Filtering out the adversary samples by an adversary sample
detector can protect the Android malware detection system
based on deep learning technology. An adversary sample
detector’s construction can be divided into three stages: data
collection, model training, and adversary sample detection.
Benign samples are obtained by extracting features from
benign and malicious applications, then adversary samples
are generated by some methods, and classifiers are trained
by benign samples, adversary samples, and their labels. The
labels of adversary samples are set as 1; the benign sample
label is set to 0. Finally, a trained classifier is used as the
firewall to prevent the ring breaking detection system [87].

After analyzing the fundamental defects of the deep neural
network, Wang et al. [101] pointed out that the effective-
ness of the methods to defend against the adversary attack
by increasing the training data and the complexity of deep
learning model is limited, and these methods can not provide
the theoretical guarantee of the robustness of the attack.
Qinglong Wang et al. proposed a new adversary technology
to prevent attackers from building useful adversary samples
by randomly eliminating the samples’ features. In the data
set composed of 14679 malware variants and 17399 benign
applications, the proposed technology’s robustness is ver-
ified theoretically. The experimental results show that the
technology improves the deep neural network’s robustness to
the adversary samples while maintaining high classification
accuracy.

At present, there is not much research on defense against
adversarial attacks, but with the increase of security require-
ments in the future, adversarial attacks will become an impor-
tant research direction. A complete and detailed analysis of
adversarial attacks will be needed, and relevant experimental
evaluations will be conducted.

B. APPLICATION MULTI-CLASSIFICATION
At present, the detection of Android malware using deep
learning is concentrated in the field of two classifications,
which is merely distinguishing whether an Android appli-
cation is malicious or not. There is not much research
on the multi-classification of Android malware families.
The Android malware multi-classification further explains
Android malware’s maliciousness, indicating the category to
which the malware belongs.

As shown in Table 5, it is the family names and correspond-
ing sample numbers of the 20 largest malware families in
the DREBIN dataset. Most data sets only include malicious
samples and benign samples, and there is no classification
of malware families. With the explosive growth of malware,
more and more malware types have appeared, such as the
emergence of ransomware applications. With the deepening
of cyberspace security research, malware detection’s secu-
rity requirements will continue to increase, and research on
the multi-classification of malware families will gradually
receive more attention.

TABLE 5. 20 malware family types in the DREBIN dataset.

C. HYBRID ANALYSIS
The current research focuses on the combination of static
analysis and deep learning. There is less research on the
use of dynamic analysis for detection, and less research
on the hybrid detection that combines static analysis and
dynamic analysis. It is mainly due to the long detection
time of dynamic analysis and the high resource consump-
tion rate. On the contrary, static analysis has high detection
efficiency and fast speed. However, static analysis cannot
effectively analyze applications that use code obfuscation,
shell protection, encryption, and repackaging technologies.
With the improvement of attackers’ attack methods, malware
is capable of evading static detection. Static detection has
been unable to meet the increasing security requirements in
the future, and dynamic detection can effectively analyze
malware using code obfuscation technologies. The combina-
tion of static features and dynamic features can adequately
characterize malware, and it is useful to use hybrid detection
to improve the accuracy of malware detection.

There are some inherent limitations in the method of
dynamic analysis only. When a lack of necessary resources,
UI operations, or library, the dynamic analysis platform
DroidBox may not trigger malware’s malicious behavior in

181122 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

FIGURE 7. Convolutional neural network development diagram.

some cases. For example, if the malware attempts to acquire
the malicious load, use a third-party server to connect, com-
mand, and control the server to obtain instructions when these
servers cannot connect, the malware may not continue to
perform its malicious operations. Besides, somemalware will
only perform malicious behavior when some system events
(such as receiving SMS) happen or users perform specific
operations (such as entering legal user identity and pass-
word). If the analysis platform cannot execute these events,
the malicious behavior of this malware cannot be triggered.
Malware may detect its runtime environment and stop per-
formingmalicious operations, in which case the analysis plat-
form will not record valid behavior information. This evasion
technology can be realized through the Android emulator’s
identification or monitoring process. Because of the above
problems in the dynamic analysis, static analysis is needed
to assist analysis and judgment to identify malware more
accurately.

D. DEEP LEARNING MODEL
Deep learning models are a core part of the implementation
of malware detection systems based on deep learning. The
design and optimization of models are the keys to improv-
ing malware detection systems’ detection and classification
capabilities. The deep learning models currently used for
detection are Deep Belief Network, Convolutional Neural
Network, Recurrent Neural Network, and DeepAutoEncoder.
In order to improve the detection effect of deep learning
models, the approach can be divided into two types: improved

FIGURE 8. Graph neural network detection architecture.

adjustment and optimization on the structure of the neural
network, the left branch of Figure 7, and the other is the
increase of the depth of the neural network, as shown on the
right branch of Figure 7.

In addition to the current mainstream deep learning detec-
tion models, applying new deep learning models to malware
detection is also a research direction, such as the application
of Graph Neural Network [102] for detection.

Graph Neural Networks (GNN) is a useful framework for
graph representation learning [103].GNN follows a neighbor-
hood aggregation scheme in which the representation vectors
of a node are calculated by recursively aggregating and trans-
forming its neighboring nodes’ representation vectors. Many
graph neural network variants have been proposed, and the
latest results have been achieved on both node and graph
classification tasks. We can try representing the APK file
with a graph and use graph neural networks to detect mal-
ware through image texture features combined with dynamic
behavior features, as shown in Figure 8.

VIII. SUMMARY
As the Android operating system occupies the leading market
share and its open-source nature, its security is increasingly
threatened and challenged. In order to deal with the explosive
growth of Android malware, research on Android malware
detection using deep learning has been a research hotspot in
recent years, but currently lacking a detailed and comprehen-
sive introduction to the research progress of Androidmalware

VOLUME 8, 2020 181123

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

detection using deep learning. Firstly, the paper introduces the
basic knowledge of Android malware detection technology.
Then it sort outs, analyzes, and summarizes Android malware
detection’s latest research progress based on deep learning
and summarizes the Android malware detection architec-
ture and detection scheme based on deep learning. Then it
analyzes the problems and challenges of Android malware
detection using deep learning. Finally, it looks forward to the
future research direction.

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers for
their valuable comments.

REFERENCES
[1] Y. Feng, S. Anand, I. Dillig, and A. Aiken, ‘‘Apposcopy: Semantics-based

detection of Android malware through static analysis,’’ in Proc. 22nd
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 576–587.

[2] M. Y. Wong and D. Lie, ‘‘IntelliDroid: A targeted input generator for the
dynamic analysis of Android malware,’’ in Proc. NDSS, vol. 16, 2016,
pp. 21–24.

[3] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, ‘‘DroidScribe: Classifying Android malware based
on runtime behavior,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2016, pp. 252–261.

[4] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, ‘‘Harvesting run-
time values inAndroid applications that feature anti-analysis techniques,’’
in Proc. NDSS, 2016.

[5] J. Qiu, S. Nepal, W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang, ‘‘Data-
drivenAndroidmalware intelligence: A survey,’’ inProc. Int. Conf. Mach.
Learn. Cyber Secur. Springer, 2019, pp. 183–202.

[6] M. Rhode, P. Burnap, and K. Jones, ‘‘Early-stage malware prediction
using recurrent neural networks,’’ Comput. Secur., vol. 77, pp. 578–594,
Aug. 2018.

[7] K. Bakour, H. M. Ünver, and R. Ghanem, ‘‘The Android malware detec-
tion systems between hope and reality,’’ Social Netw. Appl. Sci., vol. 1,
no. 9, p. 1120, Sep. 2019.

[8] R. Mahmood, N. Mirzaei, and S. Malek, ‘‘EvoDroid: Segmented evolu-
tionary testing of Android apps,’’ inProc. 22nd ACMSIGSOFT Int. Symp.
Found. Softw. Eng., 2014, pp. 599–609.

[9] T. Vidas, J. Tan, J. Nahata, C. L. Tan, N. Christin, and P. Tague,
‘‘A5: Automated analysis of adversarial Android applications,’’ in Proc.
4th ACM Workshop Secur. Privacy Smartphones Mobile Devices, 2014,
pp. 39–50.

[10] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[11] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2020.

[12] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[13] A. Pektaş and T. Acarman, ‘‘Learning to detect Android malware via
opcode sequences,’’ Neurocomputing, vol. 396, pp. 599–608, Jul. 2019.

[14] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, ‘‘Droid-sec: Deep learning in
Android malware detection,’’ in Proc. ACM Conf. SIGCOMM, 2014,
pp. 371–372.

[15] X. Su, D. Zhang, W. Li, and K. Zhao, ‘‘A deep learning approach to
Android malware feature learning and detection,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2016, pp. 244–251.

[16] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, ‘‘A multimodal
deep learning method for Android malware detection using various fea-
tures,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773–788,
Mar. 2019.

[17] W. Wang, M. Zhao, and J. Wang, ‘‘Effective Android malware detec-
tion with a hybrid model based on deep autoencoder and convolutional
neural network,’’ J. Ambient Intell. Humanized Comput., vol. 10, no. 8,
pp. 3035–3043, Aug. 2019.

[18] Y. Zhang, Y. Yang, and X. Wang, ‘‘A novel Android malware detection
approach based on convolutional neural network,’’ in Proc. 2nd Int. Conf.
Cryptogr., Secur. Privacy, 2018, pp. 144–149.

[19] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer:
Automatic framework for Android malware detection using deep learn-
ing,’’ Digit. Invest., vol. 24, pp. S48–S59, 2018.

[20] S. Luo, Z. Liu, B. Ni, H. Wang, H. Sun, and Y. Yuan, ‘‘Android malware
analysis and detection based on attention-cnn-lstm,’’ J. Comput., vol. 14,
no. 1, pp. 31–44, 2019.

[21] J. Booz, J. McGiff, W. G. Hatcher, W. Yu, J. Nguyen, and C. Lu, ‘‘Tuning
deep learning performance for Android malware detection,’’ in Proc. 19th
IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput. (SNPD), Jun. 2018, pp. 140–145.

[22] Z. Ma, H. Ge, Z. Wang, Y. Liu, and X. Liu, ‘‘Droidetec: Android malware
detection and malicious code localization through deep learning,’’ 2020,
arXiv:2002.03594. [Online]. Available: http://arxiv.org/abs/2002.03594

[23] Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, ‘‘End-to-end malware
detection for Android IoT devices using deep learning,’’ Ad Hoc Netw.,
vol. 101, Apr. 2020, Art. no. 102098.

[24] T. Chen, Q. Mao, M. Lv, H. Cheng, and Y. Li, ‘‘DroidvecDeep: Android
malware detection based on Word2Vec and deep belief network,’’ TIIS,
vol. 13, no. 4, pp. 2180–2197, 2019.

[25] X. Su, W. Shi, X. Qu, Y. Zheng, and X. Liu, ‘‘DroidDeep: Using deep
belief network to characterize and detect Android malware,’’ Soft Com-
put., pp. 1–14, 2020.

[26] K. Zou, X. Luo, P. Liu, W. Wang, and H. Wang, ‘‘ByteDroid: Android
malware detection using deep learning on bytecode sequences,’’ in Proc.
Chin. Conf. Trusted Comput. Inf. Secur. Springer, 2019, pp. 159–176.

[27] N. He, T. Wang, P. Chen, H. Yan, and Z. Jin, ‘‘An Android malware
detectionmethod based on deep autoencoder,’’ inProc. Artif. Intell. Cloud
Comput. Conf., 2018, pp. 88–93.

[28] W. Y. Lee, J. Saxe, and R. Harang, ‘‘SeqDroid: Obfuscated Android
malware detection using stacked convolutional and recurrent neural net-
works,’’ in Deep Learning Applications for Cyber Security. Springer,
2019, pp. 197–210.

[29] D. Zhu, T. Xi, P. Jing, D. Wu, Q. Xia, and Y. Zhang, ‘‘A transparent and
multimodal malware detection method for Android apps,’’ in Proc. 22nd
Int. ACM Conf. Modeling, Anal. Simulation Wireless Mobile Syst., 2019,
pp. 51–60.

[30] X. Qin, F. Zeng, and Y. Zhang, ‘‘MSNdroid: The Android malware
detector based on multi-class features and deep belief network,’’ in Proc.
ACM Turing Celebration Conf.-China, 2019, pp. 1–5.

[31] D. Li, L. Zhao, Q. Cheng, N. Lu, and W. Shi, ‘‘Opcode sequence analysis
of Android malware by a convolutional neural network,’’ Concurrency
Comput. Pract. Exper., vol. 32, no. 18, p. e5308, 2020.

[32] S. Hou, A. Saas, L. Chen, and Y. Ye, ‘‘Deep4MalDroid: A deep learning
framework for Android malware detection based on linux kernel system
call graphs,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. Workshops
(WIW), Oct. 2016, pp. 104–111.

[33] F.Martinelli, F. Marulli, and F.Mercaldo, ‘‘Evaluating convolutional neu-
ral network for effective mobile malware detection,’’ Procedia Comput.
Sci., vol. 112, pp. 2372–2381, 2017.

[34] C.-W. Yeh, W.-T. Yeh, S.-H. Hung, and C.-T. Lin, ‘‘Flattened data in
convolutional neural networks: Using malware detection as case study,’’
in Proc. Int. Conf. Res. Adapt. Convergent Syst., 2016, pp. 130–135.

[35] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘Dl-Droid: Deep learning
based Android malware detection using real devices,’’ Comput. Secur.,
vol. 89, Feb. 2020, Art. no. 101663.

[36] P. Faruki, B. Buddhadev, B. Shah, A. Zemmari, V. Laxmi, andM. S. Gaur,
‘‘DroidDivesDeep: Android malware classification via low level moni-
torable features with deep neural networks,’’ in Proc. Int. Conf. Secur.
Privacy. Springer, 2019, pp. 125–139.

[37] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, ‘‘A novel dynamic Android
malware detection system with ensemble learning,’’ IEEE Access, vol. 6,
pp. 30996–31011, 2018.

[38] Z. Yuan, Y. Lu, and Y. Xue, ‘‘Droiddetector: Android malware characteri-
zation and detection using deep learning,’’ Tsinghua Sci. Technol., vol. 21,
no. 1, pp. 114–123, Feb. 2016.

[39] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos, ‘‘HADM: Hybrid analysis
for detection of malware,’’ in Proc. SAI Intell. Syst. Conf. Springer, 2016,
pp. 702–724.

[40] P. Zegzhda, D. Zegzhda, E. Pavlenko, and G. Ignatev, ‘‘Applying deep
learning techniques for Android malware detection,’’ in Proc. 11th Int.
Conf. Secur. Inf. Netw., 2018, pp. 1–8.

[41] M.Ganesh, P. Pednekar, P. Prabhuswamy,D. S. Nair, Y. Park, andH. Jeon,
‘‘CNN-based Android malware detection,’’ in Proc. Int. Conf. Softw.
Secur. Assurance (ICSSA), Jul. 2017, pp. 60–65.

181124 VOLUME 8, 2020

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

[42] T. H.-D. Huang and H.-Y. Kao, ‘‘R2-D2: ColoR-inspired convolutional
NeuRal network (CNN)-based Android malware detections,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 2633–2642.

[43] L. Shiqi, T. Shengwei, Y. Long, Y. Jiong, and S. Hua, ‘‘Android malicious
code classification using deep belief network,’’ KSII Trans. Internet Inf.
Syst., vol. 12, no. 1, 2018.

[44] Y.-S. Yen and H.-M. Sun, ‘‘An Android mutation malware detection
based on deep learning using visualization of importance from codes,’’
Microelectron. Rel., vol. 93, pp. 109–114, Feb. 2019.

[45] Z. Xu, K. Ren, S. Qin, and F. Craciun, ‘‘CDGDroid: Android malware
detection based on deep learning using CFG andDFG,’’ inProc. Int. Conf.
Formal Eng. Methods. Springer, 2018, pp. 177–193.

[46] A. Pektaş and T. Acarman, ‘‘Deep learning for effective Android malware
detection using API call graph embeddings,’’ Soft Comput., vol. 24, no. 2,
pp. 1027–1043, 2019.

[47] D. Li, Z. Wang, and Y. Xue, ‘‘Fine-grained Android malware detection
based on deep learning,’’ in Proc. IEEE Conf. Commun. Netw. Secur.
(CNS), May 2018, pp. 1–2.

[48] Y. Fang, Y. Gao, F. Jing, and L. Zhang, ‘‘Android malware familial
classification based on DEX file section features,’’ IEEE Access, vol. 8,
pp. 10614–10627, 2020.

[49] F.Mercaldo andA. Santone, ‘‘Deep learning for image-basedmobilemal-
ware detection,’’ J. Comput. Virol. Hacking Techn., vol. 16, pp. 157–171,
2020.

[50] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
‘‘IMCFN: Image-based malware classification using fine-tuned convolu-
tional neural network architecture,’’ Comput. Netw., vol. 171, Apr. 2020,
Art. no. 107138.

[51] Y. Sun, Y. Chen, Y. Pan, and L. Wu, ‘‘Android malware family classifica-
tion based on deep learning of code images,’’ IAENG Int. J. Comput. Sci.,
vol. 46, no. 4, 2019.

[52] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang, Q. Zheng,
and T. Liu, ‘‘Frequent subgraph based familial classification of Android
malware,’’ in Proc. IEEE 27th Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2016, pp. 24–35.

[53] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto,
‘‘Stealth attacks: An extended insight into the obfuscation effects
on Android malware,’’ Comput. Secur., vol. 51, pp. 16–31,
Jun. 2015.

[54] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and
H. S. Seung, ‘‘Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit,’’ Nature, vol. 405, no. 6789, pp. 947–951,
Jun. 2000.

[55] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. COMPSTAT. Springer, 2010, pp. 177–186.

[56] S. Lange and M. Riedmiller, ‘‘Deep auto-encoder neural networks in
reinforcement learning,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2010, pp. 1–8.

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[58] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

[59] R. Nix and J. Zhang, ‘‘Classification of Android apps and malware using
deep neural networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
May 2017, pp. 1871–1878.

[60] J. T. Juwono, C. Lim, and A. Erwin, ‘‘A comparative study of behavior
analysis sandboxes in malware detection,’’ in Proc. Int. Conf. New Media
(CONMEDIA), 2015, p. 73.

[61] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, ‘‘DREBIN: Effective and explainable detection of
Android malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014,
pp. 23–26.

[62] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characteriza-
tion and evolution,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 95–109.

[63] Y. Li, J. Jang, X. Hu, and X. Ou, ‘‘Android malware clustering through
malicious payload mining,’’ in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses. Springer, 2017, pp. 192–214.

[64] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis
of current Android malware,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Springer, 2017, pp. 252–276.

[65] M. Lindorfer, M. Neugschwandtner, and C. Platzer, ‘‘MARVIN: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., vol. 2,
Jul. 2015, pp. 422–433.

[66] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, ‘‘Android botnets:
What URLs are telling us,’’ in Proc. Int. Conf. Netw. Syst. Secur. Springer,
2015, pp. 78–91.

[67] R. A. Nix, ‘‘Applying deep learning techniques to the analysis of Android
APKs,’’ Tech. Rep., 2016.

[68] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein,
and Y. Le Traon, ‘‘AndroZoo++: Collecting millions of Android apps and
their metadata for the research community,’’ 2017, arXiv:1709.05281.
[Online]. Available: http://arxiv.org/abs/1709.05281

[69] K. Zhao, D. Zhang, X. Su, and W. Li, ‘‘Fest: A feature extraction and
selection tool for Android malware detection,’’ in Proc. IEEE Symp.
Comput. Commun. (ISCC), Jul. 2015, pp. 714–720.

[70] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, ‘‘MAST: Triage for
market-scale mobile malware analysis,’’ in Proc. 6th ACM Conf. Secur.
Privacy Wireless Mobile Netw., 2013, pp. 13–24.

[71] A. Shabtai and Y. Elovici, ‘‘Applying behavioral detection on android-
based devices,’’ in Proc. Int. Conf. Mobile Wireless Middlew., Operating
Syst., Appl. Springer, 2010, pp. 235–249.

[72] Z. Guoyin, Q. Jiaxing, and L. Xiaoguang, ‘‘Android malicious behavior
detection method based on Bayesian network,’’ Comput. Eng. Appl.,
vol. 52, no. 17, pp. 16–23, 2016.

[73] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, ‘‘Mobile malware detection through analysis of deviations
in application network behavior,’’ Comput. Secur., vol. 43, pp. 1–18,
Jun. 2014.

[74] W. Cong, Z. Renbin, and L. Gang, ‘‘Bayesian Android malware detection
technology based on correlation features,’’ Comput. Appl. Softw., vol. 34,
no. 1, pp. 286–292, 2017.

[75] X. Yanping, W. Chunhua, H. Meijia, Z. Kangfeng, and Y. Shan, ‘‘Android
malicious application detection technology based on improved naive
Bayes,’’ J. Beijing Univ. Posts Telecommun., vol. 39, no. 2, pp. 43–47,
2016.

[76] Z. Siqi, ‘‘Android malware detection based on improved Bayesian
classification,’’ Radio Commun. Technol., vol. 40, no. 6, pp. 73–76,
2014.

[77] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, ‘‘Malware
images: Visualization and automatic classification,’’ in Proc. 8th Int.
Symp. Vis. Cyber Secur., 2011, pp. 1–7.

[78] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[79] D. Zhu, H. Jin, Y. Yang, D.Wu, andW. Chen, ‘‘DeepFlow: Deep learning-
based malware detection by mining Android application for abnormal
usage of sensitive data,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jul. 2017, pp. 438–443.

[80] W. Li, Z. Wang, J. Cai, and S. Cheng, ‘‘An Android malware detection
approach using weight-adjusted deep learning,’’ in Proc. Int. Conf. Com-
put., Netw. Commun. (ICNC), Mar. 2018, pp. 437–441.

[81] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[82] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2012,
arXiv:1212.5701. [Online]. Available: http://arxiv.org/abs/1212.5701

[83] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
‘‘Adversarial perturbations against deep neural networks for mal-
ware classification,’’ 2016, arXiv:1606.04435. [Online]. Available:
http://arxiv.org/abs/1606.04435

[84] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
‘‘Adversarial examples for malware detection,’’ in Proc. Eur. Symp. Res.
Comput. Secur. Springer, 2017, pp. 62–79.

[85] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199. [Online]. Available: http://arxiv.org/abs/1312.6199

[86] J. Yan, Y. Qi, and Q. Rao, ‘‘Detecting malware with an ensemble
method based on deep neural network,’’ Secur. Commun. Netw., vol. 2018,
pp. 1–16, Mar. 2018.

[87] H. Li, S. Zhou, W. Yuan, J. Li, and H. Leung, ‘‘Adversarial-example
attacks toward Androidmalware detection system,’’ IEEE Syst. J., vol. 14,
no. 1, pp. 653–656, Mar. 2020.

VOLUME 8, 2020 181125

Z. Wang et al.: Review of Android Malware Detection Based on Deep Learning

[88] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, ‘‘Yes, machine learning can be
more secure! A case study on Android malware detection,’’ IEEE Trans.
Dependable Secure Comput., vol. 16, no. 4, pp. 711–724, Jul. 2019.

[89] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, ‘‘Evasion attacks against machine learning at
test time,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Springer, 2013, pp. 387–402.

[90] D. Hu, Z. Ma, X. Zhang, P. Li, D. Ye, and B. Ling, ‘‘The concept drift
problem in Android malware detection and its solution,’’ Secur. Commun.
Netw., vol. 2017, pp. 1–13, 2017.

[91] Z.Wang,M. Tian, X. Zhang, J.Wang, Z. Liu, C. Jia, and I. You, ‘‘A hybrid
learning system to mitigate botnet concept drift attacks,’’ J. Internet
Technol., vol. 18, no. 6, pp. 1419–1428, 2017.

[92] X. Wang, Z. Wang, W. Shao, C. Jia, and X. Li, ‘‘Explaining concept
drift of deep learning models,’’ in Proc. Int. Symp. Cyberspace Saf. Secur.
Springer, 2019, pp. 524–534.

[93] Z. Wang, M. Qin, M. Chen, C. Jia, and Y. Ma, ‘‘A learning evasive
email-based P2P-like botnet,’’ China Commun., vol. 15, no. 2, pp. 15–24,
Feb. 2018.

[94] K. Xu, Y. Li, R. H. Deng, and K. Chen, ‘‘DeepRefiner: Multi-layer
Android malware detection system applying deep neural networks,’’
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Apr. 2018,
pp. 473–487.

[95] J. Shen, X. Zhu, and D. Ma, ‘‘TensorClog: An imperceptible poison-
ing attack on deep neural network applications,’’ IEEE Access, vol. 7,
pp. 41498–41506, 2019.

[96] M. Zhao, B. An, W. Gao, and T. Zhang, ‘‘Efficient label contamina-
tion attacks against black-box learning models,’’ in Proc. IJCAI, 2017,
pp. 3945–3951.

[97] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, ‘‘Is
feature selection secure against training data poisoning?’’ in Proc. Int.
Conf. Mach. Learn., 2015, pp. 1689–1698.

[98] J. Steinhardt, P. W. W. Koh, and P. S. Liang, ‘‘Certified defenses for
data poisoning attacks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 3517–3529.

[99] S. Shen, S. Tople, and P. Saxena, ‘‘AUROR: Defending against poisoning
attacks in collaborative deep learning systems,’’ inProc. 32nd Annu. Conf.
Comput. Secur. Appl., 2016, pp. 508–519.

[100] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, ‘‘Practical black-box attacks against machine learning,’’ in
Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 506–519.

[101] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia, X. Xing, X. Liu, and
C. L. Giles, ‘‘Adversary resistant deep neural networks with an applica-
tion tomalware detection,’’ inProc. 23rd ACMSIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2017, pp. 1145–1153.

[102] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
‘‘Graph neural networks: A review of methods and applications,’’ 2018,
arXiv:1812.08434. [Online]. Available: http://arxiv.org/abs/1812.08434

[103] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, ‘‘How powerful are
graph neural networks?’’ 2018, arXiv:1810.00826. [Online]. Available:
http://arxiv.org/abs/1810.00826

ZHIQIANG WANG was born in China, in 1985.
He received the Ph.D. degree in information secu-
rity from Xidian University. He is currently an
Assistant Professor with the Department of Com-
puter Science and Technology. His research inter-
ests include system security and network security.

QIAN LIU received the B.Eng. degree in elec-
tronic information engineering from North China
Electric Power University, Beijing, China, in 2018.
He is currently pursuing the master’s degree in
electronics and communication engineering. His
current research interests include deep learning
and information security.

YAPING CHI was born in China in 1969. She
received the master’s degree in computer science
and technology from the Beijing University of
Technology. She is currently a Professor with
the Department of Cyberspace Security, Beijing
Electronic Science and Technology Institute. Her
research interests include network security and
cloud computing security.

181126 VOLUME 8, 2020

