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ABSTRACT Congestion road condition is an important factor that must be considered in urban traffic path
planning, while most path planning algorithms only consider the distance factor, which is not suitable for the
current complex urban traffic congestion road condition. In order to solve the above problems, this article
proposes a dynamic path planning method based on improved ant colony algorithm in congested traffic.
The method quantifies the main attributes of urban road length, number of lanes, incoming and outgoing
traffic flow, and introduces the road factor used for replacing the distance parameters of particle swarm
optimization and ant colony algorithm. In the method, the particle swarm algorithm can effectively optimize
the parameters of the ant colony algorithm, and significantly improve the efficiency of ant colony algorithm,
such that it is more applicable for dynamic path planning application to greatly reduce the congestion rate of
path planning. In addition, this article selects some intersections in the Beijing area to carry out the dynamic
path planning experiment based on the improved ant colony algorithm under congested road conditions.
The experimental results show that, compared with the ant colony algorithm based on distance parameter,
the proposed dynamic path planning method can effectively reduce the average congestion rate ranging from
9.73% to 13.63%.

INDEX TERMS Traffic congestion, road condition factor, ant colony algorithm, particle swarm optimiza-
tion, path planning.

I. INTRODUCTION
With the rapid development of the economy and the rapid
growth of urban car ownership, traffic congestion has become
a serious problem faced by all large and medium-sized cities.
Relieving traffic congestion and rationally planning travel
routes have become hot research topics in the field of urban
transportation [1]–[3].

In the application of urban traffic path planning, the exist-
ing algorithms can just find the shortest path between two
points in the traffic road network while rarely considering the
impact of the traffic environment. However, in the practical
urban traffic, a path may be the shortest path but it is not
necessarily the optimal one. This is because in the shortest
path, there are often some traffic congestion issues to be
considered, such as heavy traffic, high traffic density, and
slow vehicle. These factors may seriously affect travel effi-
ciency, further affect whether the selected path is the shortest
path. At present, as a common problem for various large
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and medium-sized cities, congested road conditions in traffic
congestion have become an important factor that must be
considered in urban traffic path planning [4], [5].

The path planning algorithms for urban traffic mainly
include Dijkstra [6], Floyd [7], A* [8], D* [9] and genetic
algorithm [10]. With the development of urban traffic infras-
tructure, the growth of urban car ownership, the highly com-
plicated factor of the situation of traffic roads and the rapidly
increasing computational complexity of path planning, most
of the above-mentioned path planning algorithms seem not
to be appropriate for the urban traffic. This is due to the
fact that the Dijkstra algorithm and Floyd algorithm have the
issues of prohibitive computation efficiency and heavy space
complexity, the A* algorithm is greatly suffered from the
influence of the selected evaluation function, the D* algo-
rithm also has a problem of high computation complexity,
and the genetic algorithm has a hard problem of selecting
genetic operators. As the capability of fast computing speed
and good optimization, the ACO (Ant Colony Algorithm)
[11]–[13] and PSO (Particle Swarm Optimization) [14]–[16]
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are generally deemed to be more suitable for path planning
than other algorithms, which has been popular and applied in
the path planning. However, the existing ACO algorithms use
the positive feedback and heuristically probabilistic search
method. Such a method makes it difficult for ACO algo-
rithm to fall into a local optimum. That is, it is easy to
find a globally optimal solution, whereas the convergence
of ACO algorithm is slower when the search space tends
to be larger. Besides, although the existing PSO algorithms
have some desirable characteristics, such as few parameters,
collaborative search, and fast convergence, the local search
ability of PSO algorithm is much limited, which leads not
to ensuring that the global optimal solution can be found.
Furthermore, most existing ACO and PSO algorithms are
distance-based path planning algorithms, which are not suit-
able for the current complicated urban traffic congestion
road conditions due to the neglect of practical road condition
factor.

Aiming to considering the practical condition factor into
dynamic path planning under congested road conditions, our
main contributions are as follows:
• This article conducts a comprehensive evaluation of
the main attributes of urban roads, models traffic con-
ditions concerning the urban traffic congestion index,
and proposes the concept of road conditions fac-
tors to replace the distance parameters in traditional
path planning algorithms, which can more accurately
describe the cost from one intersection to another
intersection.

• This article proposes a dynamic path planning method
based on improved ant colony algorithm in congested
roads. This method combines the advantages of particle
swarm optimization (PSO) and ant colony optimization
(ACO), and replaces the distance parameter in the two
algorithms with the road condition factor, which is more
suitable for dynamic path planning in congested roads.

• In the practical experimental simulations, we choose
some intersections in Beijing to conduct dynamic path
planning experiments, which results show that our pro-
posed method can improve the effectiveness and accu-
racy of path planning under congested road conditions
since it considers the dynamic changes of traffic condi-
tions and traffic congestion. Also, under congested road
conditions, compared with the ACO algorithm based on
distance parameter, the dynamic path planning method
based on the improved ant colony algorithm proposed
in this article can reduce the average congestion rate
ranging from 9.73% to 13.63%.

Organization: In Section II, the related works including
ant colony algorithm, particle swarm optimization and com-
bining algorithms are introduced. Section III presents the
basic knowledge of the used algorithms. Section IV presents
the algorithm improvement containing the basic idea and road
condition factor. In Section V, the simulation experiment
is shown to our practicability of our scheme. Section VI
summarizes the conclusion of this manuscript.

II. RELATED WORK
Urban traffic path planning is mainly to quickly find the
shortest path between two points in the traffic network, which
can be divided into static path planning and dynamic path
planning.

Static path planning algorithms mainly include Dijk-
stra [6], Floyd [7], A* [8], etc. Dijkstra algorithm is a typical
single-source shortest path algorithm, which requires that
there is no negative edge weight in the graph. Floyd algorithm
is to find the shortest path between any two points, which
can correctly deal with the shortest path problem of directed
graph or negative weight. The A* algorithm combines the
merits of Dijkstra and BFS (Breadth First Search) in the
algorithm, and can find a shortest path faster.

Dynamic path planning algorithms mainly include D* [9],
genetic Algorithm [10], ACO(Ant Colony Algorithm)
[11]–[13], PSO (Particle Swarm Optimization) [14]–[16],
etc. D* algorithm is a heuristic path search algorithm, which
can carry out dynamic search and is suitable for situations
where the surrounding environment is unknown or dynamic
changes exist in the surrounding environment. Genetic algo-
rithm is a method to find the optimal solution by simulating
the natural evolution process, which is suitable for solving
complex optimization problems and has strong robustness.
The ant colony algorithm was proposed by Italian scholars-
Dorigo, Maniezzo and Colorni by simulating ant colony for-
aging behavior. It is a population-based simulation evolution
algorithm. The basic idea of the algorithm is derived from
the shortest path principle of ants foraging in nature. The
particle swarm algorithm was proposed by Dr. Eberhart and
Dr. Kennedy in 1995, and it is a swarm intelligence algorithm
designed to simulate the predation behavior of birds. Its
basic idea is to share information of individuals in the group,
resulting that the movement of the entire group evolves from
disorder to order.

With the development of urban traffic infrastructure,
the growth of urban car ownership, the highly complicated
factor of the situation of traffic roads and the rapidly increas-
ing computational complexity of path planning, most of the
above-mentioned path planning algorithms seem not to be
appropriate for the urban traffic. This is due to the fact
that the Dijkstra algorithm and Floyd algorithm have the
issues of prohibitive computation efficiency and heavy space
complexity, the A* algorithm is greatly suffered from the
influence of the selected evaluation function, the D* algo-
rithm also has a problem of high computation complexity,
and the genetic algorithm has a hard problem of select-
ing genetic operators. As the capability of fast computing
speed and good optimization, the ACO (Ant Colony Algo-
rithm) and PSO (Particle Swarm Optimization) are generally
deemed to be more suitable for path planning than other
algorithms, which has been popular and applied in the path
planning.

Although the ant colony algorithm can find the global
optimal solution, it is prone to stagnation and has a high
time complexity. Moreover, the ant colony algorithm is a
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TABLE 1. Performance comparisons among similar schemes.

typical probabilistic algorithm. Several important parame-
ters in the algorithm usually need to be determined through
repeated experiments, which makes the optimization of the
algorithm difficult [17]–[20]. Although the particle swarm
optimization algorithm is easy to fall into the local optimum,
it has a low time complexity [21], [22]. Therefore, combining
the ant colony algorithm with the particle swarm algorithm
to form an ACO-PSO combined algorithm is a commonly
chosen way in the field of urban traffic path planning
research [23], [24].

In terms of the combined research of particle swarm opti-
mization and ant colony algorithm, Min et al. used PSO to
optimize ACO’s α and β parameters [25]. Cai et al. also
utilized PSO to optimize ACO’s β, q0 and ρ [26]. Sun et al.
used PSO to optimize ACO’s α, β, ρ and γ [27] Based on
PSO, Xie et al. proposed the optimal combination of ACO
parameters [28]. Shi applied ACO-PSO in the path planning
problem [29]. Gigras et al. proposed the hybrid ACO-PSO
technology for path planning [30]. Pal et al. improved the
hybrid ACO-PSO [31]. Ouyang et al. proposed an improved
PSO-ACO algorithm to solve the large scale TSP prob-
lem [32]. Shuang et al. studied the hybrid PSO-ACO algo-
rithm [33]. These results solved the problem of randomization
of the parameters in the ACO algorithm. The PSO algorithm
was used to determine and optimize the different parameters
of the ACO algorithm, which improved the efficiency of the
ACO algorithm.

Although the above articles have proposed a combination
of particle swarm optimization and ant colony algorithm to
solve the problem of path planning, they are all distance-
based path planning algorithms, which are not suitable for the
current complicated urban traffic congestion road conditions.
Besides, in terms of traffic congestion discrimination, there
are three algorithms: coil based traffic congestion discrim-
ination, traffic video based traffic congestion discrimination
and vehicle GPS data based traffic congestion discrimination.
However, studies on urban traffic path planning and traffic
congestion discrimination are independent at present, and few
algorithms take traffic congestion into account in urban traffic
path planning. The detailed performance comparison among
similar schemes could be found in TABLE 1.

III. PRELIMINARIES
In the process of ant searching, there are two mathematical
models introduced as follows: transfer probability model and
pheromone update model.

A. TRANSFER PROBABILITY MODEL
The transfer probability model describes the probability of
ants moving from point i to point j at time t , which is used to
determine the direction of ants’ next movement, as shown in
formulas (1) and (2).

pkij =


[τij(t)]α ∗ ηij(t)]β∑

s∈Jk (i)[τis(t)]
α ∗ ηis(t)]β

, j ∈ Jk (i)

0, j /∈ Jk (i)
(1)

ηij(t) =
1
dij

(2)

Here, τij(t) represents the pheromone on the road (i, j) at
time t . α is the pheromone factor ηij(t) represents expec-
tation from point i to j. β is the heuristic function factor.
Jk represents set of points the ant k heads for. dij represents
the distance between points i and j.

The pheromone model describes how the pheromone of all
paths is updated, as shown in formulas (3), (4), (5).

τij(t + n) = (1− ρ) ∗ τij(t)+1τij (3)

1τij =

m∑
k=1

1τ kij (4)

1τ kij =


Q
Lk
, if the ant passed (i, j)

0, otherwise
(5)

Here, ρ represents the volatilization rate of pheromone
from t to t + n. 1τij represents the increment of pheromone
concentration on the path (i, j) in this iteration. 1τ kij repre-
sents the pheromone concentration left by ant k on path (i, j)
in this iteration. Q is a constant. Lk represents the length of
the path that ant k has traveled during this tour.

The steps of the ant colony algorithm are as follows:
1) Initialization: Set parameters, t = 0,τij(t) = C ,

1τij = 0.
2) Ant placement: m ants are randomly placed at n points.

For each ant, Jk is a set of all points except the starting
point of ant k .

3) Path selection: Calculate the probabilities of ant k from
i to j (j ∈ Jk (i)) according to the transition probabil-
ity formula, select a point as the next destination and
remove the point from Jk .

4) Pheromone update: When ant k walks the city and
returns to the starting point, it obtains the current
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optimal path and updates the pheromonematrix accord-
ing to the pheromone update formula.

5) Exit: If the number of iterations is greater than thresh-
old or the best path has not changed for a long time,
the best path is found. Otherwise return to 3).

B. TRANSFER PROBABILITY MODEL
The particle swarm algorithm involves two models: velocity
update model and position update model.

Each particle has two attributes, namely velocity Vi =
(vi1, vi2, . . . , vid ) and position Xi = (xi1, xi2, . . . , xid ),
and the best position experienced pbesti = (pbesti1,
pbesti2, . . . , pbestid ).
The entire particle swarm records the best locations

gbesti = (gbesti1, gbesti2, . . . , gbestid ) that the entire pop-
ulation has ever experienced. Then, each particle will update
its speed and position according to the speed update formula
(6) and position update formula (7).

vi(t + 1) = wvi(t)+ c1r1(pbesti − xi(t))

+ c2r2(gbesti − xi(t)) (6)

xi(t + 1) = xi(t)+ vi(t) (7)

Here, vi(t) represents the flight speed of particle i at the
iteration t . xi(t) represents the position of particle i at the
iteration t; w is a weight to adjusts the search range of
the solution space. c1 and c2 are the acceleration constant to
adjusts the maximum learning step. r1 and r2 are two random
functions. pbest1 represents the best position of the particle i
and gbest1 indicates the best position of the population.
The steps of the particle swarm algorithm are as follows:
1) Initialize a group of particles (group size is m), includ-

ing random position, velocity, pbest and gbest;
2) For each particle, update its velocity and position

according to the velocity update formula and position
update formula, and then calculate its adaptive value;

3) For each particle, compare its adaptive value with the
best position pbest it has experienced, and if it is better,
set it as the current optimal position pbest;

4) For each particle, compare its adaptive value with the
best position gbest experienced globally, and if it is
better, set it as gbest;

5) If the end condition is not satisfied (condition is usually
threshold of adaptation value or threshold of maximum
number of iterations), return to 2). Otherwise output
gbest .

IV. ALGORITHM DESIGN
A. BASIC IDEA
In the existing urban traffic road network modeling, the phys-
ical distance between two intersections is usually used as
a measure of the distance between the two intersections.
But in the practical urban traffic environment, the road con-
ditions are much complicated. Urban traffic conditions not
only include the length of the road, but also include various
attributes such as the number of lanes, entering traffic, exiting

traffic, and traffic accidents. The greater the urban traffic flow
is and the more complex the traffic conditions are, the greater
the likelihood of traffic congestion is. If the path planning is
based solely on the physical length of the road, the complex
and changeable road conditions of urban traffic are simplified
and the optimal solution cannot be found easily.

The basic idea of the dynamic path planning method pro-
posed in this article under congested road conditions mainly
includes the following three points:

1) Comprehensive evaluation of the main attributes of
urban roads is a criterion for measuring the distance
between two intersections.

2) Introduce the comprehensive evaluation value of the
main attributes of urban roads into the PSO algorithm,
which is used to quickly train three parameters α, β,
and ρ of the ant colony algorithm, where α represents
the importance of each point. β represents the impor-
tance of heuristic information. ρ is the volatilization
rate of the pheromone within a certain period.

3) Introduce the comprehensive evaluation value of the
main attributes of urban roads into the ACO algorithm,
which is used to calculate transition probability and
update pheromone.

This method fully considers that under urban traffic con-
gestion road conditions, the length of the road is not the only
criterion for measuring the distance of the path. At the same
time, the proposedmethod takes advantage of the ACO−PSO
combined algorithm, resulting in a quick convergence and
global optimal solution.
Remark: Three important parameters are involved in our

designed scheme, such as α, β, ρ. These three parameters
directly affect the efficiency of the designed algorithm. The
fundamental reason leading to this is that these three param-
eters have a large adjustable range. Hence, it is necessary
to reduce the adjustable range as much as possible. As an
alternative tool, PSO can significantly reduce the range of
this parameter, and can quickly optimize the solution speed
compared to other algorithms such as the F-Race. The func-
tions of these parameters in an ACO algorithm are described
as follows: (1) For α, it reflects the intensity of pheromone
factors. The larger the value, the greater the possibility that
the ants will choose the path they have walked before. In other
words, the randomness of the search will be weakened. When
the value is much larger, the search of the ant colony will
fall into the local optimum prematurely; On the contrary,
when the value is much smaller, the randomness of the search
seems to be enhanced and the algorithm convergence speed
slows down. (2) For β, it reflects the intensity of a prior and
deterministic factors. The larger the value, the greater the
probability that the ants will choose the local shortest path
at a certain local point. In other words, the randomness of
the algorithm is weakened, thus it is easy to fall into the
local optimum; while the smaller the value, it will cause the
ant colony to fall into pure random search, thus resulting in
that it is difficult to find optimal solution. (3) For ρ, it is
directly related to the global search ability of the ant colony
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TABLE 2. Traffic Congested Index.

algorithm and its convergence speed. When it is relatively
larger, because the positive feedback of information domi-
nates, it is too likely that the previously searched path will be
selected again, and the randomness of the search is weakened;
on the contrary, when it is much smaller, the role of positive
feedback of information is relatively weak. The randomness
of search process will be enhanced, so the convergence speed
of ant colony algorithm is very slow.

B. ROAD CONDITION FACTOR
In this article, we first comprehensively evaluate the main
attributes of urban roads as a measure of the distance between
two intersections.We build an urban traffic congestionmodel.
The model integrates the main attributes, such as urban road
length, the number of lanes, inbound traffic, outbound traffic,
etc, to jointly construct a road condition factor R. The road
condition factor is used to replace the length of the road. The
specific modeling and calculation methods are as follows.

1) Each intersection is a point and each road is an edge.
2) Define the congestion coefficient of road i at time t as

Ci(t) shown in formula (10);

Ci(t) =


(fi(t − 1)+ fini(t)− fouti(t)) ∗ L

li ∗ di
,

if fi(t − 1)+ fini(t) > fouti(t)
0, if fi(t − 1)+ fini(t) ≤ fouti(t)

(8)

Here, fi(t−1) represents the number of vehicles on road
i at the time t − 1. fini(t) represents the traffic flow on
road i at time t . fouti(t) represents the traffic flow on
road i at time t . The li represents the number of lanes
on road i. di represents the length of road i. L represents
the average length of each vehicle. If fi(t−1)+fini(t) −
fouti(t) is negative, then Ci(t) is equal to zero.

3) Define the road condition factor of road i at time t as
Ri(t), as shown in formula (11).

Ri(t) = di ∗ (1+ Ci(t)) (9)

That is, the road condition factor of road i at time t is
shown in formula (12).

Ri(t) = di ∗ (1+
(fi(t − 1)+ fini(t)− fouti(t)) ∗ L

li ∗ di
)

(10)

According to the ‘‘Urban Road Traffic Operation Eval-
uation Index System (Beijing Local Standard)’’ [34],
the main measure of traffic operation level is the
road traffic operation index TPI (Traffic Performance
Index), which ranges from 0 to 10. According to the
road traffic operation index, we divide the urban road

congestion into five grades, namely unobstructed, basi-
cally unblocked, mild congestion, moderate conges-
tion and severe congestion. The urban road conges-
tion index TCI (Traffic Congested Index) is defined as
in TABLE 2.

C. ALGORITHM STEPS
According to the basic ideas proposed in section 3.1,
we design a dynamic path planning method based on an
improved ant colony algorithm under congested road condi-
tions. The steps are as follows.

1) Initialize the map information, including the number of
intersections n and the number of roads m;

2) Set t = 0, and initialize R(0) = {R1(0), R2(2), . . . ,
Rm(0)};

3) Enter the starting and ending points {start, end}, ini-
tialize Rmax , 1Rmax , ar = 0. Here, Rmax represents
the maximum value of the road condition factor. C is a
constant and the value range is [0, 1],1Rmax represents
the maximum change of the road condition factor, and
1R is calculated as shown in formula (13). Ar indicates
the length of the path that has been traversed.

1Ri = Ri(t + 1)− R(t) (11)

4) Introduce R(0) into the PSO algorithm to replace the
distance between two particles, and calculate the three
parameters α, β, and ρ of the ACO algorithm to get the
besttour ;

5) Introduce Ri(t) into the ACO algorithm to replace di;
6) At time t + 1, calculate the values of Ri and 1Ri.

If 1Ri > 1Rmax or Ri > Rmax , then use the ACO
algorithm to get a new route newtour ;

7) If newtour < besttour−ar , then besttour = newtour+ar ,
ar = ar + Ri(t), t = t + 1;

8) If the path planning reaches the endpoint, output
besttour . Otherwise, return to step 5);

Remark: (1) Our ACO algorithm itself has certain limita-
tions. (2) Both the algorithm of PSO to optimize the ACO’s
parameter and the algorithm dynamic planning path increase
the complexity of the calculation to a certain extent. Cor-
respondingly, (1) the limitations of ACO algorithm: Due to
the large adjustment range of the ACO algorithm parameter
(0 ≤ α ≤ 5, 0 ≤ β ≤ 5, 0 ≤ ρ ≤ 1), inappropriate
parameter selection will lead to the slow convergence, easy
stagnation, and even longer searching time. (2) Using PSO
to optimize ACO parameters indeed can greatly reduce the
influence of the limitations of the ACO algorithm itself, but
this optimization process itself requires calculation time and
also increases the complexity of the calculation. Moreover,
dynamic planning path method indeed improves the accuracy
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of the optimal solution, whereas it is a real-time planning
route. During this process, the route is calculated multiple
times. This process also requires calculation time as well as
increases the computation complexity.

Besides, it is noted that in our scheme the cost effectiveness
of our ACO algorithm is linear with the number of ants and
intersections, and the times of iteration. When the iteration
times reaches a certain value, the cost effectiveness of our
scheme will tend to be stable. Hence, the computation com-
plexity can be expressed as O(n ∗ (n − 1)2 ∗ m ∗ T/2),
where n denotes the amount of intersections,m represents the
number of ants and T stands for the iteration times. In our
experiment, the runtime of our experimental result refers to
the time consumed from a random start-point to the end-
point or the time required to generate the best path within
the number of iterations. From the expression of computation
complexity, it is easy to observe that when the number of
ants and the number of intersections are constant, the com-
putation complexity and runtime are positively related with
the iteration times. In other words, the greater the number of
iterations, the greater the computational complexity and the
more time required.

V. SIMULATION EXPERIMENT
In this article, two simulation experiments are designed to
verify the validity of a dynamic path planning method based
on improved ant colony algorithm proposed in Section 3 on
congested roads.The first kind of simulation experiment is
ACO parameter optimization experiment based on PSO algo-
rithm. It is mainly used to verify the effectiveness of PSO
algorithm for ACO algorithm parameter optimization through
comparative analysis of ACO algorithm parameter random-
ization and optimization experiment.The second simulation
experiment is to select some intersections in Beijing area
for dynamic path planning experiment. The ACO algorithm
based on distance parameter and road condition factor is
compared and analyzed to verify the effectiveness of the
dynamic path planning method proposed in this article under
congested traffic conditions.

We run our experiments with a Lenove server that owns
500GB storage space of hard disk and implements on
Windows 10 operating system under Intel (R) Core (TM)
i7-4710HQ CPU @2.50 GHz and 8GB RAM. In the experi-
mental simulations for theACOparameter randomization and
parameter optimization experiments conducted in this article,
the number of ants was set to 10, and five classical data sets
of the TSPLIB database TSPLIB, eIL51, Berlin52, ST70,
KROD100 and LIN105, were selected as test data sets [35].

A. ACO PARAMETER OPTIMIZATION EXPERIMENT
BASED ON PSO ALGORITHM
In this article, two ACO parameter randomization exper-
iments and one parameter optimization experiment are
designed for comparison and verification. In the ACO param-
eter randomization experiment, the values of α, β, and ρ are
randomly selected within the setting range, and the values of

TABLE 3. The parameter randomization experiment 1.

TABLE 4. The parameter randomization experiment 2.

the three parameters will change with each iteration. In the
ACO parameter optimization experiment, the values of the
three parameters α, β, and ρ will be determined by the PSO
algorithm before the iteration, and will not change during
the iteration process. Because the ACO algorithm has a wide
range of parameter values, and the parameter values affect the
speed of convergence, in order to find the parameter setting
with the fastest convergence, the α, β, and ρ parameters of
ACO algorithm need to be optimized.

There are three measures in ACO parameter random-
ization experiments, including average iteration number
iterationaver , average best solution resultaver and deviation
rate deviationrate. Here, the calculation of the deviation rate
is shown in formula (12).

deviationrate =
|resultaver − resultbest |

resultbest
∗ 100 (12)

In the first experiment of ACO parameter randomization,
according to the conclusion obtained in the article by Jiang
et al’s work [36], the parameters are 0.1 ≤ α ≤ 0.3,
3 ≤ β ≤ 6 and 0.7 ≤ ρ ≤ 0.9. The accuracy of the three
parameters are 0.1. In each experiment, the values of α, β and
ρ are randomly selected within the setting range. When the
maximum number of iterations reaches 1000 or the optimal
solution does not change with 200 iterations, the experiment
exits. The results of ACO parameter randomization experi-
ment 1 are shown in TABLE 3.

In the second experiment of ACO parameter random-
ization, according to the conclusion obtained in Dorigo
et al’s [12], [13] and Jiang et al.’ s work [36], the parameters
are 0.5 ≤ α ≤ 1.5, 1 ≤ β ≤ 5 and 0.5 ≤ ρ ≤ 1. The
accuracy of the three parameters is 0.1. In each experiment,
the values of α, β and ρ are randomly selected within the set-
ting range. When the maximum number of iterations reaches
1000 or the optimal solution does not change with 200 itera-
tions, the experiment exits. The results of the ACO parameter
randomization experiment 2 are shown in TABLE 4.

In the ACO parameter optimization experiment, the PSO
algorithm is used to train the three parameters of the ACO
algorithm α, β and ρ for the different data sets within the
value range. According to the conclusion from [12], [13]
and [36], the range of parameters are 0.5 ≤ α ≤ 1.5,
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FIGURE 1. The ACO algorithm parameter randomization and parameter
optimization comparison experiment.

1 ≤ β ≤ 5 and 0.5 ≤ ρ ≤ 1. The accuracy of the
three parameters is 0.1. In each experiment, the values of
the three parameters α, β and ρ are determined by the PSO
algorithm before the iteration, and it will not change during
the experiment. When the maximum number of iterations
reaches 1000 or the optimal solution does not change with
200 iterations, the experiment exits. The results of the ACO
parameter optimization experiment are shown in TABLE 6.

The comparison results of ACO algorithm parameter ran-
domization experiment 1, experiment 2, and parameter opti-
mization experiment are shown in FIGURE 1.

From ACO algorithm parameter randomization
experiment 1 and 2 shown in TABLE 3 and TABLE 4,
it can be seen that the setting of parameters α, β and ρ
has great influence on the experimental results. In the same
number of iterations, there is a large gap between the average
best solution and the known best solution, which requires
multiple iterations to converge. Comparing with the results
of ACO algorithm parameter randomization experiment 1 and
experiment 2, it can be seen that the average optimal solution
obtained is closer to the known best solution than experi-
ment 1, because the experimental 2 parameter range is smaller
than experiment 1 parameter range.

The disadvantage of ACO algorithm is that it is easy to pro-
duce stagnation phenomenon and the search time is long. For
different path planning requirements, repeated experiments
and debugging are needed to obtain the optimal α, β and ρ
values and the best path planning results, but this will waste
a lot of time and lead to low efficiency of the algorithm.
In order to improve the effectiveness of ACO algorithm, PSO
algorithm is used to optimize the α, β and ρ parameters of
ACO algorithm.

From the comparison of ACO algorithm parameter opti-
mization experiment and parameter randomization experi-
ment shown in TABLE 4 and TABLE 5, it can be seen
that under the same conditions, after PSO algorithm opti-
mized parameters, the ACO algorithm used in path planning
obtained the average best solution is better than the ACO
algorithm experiment with parameter randomization, and the

TABLE 5. The parameter optimization experiment.

FIGURE 2. Congested road network in Beijing.

deviation rate is smaller.Therefore, it can be concluded that
the ACO algorithm after PSO optimization has better effect
and faster convergence speed than the ordinary ACO algo-
rithm in path planning.

From the comparative analysis of the above three experi-
ments, it can be seen that using the PSO algorithm to optimize
the α, β and ρ parameters of the ACO algorithm can effec-
tively improve the effectiveness and accuracy of the ACO
algorithm shown in FIGURE 1. Therefore, the congestion
proposed in this article In the dynamic path planning method
based on the improved ant colony algorithm under road
conditions, the PSO algorithm is first used to optimize the
parameters of the ACO algorithm.

B. DYNAMIC PATH PLANNING EXPERIMENT BASED ON
IMPROVED ANT COLONY ALGORITHM UNDER
CONGESTED ROAD CONDITIONS
In order to verify the effectiveness of the proposed dynamic
path planning method based on improved ant colony algo-
rithm in real congestion environment, this article uses real
traffic network and traffic flow data for simulation and com-
parison experiments.

According to the ‘‘2019Q3 China Major City Traffic
Analysis Report’’ [37] released by Gaode Map, among the
major cities in China, Beijing’s road network has been the
highest percentage of congested road mileage during peak
hours, reaching 8.55%. The average speed in Beijing during
peak hours is 25.65km/h. So we select some intersections
in Beijing for dynamic path planning experiments based on
improved ant colony algorithm under congested road condi-
tions. The specific selection area is shown in FIGURE 2.

According to the map-related information provided by
Gaode, the intersections of this area are regarded as points
and the connectivity between the intersections is regarded
as edges. According to the relative position and connection
between the intersections, we give a graph in FIGURE 3.
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TABLE 6. The dynamic path planning experiment based on improved ant colony algorithm under congested road conditions (congestion coefficient
follows uniform distribution).

FIGURE 3. The modeling of congested road networks in Beijing.

There are 38 intersections and 62 roads in this area. The
X-axis range is [0,700] and the Y-axis range is [0,500]. The
scale of the entire map is 1:10 meters. Hence, n in our
experiment refers to the number of random selections of two
intersections from 38 intersections as the experimental test
of dynamic path planning. For example, n = 500 means
500 paths are randomly selected from the number of samples
A238 = 1406 for our experimental test, here one path refers to
a road path from one start-point to one destination.

In this article, the intersections selected in the road network
are divided into edge intersections and non-edge intersec-
tions. Edge intersections refer to intersections with other
sources of traffic in the actual road network, including inter-
sections 0, 1, 2, 3, 4, 5, 6, 7, 14, 15, 22, 23, 29, 30, 31, 32, 33,
34, 35, 36, and 37, the remaining intersections are non-edge
intersections.

In the experiment, the traffic flow is randomly generated
at each edge intersection, and the traffic flow at each inter-
section in the road network is affected by the traffic volume
of the surrounding connected intersections. Taking the edge
intersection 0 as an example, the inbound traffic volume at
time t is equal to the sum of the traffic volume at intersec-
tion 1, intersection 7, and external inbound intersection (the
ratio of inbound and outbound traffic flow is less than or equal
to 1). The outbound traffic flow of at time t will go to intersec-
tion 1, intersection 7, and external intersection, according to

FIGURE 4. The traffic generation at edge intersections.

FIGURE 5. The traffic generation at non-edge intersections.

a random ratio as shown in FIGURE 4. Taking the non-edge
intersection 20 as an example, the inbound traffic at time t is
equal to the sum of the traffic volume at intersection 12, inter-
section 19, intersection 21, and intersection 27. The outbound
traffic at time t will go to intersection 12, intersection 19,
intersection 21, and intersection 27, according to a random
ratio (the ratio of inbound and outbound traffic flow is less
than or equal to 1) as shown in FIGURE 5.

In the dynamic path planning experiment based on the
improved ant colony algorithm under congested road con-
ditions, firstly define the initial path tour_init , static path
tour_static, dynamic path tour_aco, and dynamic path
tour_opt . The four definitions are shown in Table 6.
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FIGURE 6. Comparative experiment of dynamic path planning based on
improved ant colony algorithm under congested road conditions.

The initial path tour_init represents the sum of the road
condition factors, which is calculated by the PSO algorithm
during the initial path planning. The static path tour_static
represents the sum of the road condition factors, which is
obtained in the actual operation process. The dynamic path
tour_aco represents the sum of the road condition factors,
which is obtained by ACO algorithm whose parameters are
optimized by PSO. The dynamic path tour_opt represents
the sum of road condition factors, which is obtained by the
dynamic path planning method based on an improved ant
colony algorithm.

The comparison results of dynamic path planning
experiments based on improved ant colony algorithm under
congested road conditions are shown in FIGURE 6.

In the experiment, firstly theACO algorithm’s three param-
eters are obtained by the PSO algorithm. The parameters
are α = 1, β = 2.5, and ρ = 0.8. In each experiment,
the number of ants is 10, different starting and ending points
are randomly chosen and the number of iterations Q is 100.
Each experiment is executed n times, and the sum of the
road condition factors of the initial path tour_init , static
path tour_static, dynamic path tour_aco and dynamic path
tour_opt is obtained by averaging. The calculation formulas
are shown as (13), (14), (15), and (16).

tour_initaver =

∑n
i=0 tour_init(i)

n
(13)

tour_staticaver =

∑n
i=0 tour_static(i)

n
(14)

tour_acoaver =

∑n
i=0 tour_aco(i)

n
(15)

tour_optaver =

∑n
i=0 tour_opt(i)

n
(16)

The evaluation indicators of dynamic path planning
experiments based on an improved ant colony algorithm
under congested road conditions are CR_static, CR_aco,
CR_opt and CRpromote. CR_static is a static path planning

congestion rate. CR_aco is path planning congestion rate
when parameters are optimized by the ACO algorithm.
CR_opt is the congestion rate based on the improved ant
colony algorithm. CR_promote is the congestion promotion
rate. The calculation formulas are shown as (17), (18), (19)
and (20).

CR_static =
|tour_staticstatic − tour_initaver|

tour_initaver
(17)

CR_aco =
|tour_acoaver − tour_initaver|

tour_initaver
(18)

CR_opt =
|tour_optaver − tour_initaver|

tour_initaver
(19)

CR_promote =
|tour_acoaver − tour_optaver|

tour_acoaver
(20)

This article studies dynamic path planning under congested
road conditions. Therefore, if the entire planning path is a
clear path (ie. initial planning path= dynamic planning path,
Ci(t) ∈ [0, 4)), it is considered as an invalid experiment
result. There are three experiments in this article. In the
first two experiments, the congestion coefficients of each
road segment in the road network respectively follow the
uniform distribution and normal distribution of [0, 1] and the
congestion coefficients will change with time. In the third
experiment, the congestion coefficient of each road segment
in the road network was subject to the traffic situation which
is provided by Gaode Maps during the peak working hours
of the region at the working day. The experimental results are
shown in TABLE 5, TABLE 7, and TABLE 8.

It can be seen from the experimental results in TABLE 6
that when the traffic congestion coefficient obeys the average
distribution, PSO algorithm used for initial path planning
will result in a congestion rate of 8.07% ∼ 9.69%; If taking
the distance between the two points as the parameter of the
ACO algorithm for dynamic path planning, a congestion rate
of 11.09%∼14.54% is generated by using the ACO algo-
rithm; If taking the road condition factor between the two
points as the parameter, the dynamic path planning method
of ant colony algorithm finally produced only 1.84%∼2.70%
congestion rate. Compared with the ACO algorithm based
on distance parameter, the congestion rate can be decreased
by 7.97%∼11.09%.

It can easily be observed from the experimental results in
TABLE 7 that when the traffic congestion coefficient obeys
the normal distribution, PSO algorithm used for initial path
planning will result in a congestion rate of 10.16%∼ 12.16%;
If also taking the distance between the two points as the
parameter of the ACO algorithm for dynamic path plan-
ning, a congestion rate of 13.60%∼17.15% is generated by
using the ACO algorithm; If taking the road condition factor
between the two points as the parameter, the dynamic path
planning method of ant colony algorithm finally produced
only 1.95%∼2.48% congestion rate. Comparedwith theACO
algorithm based on distance parameter, the congestion rate
can be decreased by 10.23%∼12.52%.
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TABLE 7. The dynamic path planning experiment based on improved ant colony algorithm under congested road conditions (congestion coefficient
follows normal distribution).

TABLE 8. Dynamic path planning experiment based on improved ant colony algorithm under congested road conditions(congestion coefficient follows
the traffic situation of Gaode map).

It can be easily found from the experimental results in
TABLE 8 that when the traffic congestion coefficient obeys
the traffic situation of the Gaode map, PSO algorithm used
for initial path planning will result in a congestion rate
of 14.69%∼16.25%; If also taking the distance between
the two points as the parameter of the ACO algorithm for
dynamic path planning, a congestion rate of 16.31%∼19.12%
is generated by using the ACO algorithm; If taking the road
condition factor between the two points as the parameter,
the dynamic path planning method of ant colony algorithm
finally produced only 1.47%∼3.32% congestion rate. Com-
pared with the ACO algorithm based on distance parameter,
the congestion rate can be decreased by 12.16%∼14.67%.
As depicted in Figure 6, it can be summarized that the

proposed dynamic path planning method based on improved
ant colony algorithm under congested road conditions can
make up for the existing path planning algorithm that does
not consider traffic conditions and traffic congestion dynamic
changes, and can improve congested road conditions.

To summarize, through the comparative analysis of the
above three experiments, it can be seen that the use of distance
parameter-based ACO algorithm for dynamic path planning
produces a higher congestion rate, which indicates that in
actual road conditions, the shortest path is not necessarily
the optimal one. Moreover, we can easily conclude that the
dynamic path planning method based on the improved ant
colony algorithm proposed in this article under congested

road conditions can dynamically avoid congested sections
and improve the accuracy of obtaining the optimal solution.
Also, it is suitable for dynamic path planning under congested
road conditions. Moreover, compared with the ACO algo-
rithm based on distance parameters, the average congestion
rate can be reduced by about 9.73% to 13.63%.

VI. CONCLUSION
In this article, various attributes in a complex traffic environ-
ment, including road length, number of lanes, inbound traffic
and outbound traffic, are quantified as road condition factors.
In congested road conditions, the road condition factor can
measure the cost of driving more accurately than the dis-
tance between intersections. In this article, the particle swarm
optimization algorithm is used to optimize the parameters of
the ant colony algorithm, so that the ant colony algorithm
can converge faster and query more efficiently. This article
also introduces the road condition factor into the parameter-
optimized ant colony algorithm for dynamic path planning.
The road condition factor is used to replace the road length
in the traditional ant colony algorithm. The experimental
results show that when the ant colony algorithm’s parame-
ters are optimized by particle swarm optimization algorithm,
the ant colony algorithm converge globally faster and the
trade off between the accuracy and efficiency of the ant
colony algorithm is good. Moreover, the experimental results
show that the proposed method can effectively improve the
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effectiveness and accuracy of path planning under congested
road conditions and significantly reduce the congestion rate.
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