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ABSTRACT Crime prediction is of great significance to the formulation of policing strategies and the
implementation of crime prevention and control. Machine learning is the current mainstream prediction
method. However, few studies have systematically compared different machine learning methods for crime
prediction. This paper takes the historical data of public property crime from 2015 to 2018 from a section of
a large coastal city in the southeast of China as research data to assess the predictive power between several
machine learning algorithms. Results based on the historical crime data alone suggest that the LSTM model
outperformed KNN, random forest, support vector machine, naive Bayes, and convolutional neural networks.
In addition, the built environment data of points of interests (POIs) and urban road network density are input
into LSTM model as covariates. It is found that the model with built environment covariates has better
prediction effect compared with the original model that is based on historical crime data alone. Therefore,
future crime prediction should take advantage of both historical crime data and covariates associated with

criminological theories. Not all machine learning algorithms are equally effective in crime prediction.

INDEX TERMS Prediction of crime hotspots, machine learning, LSTM, built environment.

I. INTRODUCTION

Spatiotemporal data related to the public security have been
growing at an exponential rate during the recent years.
However, not all data have been effectively used to tackle
real-world problems. In order to facilitate crime preven-
tion, several scholars have developed models to predict
crime [1]. Most used historical crime data alone to calibrate
the predictive models.

The research on crime prediction currently focuses on two
major aspects: crime risk area prediction [2], [3] and crime
hotspot prediction [4], [5]. The crime risk area prediction,
based on the relevant influencing factors of criminal activi-
ties, refers to the correlation between criminal activities and
physical environment, which both derived from the “rou-
tine activity theory” [6]. Traditional crime risk estimation
methods usually detect crime hotspots from the historical
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distribution of crime cases, and assume that the pattern
will persist in the following time periods [7]. For example,
considering the proximity of crime places and the aggre-
gation of crime elements, the terrain risk model tends to
use crime-related environmental factors and crime history
data, and is relatively effective for long-term, stable crime
hotspot prediction [2]. Many studies have carried out empir-
ical research on crime prediction in different time periods,
combining demographic and economic statistics data, land
use data, mobile phone data and crime history data. Crime
hotspot prediction aims to predict the likely location of future
crime events and hotspots where the future events would con-
centrate [8]. A commonly used method is kernel density esti-
mation [9]-[12]. A model that considers temporal or spatial
autocorrelations of past events performs better than those that
fail to account for the autocorrelation [13]. Recently machine
learning algorithms have gained popularity. The most popular
methods include K-Nearest Neighbor(KNN), random forest
algorithm, support vector machine (SVM), neural network
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and Bayesian model etc. [6]. Some compared the linear meth-
ods of crime trend prediction [14], some compared Bayesian
model and BP neural network [15], [16], and others compared
the spatiotemporal kernel density method with the random
forest method in different periods of crime prediction [12].
Among these algorithms, KNN is an efficient supervised
learning method algorithm [17], [18]. SVM is a popular
machine learning model because it can not only imple-
ment classification and regression tasks, but also detect out-
liers [4], [19]. Random forest algorithm has been proven to
have strong non-linear relational data processing ability and
high prediction accuracy in multiple fields [20]-[23]. Naive
Bayes (NB) is a classical classification algorithm, which
has only a few parameters and it is not sensitive to missing
data [15], [24]. Convolutional neural networks (CNN) has
strong expansibility, and can enhance its expression ability
with a very deep layer to deal with more complex classifica-
tion problems [25], [26]. Long Short-Term Memory (LSTM)
neural network extracts time-series features from features,
and has a significant effect on processing data with strong
time series trends [27]-[29]. This paper will focus on the
comparison of the above six machine learning algorithms,
and recommend the best performing one to demonstrate the
predictive power with and without the use of covariates.

Il. RELATED WORK

A. PRINCIPLES OF THEORETICAL CRIMINOLOGY IN
PREDICTION OF CRIME HOTSPOTS

The focus of crime hotspot prediction is to forecast future
concentration of criminal events in a geographical space.
Theoretical criminology provides the necessary theoretical
basis. Specifically, several related criminological theories not
only provide guidance for us to understand the important
influence of location factors in the formation and aggregation
of criminal events, but also provide a basic mechanism for the
police to use information of crime hot spots for crime pre-
vention or control. It mainly includes routine activity theory,
rational choice theory, and crime patterns theory. These three
theories are generally considered as the theoretical basis of
situational crime prevention.

Routine activity theory [30] was jointly proposed by Cohen
and Felson in 1979, and has now been further developed
through integration with other theories. This theory believes
that the occurrence of most crimes, especially predatory
crimes, needs the convergence of the three elements including
motivated offenders, suitable targets, and lack of ability to
defend in time and space.

Rational choice theory [31] was proposed by Cornish and
Clarke. The theory holds that the offender’s choices in terms
of location, goals, methods be explained by the rational bal-
ance of effort, risk and reward.

Crime pattern theory [32] integrates the routine activities
theory and the rational choice theory, which more closely
explains the spatial distribution of criminal events. Peo-
ple form ‘“‘cognitive map” and ‘‘activity space” through
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daily activities. At the same time, potential offenders also
need to use their cognitive maps and choose specific locations
for crimes in a relatively familiar space. When committing
a crime, the offender tends to avoid those places they don’t
know but to choose the places where the “criminal opportu-
nity overlaps with cognitive space” based on their rational
ability. The reason why these places become crime hotspots
is that they have the obvious characteristics of ““producing”
or “attracting” crime. Therefore, the environmental factors
of the places need to be considered besides historical crime
data for the prediction of crime hotspots.

B. BUILT ENVIRONMENT DATA

At present, a large number of studies show that the urban
built environment has a significant impact on urban criminal
behavior, through the impact of crime opportunities to reduce
and prevent crime. In the 2007 Global Habitat Report, it was
pointed out that the elements of the built environment have
an important impact on the occurrence of criminal acts [33].
Point of interests (POIs) data and road network density data
are considered as covariates in the crime prediction model.

1) POI DATA

The urban infrastructure data POI includes the location infor-
mation and attribute information of various urban facili-
ties [34], [35]. Catering facilities, shopping malls and stores
are usually located in places with convenient transportation
and large flow of people, gathering a large number of different
groups of people to generate the targets for the criminals,
while entertainment places attract criminals [36]. These POIs
are selected as covariates of the prediction model.

2) ROAD NETWORK DENSITY

The conventional definition of road network density refers
to total length of roads divided by the size of an areal unit.
The area with a denser road network attracts greater flow of
people, including potential victims and criminals. Previous
studies have shown that the density of road network has an
impact on crime rate, especially in public space [37].

C. CRIME PREDICTION WITH MACHINE LEARNING
ALGORITHMS

The traditional methods usually detect the crime hotspot area
from the historical distribution of crime cases, and assume
that the past pattern is to be repeated in the future [7], [2]. This
assumption tends to be reasonable for predicting long-term
stable crime hotspots. The commonly used KDE method
can effectively identify such stable hotspot areas [10], [11].
The KDE method based on temporal autocorrelation tends
to outperform the general KDE method [38] Liu et al. Com-
pared the random forest and spatiotemporal KDE method,
found that the random forest algorithm is more efficient than
the traditional spatiotemporal KDE method in the smaller
time scale and grid space unit [12] Gabriel et al. used the
Gated Localized Diffusion Network for crime prediction at
the street segment level [39]. Compared with the traditional
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Network-time KDE method, the diffusion network approach
significantly increased the prediction accuracy. The ability
of machine learning algorithm in processing non-linear rela-
tional data has been confirmed in many fields, including
crime prediction. It has a faster training speed, can handle
very high-dimensional data, and can also extract the charac-
teristics of the data.

Ill. PREDICTION MODEL

In this paper, random forest algorithm, KNN algorithm, SVM
algorithm and LSTM algorithm are used for crime prediction.
First, historical crime data alone are used as input to calibrate
the models. Comparison would identify the most effective
model. Second, built environment data such as road network
density and poi are added to the predictive model as covari-
ates, to see if prediction accuracy can be further improved.

A. KNN

KNN, also known as k-nearest neighbor, takes the feature
vector of the instance as the input, calculates the distance
between the training set and the new data feature value, and
then selects the nearest K classification. If k = 1, the nearest
neighbor class is the data to be tested. KNN’s classification
decision rule is majority voting or weighted voting based on
distance. The majority of k neighboring training instances
of the input instance determines the category of the input
instance.

B. RANDOM FOREST

The random forest is a set of tree classifiers {h(x, gk),k =
1...}, in which the meta classifier h(x, fk) is an uncut
regression tree constructed by CART algorithm; x is the
input vector; Bk is an independent random vector with the
same distribution, and the output of the forest is obtained
by voting. The randomness of random forest is reflected in
two aspects: one is to randomly select the training sample set
by using bagging algorithm; the other is to randomly select
the split attribute set. Assuming that the training sample has
M attributes in total, we specify an attribute number F < M,
in each internal node, randomly select F attributes from M
attributes as the split attribute set, and take the best split mode
of the f attributes Split the nodes. The multi decision tree is
made up of random forest, and the final classification result
is determined by the vote of tree classifier.

C. svm

SVM, based on statistical learning theory, is a data mining
method that can deal with many problems such as regres-
sion (time series analysis) and pattern recognition (classi-
fication problem, discriminant analysis) very successfully.
The mechanism of SVM is to find a superior classification
hyperplane that meets the classification requirements, so that
the hyperplane can ensure the classification accuracy and can
maximize the blank area on both sides of the hyperplane.
In theory, SVM can realize the optimal classification of linear
separable data.
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D. NB

In the field of probability and statistics, Bayesian theory
predicts the occurrence probability of an event based on the
knowledge of the evidence of an event. In the field of machine
learning, the naive Bayes (NB) classifier is a classification
method based on Bayesian theory and assuming that each
feature is independent of each other. In abstract, NB classifier
is based on conditional probability, to solve the probability
that a given entity belongs to a certain class.

E. CNN

CNN uses one-dimensional convolution for sequence pre-
diction, which is the convolution sum of discrete sequences.
To convolve the sequence, CNN first finds a sequence with
a window size of kernel_size, and perform convolution with
the original sequence to obtain a new sequence expression.
The convolutional network also includes a pooling operation,
which is to filter the features extracted by the convolution to
get the most useful characteristics.

F. LSTM

LSTM is a kind of deep neural network based on RNN. The
core of LSTM is to add a special unit (memory module)
to learn the current information and to extract the related
information and rules between the data, so as to transfer the
information. LSTM is more suitable for deep neural network
calculation because of memory module to slow down infor-
mation loss. Each memory module has three gates, including
input gate (i), forget gate (f;), and output gate (o;). They
are used to selectively memorize the correction parameters
of the feedback error function as the gradient decreases. The
specific structure is shown in the figure.
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FIGURE 1. The structure chart of LSTM algorithm.

In the figure above, LSTM has two state chains h (hidden
layer state) and C (cell state) that are passed over time, only
cell state C of RNN is transmitted over time. ht-1 is the value
of the current time transmitted from the hidden layer at the
previous time, Xt is the input value at the current time, Ct-1 is
the state value of the LSTM memory cell at the previous time,
and Ct is the state value of the memory cell at the current time.

When ht-1 and Xt pass through the forgetting gate, the
information to be discarded is calculated. The value of output
to the cell state is between 0 and 1, 0 means all forgetting,
and 1 means all information is reserved. Forgetting gate f; is
given by the following equation:

fe = o(wr - [hi—1, %] + by) (1)
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where w and b are weight matrix and bias vector in forgetting
gate respectively; o is activation function Sigmoid.

There are two processes for updating new information into
a cell. First, the input gate of Sigmoid function is used to
calculate the information to be updated, and then a new value
k. created by tanh layer is added to the cell state:

ir = oW - [hi—1, %1+ b)) 2
k; = tanh(wy - [A,—1, x;] + by) 3

The results obtained from equation (2) and equation (3)
are multiplied and added to the results obtained from the
forgetting gate of the previous time cell state value to obtain
the current time cell state value, as follows:

C=fixC_1+i*xk 4

The final output depends on the cell state. First of all,
Sigmoid classifies the output results, selects the data to
be output, processes the cell state with tanh function, and
obtains the state value A, that the hidden layer transfers to
the next time. After being processed by sigmoid, 4; can
obtain the pre output value y at the current time, as shown
in equation (5) - equation (7):

O; = a(wo - [ht—1, X1 + bo) )
h[ = 0[ * tanh(C[) (6)
y=owh) %)

IV. EVALUATION INDICATOR

By comparing the prediction results of different machine
learning models before and after adding covariates, the fol-
lowing indicators are used for evaluation. Hit Rate is one of
the indexes used to evaluate the accuracy of crime prediction.
The Hit Rate mainly includes Grid Hit Rate and Case Hit
Rate. Grid Hit Rate HitR,, refers to the ratio between the num-
ber of predicted correct hotspot grids and the total number of
actual hotspot grids.

*

HitR, = “X 8)

where A is the total number of actual hotspot grids; and a is
the total number of predicted correct hotspot grids.

Case Hit Rate HitR,, refers to the ratio between the actual
number of cases in the forecast correct hot grids and the total
number of cases in the study area in this period. The larger
the value of HitR, is, the more cases are included in the hot
grids, and the higher the accuracy of prediction is.

n

HitR, = )

where n is the total number of cases in the study area, and N
is the actual number of cases in the forecast hot grids.

In addition to the hit rate indexes, the Prediction Accuracy
Index Hit Efficiency Index HitE,; can also be used to evaluate
the prediction effect of the model. For the grids in a certain
period, when the number of prediction grids increases, more
grids can be covered. When the number of prediction grids
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is equal to the total number of grids, the value of HitR, is 1.
At this time, the value of HitR,; is large, but the prediction
effect is not good. Therefore, HitE,, is needed to measure the
effect of the prediction model. The higher the HitE,, value is,
the more cases are covered with fewer prediction grids, and
the higher the hit efficiency is.

HitR,
a/A

where a refers to the number of predicted hotspot grids and
A refers to the actual number of hotspots.

HitE, = (10)

V. EXPERIMENTAL AREA AND DATA VISUALIZATION
ANALYSIS

A. EXPERIMENTAL AREA

The area XT selected in this paper is a town in a coastal
megacity in Southeast China. The population density of this
community is relatively large, with a total area of about
6.5 square kilometers, a total population of about 400000, and
a household registration population of only 50000, suggesting
that the overwhelming majority of the population domestic
migrants or non-local population. The town consists of sev-
eral large-scale city villages. The complex composition of
built environment and population makes it a high crime area.

B. SELECTION OF CRIME TYPES

The crime of property in public places mainly refers to the
crime that takes occupying the property ownership of others
as the main purpose in public places. It mainly includes theft,
robbery, snatching and other types of embezzlement crimes
that completely obtain property against the will of others.
It is of great practical significance to choose the public prop-
erty crime in this town for the prediction of crime hotspots.
Accurate crime prediction can help guide the deployment of
the local police resources, changing from passive policing
to active prevention and control, thus improving local public
security.

C. DATA VISUALIZATION ANALYSIS

The historical crime data used in this paper comes from the
police receiving data from 2015 to 2018 in the P-GIS database
of the Public Security Bureau of the experimental district.
The text coordinate information recorded in the database is
extracted, and the case point data within the street range of
the study area is extracted after it is located on the map of the
study area.

In order to meet the needs of practical police work, the spa-
tial scale of crime hot spot prediction experiments should be
as small as possible. According to the calculation formula of
gridding processing study area of Griffith ez al. [40], the study
area is divided into 150m * 150m grids according to the
investigation of actual police work and the data distribution
of case points. Compared with grids with smaller spatial
scales, grids divided by 150m will make case points more
concentrated in certain grids and reduce the contingency of
hotspot grids. Such a division will also reflect the mechanism
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and distribution of cases better and improve the prediction
accuracy and preciseness of the crime hot spots. According to
the investigation of the actual police work, 150m is the largest
patrol area that a single police officer can cover in a time unit,
which can better use the prediction results in crime prevention
and control.

1) HOTSPOT GRID PATTERN

After divide the study area XT into 369 grids, the frequency
of cases in each grid is counted according to the distribution
of 78 two-week historical crimes in 2015-2017. Through
K-means clustering method, the optimal number of clusters is
determined to be 4, so the grid is divided into four categories:
stable high-risk hot grid, high-risk hot grid, occasional hot
grid and non-hot grid.
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FIGURE 2. Hotspot grid pattern of the study area XT.

2) POI DISTRIBUTION

The distribution of POI (catering, shopping malls, and enter-
tainment facilities) in the study area XT is shown in the figure.
These types of POI are spatially interpolated to obtain the POI
points of the study area and are assigned to each grid as a
variable.

FIGURE 3. Distribution of POIs of the study area XT.

3) STATISTICS OF CASES BY PERIOD
In terms of the total number of cases, the number of cases
in 2018 is slightly less than that in the other three years,
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and the number of cases in 2017 is slightly more than
in 2015 and 2016. During the four-year period, the number
of cases in two weeks fluctuated. The number of cases in
most two-week periods ranged from 40 to 80, with an average
of 58 cases every two weeks. It can be seen from Figure 9 that
the case volume curve of the four years has a similar change
trend. Basically, the case volume in the two weeks including
holidays has a significant reduction, while the case volume
in the two weeks after home holidays will pick up. The case
volume in January and February of each year has a significant
downward trend. The two weeks including spring holidays
are the period with the least case volume in each year.
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FIGURE 4. Statistics of biweekly cases of the study area XT.

4) TIME SERIES ANALYSIS

The figure about decomposition of additive time series shows
seasonality in the data, the potential trend and how crime
evolved over time in four years. The top part of the fig-
ure is the original time series, the 2nd top part of the figure
is the estimated trend component, the 3rd part of the figure is
the estimated seasonal component and the bottom part of the
figure is the estimated irregular component.

Decomposition of additive time series

M ™ g
AR A AR

Time

observed

o 3 40 50 80 70 8@ W

trend

seasonal

random

FIGURE 5. Decomposition of additive time series of the study area XT.

VI. EXPERIMENTS

A. EXPERIMENT IN XT TOWN

According to the research of Rummens [38] and Lin et al.
[13]y, this paper takes two weeks as the time unit to predict
the hot grid of property crime in public places for 13 time
units from January 1 to July 1, 2018. The historical data and
covariate data are used to forecast the first n hotspots with
cases in the forecast period from all grids.
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The variable data needed for the prediction model is mainly
divided into two parts: one is the historical case data; the other
is the covariate data representing the surrounding environ-
ment. First, the historical case data is located according to the
address and coordinate, and the time period of the point data
is divided according to the prediction time unit. We count the
number of cases occurred in each grid in each period, take
this part of data as the basic data of the prediction model,
and select the data of the corresponding period as the training
data according to the prediction target period. The second
part is covariate data. In the experiment of this paper, city
POI density and road network density are used to obtain the
density surface of covariate in the study area through spatial
interpolation of covariate spatial point data, which is used as
covariate of the prediction model.

The historical data of this paper is to count the number
of cases per grid in the period from 2015/2016/2017 to the
same period as the target period and the four adjacent periods
in front of the target period. The covariate data uses the
values of two modern city data covariates, POI and road
network density. The data is normalized between [0,1] using
MinMaxScaler with the transformation function as follows:

- xmmin (an
(max — min)

Taking the two weeks from January 1 to January 14,
2018 as the prediction target, the historical data of crime
hotspots prediction is divided as shown in the table below.

TABLE 1. Historical data division of prediction of crime hotspots from
January 1 to January 14, 2018.

2017.10.23-2017.11.05
2017.11.06-2017.11.19
2017.11.20-2017.12.03
2017.12.04-2017.12.17

2014.12.18-2014.12.31
2015.12.18-2015.12.31
2016.12.18-2016.12.31

Training data
(2017.12.18-
2017.12.31)

2017.11.06-2017.11.19
2017.11.20-2017.12.03
2017.12.04-2017.12.17
2017.12.18-2017.12.31

2015.01.01-2015.01.14
2016.01.01-2016.01.14
2017.01.01-2017.01.14

Forecasting data
(2018.01.01-
2018.01.14)

The performance of several models is shown in the fig-
ure below. Model-a is a KNN prediction model, Model-b is a
random forest prediction model, Model-c is an SVM predic-
tion model, model d is an NB prediction model, model e is
a CNN prediction model, and model f is a LSTM prediction
model.

In prediction experiments in the first half of 2018, consist-
ing of 13 time units, the overall prediction performance of the
LSTM model (Model-d) is the best among the four different
prediction models (Tables 2 & 3). Taking the LSTM predic-
tion model with covariate data as an example, the average
grid hit rate can reach 44.8%, and in this more than half of
the predicted correct grids, it can cover an average of 45.8%
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TABLE 2. Experiment results of HitRa based on KNN, RF, SVM, NB, CNN
and LSTM models.

Prediction Model- Model- Model- Model- Model- Model-
period a b c d e f
0101-0114 0.152 0.175 0.221 0.243 0.295 0.575
0115-0128 0.156 0.281 0.063 0.173 0.304 0.500
0129-0211 0.027 0.324 0.054 0.261 0.036 0.486
0212-0225 0.450 0.368 0.150 0.285 0.386 0.450
0226-0311 0.182 0.424 0.242 0.278 0.415 0.303
0312-0325 0.053 0.237 0.342 0.154 0.362 0.368
0326-0408 0.368 0.316 0.421 0.384 0.453 0.684
0409-0422 0.067 0.421 0.133 0.278 0.166 0.200
0423-0506 0.179 0.179 0.107 0.042 0.324 0.500
0507-0520 0.085 0.319 0.085 0.153 0.267 0.170
0521-0603 0.102 0.306 0.245 0.239 0.454 0.612
0604-0617 0.054 0.324 0.135 0.134 0.184 0.541
0618-0701 0.051 0.231 0.077 0.141 0.278 0.436

TABLE 3. Experiment results of HitRn based on KNN, RF, SVM, NB, CNN
and LSTM models.

Prediction Model- Model- Model- Model- Model- Model-
period a b c d e f
0101-0114 0.109 0.212 0.230 0.174 0.357 0.600
0115-0128 0.196 0.353 0.078 0.217 0.382 0.500
0129-0211 0.036 0.438 0.091 0.348 0.049 0.436
0212-0225 0.378 0.305 0.126 0.239 0.320 0.500
0226-0311 0.182 0.583 0.250 0.278 0.571 0.250
0312-0325 0.045 0.200 0.283 0.131 0.305 0.435
0326-0408 0.368 0.260 0.478 0.384 0.373 0.696
0409-0422 0.067 0.281 0.384 0.278 0.111 0.167
0423-0506 0.179 0.179 0.158 0.042 0.324 0.553
0507-0520 0.071 0.269 0.071 0.128 0.225 0.143
0521-0603 0.101 0.339 0.226 0.237 0.503 0.629
0604-0617 0.100 0.480 0.200 0.248 0.273 0.600
0618-0701 0.059 0.178 0.078 0.163 0.214 0.451

TABLE 4. Experiment results of HitEn based on KNN, RF, SVM, NB, CNN
and LSTM models.

Prediction Model- Model- Model- Model- Model- Model-
period a b c d e f
0101-0114 0.139 0.160 0.202 0.222 0.270 0.525
0115-0128 0.155 0.279 0.063 0.172 0.302 0.497
0129-0211 0.022 0.261 0.043 0.213 0.029 0.391
0212-0225 0.366 0.299 0.122 0.232 0.314 0.366
0226-0311 0.125 0.291 0.166 0.191 0.285 0.208
0312-0325 0.058 0.259 0.374 0.169 0.396 0.402
0326-0408 0.375 0.322 0.430 0.391 0.462 0.698
0409-0422 0.074 0.464 0.146 0.307 0.183 0.220
0423-0506 0.135 0.135 0.081 0.032 0.244 0.378
0507-0520 0.062 0.234 0.062 0.112 0.196 0.125
0521-0603 0.104 0.312 0.250 0.244 0.463 0.623
0604-0617 0.053 0.317 0.132 0.132 0.180 0.530
0618-0701 0.034 0.154 0.051 0.094 0.185 0.291

of cases in the study area. The advantage of LSTM predic-
tion model is not only to memorize the feature information
extracted from time series data in short and long term, but also
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to memorize and share the modified weights. This advantage
can help LSTM model save a part of the time of weight
correction in the process of crime hot spot prediction, and
has a certain applicability for the prediction of hotspot grids.

TABLE 5. Experiment results of LSTM model before and after adding
covariates.

Prediction Model-f Model- F Model-f  Model-F Model-f Model-F
period HitRa HitRa HitRn HitRn HitEn HitEn

0101-0114 0.575 0.550 0.600 0.564 0.525 0.502
0115-0128 0.500 0.531 0.500 0.500 0.497 0.528
0129-0211 0.486 0.541 0.436 0.491 0.391 0.435
0212-0225 0.450 0.600 0.500 0.625 0.366 0.487
0226-0311 0.303 0.606 0.250 0.600 0.208 0.415
0312-0325 0.368 0.474 0.435 0.478 0.402 0.518
0326-0408 0.684 0.632 0.696 0.652 0.698 0.645
0409-0422 0.200 0.500 0.167 0.571 0.220 0.551
0423-0506 0.500 0.643 0.553 0.711 0.378 0.486
0507-0520 0.170 0.596 0.143 0.625 0.125 0.437
0521-0603 0.612 0.612 0.629 0.645 0.623 0.623
0604-0617 0.541 0.541 0.600 0.600 0.530 0.530
0618-0701 0.436 0.667 0.451 0.725 0.291 0.446

Model-f is LSTM prediction model based on historical
data, and Model-F is LSTM prediction model based on histor-
ical crime data and built environment covariates. According
to the experimental results, we found that the prediction accu-
racy of the prediction accuracy of the LSTM model was also
improved after adding built environment covariates, and the
average prediction index-HitRa of 13 experimental periods
increased by percentage points increased by 12.8 percentage
points, the average prediction index-HitRn of 13 experimen-
tal periods increased by 14 percentage points, and the average
prediction index-HitEn of 13 experimental periods increased
by 10.4 percentage points.

N

A

FIGURE 6. Prediction results of LSTM model using only history data.

Taking the biweekly period from June 18 to July 01,
2018 as an example, the comparison of the overall prediction
results of the study area is shown in the figure. It can be seen
that the LSTM model and the LSTM model with covariates
have higher prediction accuracy based on their own high
self-learning and advantages of processing time series data.
The LSTM model with built environment covariates is better
than the LSTM in the prediction of crime hot spots. There-
fore, the LSTM model with built environment covariates has
better application value in the prediction of crime.
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FIGURE 7. Prediction results of LSTM model using history data and
Covariate data.

TABLE 6. Experiment results of HitRa of JZ based on KNN, RF, SVM, NB,
CNN and LSTM models.

Prediction Model- Model- Model- Model- Model- Model-
period a b C d (3 f
0101-0114 0.243 0.395 0.256 0.357 0.485 0.519
0115-0128 0.249 0.472 0.327 0.381 0.496 0.636
0129-0211 0.06 0.102 0.075 0.173 0.122 0.26
0212-0225 0.154 0.202 0.086 0.043 0.065 0.169
0226-0311 0.202 0.424 0.287 0.388 0.431 0.627
0312-0325 0.151 0.256 0.139 0.146 0.164 0.314
0326-0408 0.118 0.258 0.128 0.122 0.143 0.487
0409-0422 0.235 0.373 0.254 0.32 0.331 0.493
0423-0506 0.163 0.325 0.225 0.261 0.349 0.486
0507-0520 0.14 0.421 0.216 0.252 0.306 0.417

B. VALIDATION IN JZ TOWN

The models are validated in JZ, another town in the same city
as the study area XT. JZ is located is at the junction of urban
and rural areas, with an area of 1.34 times that of XT town
and a population of 29.7% of XT. From 2015 to 2018, the total
number of crimes of crime types studied in this paper is 33.2%
of that in XT. Through the modeling research of each machine
learning algorithm, it is found that the performance of each
algorithm is basically consistent with that of XT (Tables 5),
with the LSTM model still performing the best.

VII. CONCLUSION

In this paper, six machine learning algorithms are applied
to predict the occurrence of crime hotspots in a town in the
southeast coastal city of China. The following conclusions
are drawn:1) The prediction accuracies of LSTM model are
better than those of the other models. It can better extract the
pattern and regularity from historical crime data. 2) The addi-
tion of urban built environment covariates further improves
the prediction accuracies of the LSTM model. The prediction
results are better than those of the original model using his-
torical crime data alone.

Our models have improved prediction accuracies, com-
pared with other models. In empirical research on the predic-
tion of crime hotspots, Rummens et al. used historical crime
data at a grid unit scale of 200 mx200 m, using three models
of logistic regression, neural network, and the combination of
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logistic regression and neural network [41]. In the biweekly
forecast, the highest case hit rate for the two-robbery type is
31.97%, and the highest grid hit rate is 32.95%; Liu et al.
Used the random forest model to predict the hot spots in
multiple experiments in two weeks under the research scale
of 150 m x 150 m [23]. The average case hit rate of the model
was 52.3%, and the average grid hit rate was 46.6%. The case
hit rate of the LSTM model used in this paper was 59.9%,
and the average grid hit rate was 57.6%, which was improved
compared with the previous research results,

For the future research, there are still some aspects to be
improved. The first is the temporal resolution of the predic-
tion. Felson et al. revealed that the crime level changes with
time [43] Some studies have shown that it is useful to check
the variation of risks during the day [44]. We chose two weeks
as the prediction window. It does not capture the impact of
crime changes within a week, let alone the change within
a day. The sparsity of data makes the prediction of crime
event difficult if the prediction window is narrowed down
to day of a week or hour within a day. There is no viable
solution to this challenging problem at this time. The second
is the spatial resolution of the grid. In this paper, the grid
size is 150m * 150m. Future research will assess the impact
of changing grid sizes on prediction accuracy. Third, the
robustness and generality of the findings of this paper needs
to be tested in other study areas. Nonetheless, the findings
of this research have proven to be useful in a recent hotspot
crime prevention experiment by the local police department
at the study size.
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