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ABSTRACT Most rolling element bearing (REB) fault diagnosis algorithms are evaluated on the CaseWest-
ern Reserve University (CWRU) bearing dataset for its popularity and simplicity. However, the diagnosis
accuracy on CWRU bearing dataset is overly saturated; it is nearly up to 100%. In this study, an input feature
mappings (IFMs)-based deep residual network (ResNet) is proposed to conduct detailed and comprehensive
fault diagnosis on REBwith complicated bearing dataset. Firstly, a new data preprocessing method named as
a signal-to-IFMs method is proposed to automatically extract features from raw signals without predefined
parameters. Then, a deep ResNet is used as the fault classifier to learn the discriminative features from
IFMs and identify the faults of REB. Finally, the proposed model is evaluated on the artificial, real, and
mixed damages of the Paderborn university bearing dataset. The proposed method yields the average testing
accuracies of 99.7%, 99.7%, and 99.81% in artificial, real, and mixed bearing damages, which outperforms
other methods.

INDEX TERMS Rolling element bearing, fault diagnosis, signal-to-input feature mappings, deep residual
networks.

I. INTRODUCTION
Rotating machinery is widely used in modern industries.
Rolling element bearing (REB) are the key component of
rotating machinery to maintain the normal operation of rotat-
ing machinery. The REB faults account for 45%-55% of total
failures in rotating machinery [1]. Once the REB fails, it will
cause huge economic and irreversible damages to rotating
machinery. Hence, practical REB fault diagnosis is essential
to rotating machinery.

The model-based methods are popular in REB fault diag-
nosis; they use mathematical, experimental, and simulation
models to detect the REB damages [2]. However, one prob-
lem exists with model-based methods. The model-based
methods rely on the constructed models. That is to say, a low-
quality model can yield a poor diagnosis result.

To overcome the drawback of model-based methods,
machine learning (ML) methods were developed. ML meth-
ods can directly learn the fault discriminative features from
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the historical data without considering prior models [3].
ManyML algorithms have been used for REB fault diagnosis,
and achieved considerable success [4]–[12]. Van et al. [13]
proposed a support vector machine (SVM)-based model for
REB fault diagnosis. Firstly, they used the nonlocal means
method and empirical mode decomposition to extract the
fault features from the raw signals. Then, they selected the
optimal fault features using the maximum-relevance tech-
nology. Finally, their method yielded an ideal diagnostic
result. Zhao et al. [14] proposed a new REB fault diagnosis
model based on hidden Markov model (HMM). Firstly, they
extracted the time- and frequency-domain components from
the raw signals. Then, they used principal component analysis
method to get low-dimension features. Finally, they achieved
a satisfactory fault diagnosis result using the HMM technol-
ogy. Li et al. [15] developed a new feature learning method
for REB fault diagnosis. Firstly, they used wavelet multiscale
transform to decompose the vibration signals. Then, they used
back-propagation neural network to learn the discriminative
features. Finally, they selected SVM as the fault classifier
to detect the REB faults. Nevertheless, one limitation exists
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TABLE 1. Comparison of two bearing datasets.

with conventional ML methods; they need to manually select
fault features [15]. That is to say, the same fault classifier
with different feature extraction methods can yield different
diagnosis results.

Recently proposed deep learning (DL) methods have
resolved the limitation of conventional ML methods.
DL methods can automatically learn abstract representation
features without manually selecting fault features, and yield
the best-in-class performance [16]. Various DL algorithms
have been used for REB fault diagnosis [17]–[26]. Chen
and Li [27] proposed a fusion method to fuse the vibration
signals from time and frequency domains. Then, they used
a stacked autoencoder to extract the fault features. Finally,
they used a deep belief network (DBN) as the fault classifier
to classify the REB faults. Their model yielded a high diag-
nosis accuracy of 97.82%. Zhao et al. [28] proposed a gated
recurrent unit-based sparse autoencoder to conduct REB fault
diagnosis. They used grey wolf optimizer algorithm to select
the optimal model parameters. The optimized model yielded
the satisfactory results. Janssens et al. [29] used convolutional
neural network (CNN) for REB fault diagnosis. Firstly, they
used the discrete Fourier transformmethod to process the raw
signals. Then, they used CNN to classify REB faults. Their
method yielded a high testing accuracy.

Most current diagnostic algorithms are evaluated on
Case Western Reserve University (CWRU) bearing dataset.
The accuracy of REB fault diagnosis on CWRU bearing
dataset is already overly saturated [30]. The highest accuracy
of 99.99% has been yielded by Wen et al. [31]. Recently
proposed Paderborn university bearing dataset has limited
researches. The data from Paderborn university bearing
dataset are more complicated than CWRU bearing dataset
[30]. Table 1 represents the comparison of two bearing
benchmark datasets. Only artificial damages using electro-
discharge machining (EDM) exist in the CWRU bearing
dataset. In Paderborn university bearing dataset, the REB
damage contains artificial and real damages, and the damage
method consists of EMD, drilling, electric engraver, pitting,
and indentations. Only the vibration signals are collected in
the CWRU bearing dataset, while both vibration and cur-
rent signals are collected in the Paderborn university bearing
dataset.

This study aims to conduct REB fault diagnosis with
complicated bearing dataset. To improve the diagnosis
accuracy of complicated bearing dataset, an input feature

mappings-based deep residual network is proposed. Firstly,
a new data reprocessing method called signal-to-input feature
mappings (IFMs) is proposed to convert different signals to
the IFMs without any predefined parameters and experts’
experiences. Then, a deep residual network (ResNet) is
designed as the fault classifier to automatically learns abstract
discriminative features from the IFMs. Finally, the proposed
model is evaluated on the Paderborn university bearing
dataset. to detect the artificial, real, and mixed damages
of REBs. The experimental results show that the proposed
method outperforms other methods. To our best knowledge,
it is the first attempt to conduct REB fault diagnosis on the
Paderborn university bearing dataset in detail.

The remainder of this paper is organized as follows. The
theoretical background is briefly introduced in Section II.
In Section III, the proposed method for REB fault diagnosis
is described. The experimental investigation is conduct in
Section IV. SectionV gives the experimental results and result
analysis. Finally, conclusions are given in Section VI.

II. THEORETICAL BACKGROUND
In this section, the CNN and deep ResNet are briefly intro-
duced.

A. CONVOLUTIONAL NEURAL NETWORK
CNN is inspired by the mechanism of the receptive biological
field [32]. Different from the traditional neural network, CNN
has fewer weight parameters and connections in the neural
nodes. CNN is a feedforward neural network which consists
of convolutional layer (CL), pooling layer (PL), and fully
connected layer (FCL). The CL learns the feature represen-
tations from the input images; it extracts the features from a
local region, and different convolution kernels have different
feature extractors, as shown in Eq. (1).

yk = f(wk∗x + bk ) (1)

where x is the input image, wk stands for the convolutional
filter, f (·) denotes the nonlinear activation function, bk rep-
resents the bias.

Although CL can reduce the number of connections in
the network, the number of neurons in the feature map-
pings doesn’t significantly decrease. To resolve this problem,
the PL is added after the CL to reduce the feature dimensions
and avoid overfitting. The PL is used for feature selection;
it can reduce the number of feature dimensions and network
parameters. The pooling operator converts the nearby feature
values to one value. The pooling operator consists of maxi-
mum and mean pooling, as shown in Eq. (2) and (3):

ykmn = maxxi, i ∈ Rkmn (2)

ykmn =
1
|Rkmn|

∑
i∈Rkmn

xi (3)

where ykmn denotes the pooling output in the kth feature
mapping, xi is the neuron activation value in the pooling
region. Rkmn is the pooping region with the length m and
width n.
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FIGURE 1. Residual block.

FCL is used for classification or regression; it is a tra-
ditional multilayer perceptron that all nodes are connected.
Softmax function is generally used on the output layer.

B. DEEP RESIDUAL NETWORK
CNN suffers from gradient vanishing as the growing CLs,
which results in the low accuracy and overfitting. In 2016,
He et al. [33] proposed a deep ResNet by adding the residual
blocks to CNN. The deep ResNet resolves the gradient van-
ishing problem. A shortcut connection connects the input and
output of the residual block, as shown in Figure 1. The output
of residual block can be calculated by Eq. (4).

G(Y) = F(Y)+ Y (4)

where Y is the input of residual block, F(Y) is residual
mapping.

The conventional deep ResNet consists of the input layer,
CL, PL, FCL, and output layer [33]. The residual block
contains the CLs with a shortcut connection. The gradient in
deep ResNet never disappears due to the special architecture.
Deep ResNet significantly improve the performance of DL.

III. PROPOSED METHOD
A. PROPOSED SIGNAL-TO-IFMs METHOD
This paper proposes a new data preprocessing method to
convert different kinds of raw signals to the IFMs. The
schematic illustration of signal-to-IFMs conversion is shown
in Figure 2. Firstly, the raw signals 1, 2, . . . , and n are nor-
malized into the 0 - 255 range separately using Eq. (5).
Secondly, the normalized signals 1, 2, . . . , and n (left panel
in Figure 2) are separately split into the segments with
same length. Then, segments 1, 2, . . . , and n (middle panel
in Figure 2) are output sequentially as the pixels of the IFMs
1, 2, . . . , and n (middle panel in Figure 2) by sequence.
Finally, the IFMs 1, 2, . . . , and n make up of IFMs (right
panel in Figure 2). The signals 1, 2, . . . , and n refer to
different REB measurement signals. In this study, there are
two kinds of REB measurement signals on the Paderborn
university bearing dataset. The signals 1 and 2 are the current
signals of the phase 1 and 2, and signal 3 is the vibration
signal.

y = round
{

x − xmin
xmax − xmin

× 255
}

(5)

where x is the raw signal; xmin and xmax represent the min-
imum and maximum value of the raw signals; round (·)
denotes the rounding function.

FIGURE 2. Converting the raw signals to IFMs.

FIGURE 3. The architecture of proposed model. k : kernel size; n: number
of filters; s: stride size; ReLU: rectified linear unit; BN: batch
normalization layer.

B. PROPOSED FAULT DIAGNOSIS MODEL
In light of its strong generation ability and pattern recogni-
tion, a ResNet is used as the fault classifier after IFMs to
identify the REB faults. The proposed ResNet consists of
a CL, six residual blocks, a PL, and three FCLs, as shown
in Figure 3.

The proposed model is evaluated on the Paderborn univer-
sity bearing dataset. Two phases current signals and vibration
signal are collected as measurement signals on the Paderborn
university bearing dataset. Here, n is set to 3, as shown
in Figure 2. The signal 1 and 2 denote current signals of
phase 1 and 2. The signal 3 is vibration signal. Firstly, the raw
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signals 1, 2, and 3 are converted to IFMs 1, 2, and 3 using
the proposed signal-to-IFMs, respectively. The IFMs 1, 2, and
3 have the same mapping size of p × p. Note that p is set to
64 in this study. Three IFMs with size 64 × 64 are obtained.
Then, the obtained IFMs are fed to a CL (k3n32s1), BN, and
ReLU. k3n32s1 means the CL consisting of 32 filters with a
kernel size of 3, and a stride of 1. The 32 feature mappings
with size 64× 64 (denoted as 32× 64× 64 featuremappings)
are outputted. Afterwards, the 32× 64× 64 featuremappings
are fed to residual block 1. Residual block 1 consists of
two CLs with k3n64s1. An identical connection is connected
to the input and output of residual block 1. Residual block
1 output the 32 × 64 × 64 feature mappings. Next, the
32 × 64 × 64 feature mappings are fed to residual block 2.
Residual block 2 contains twoCLwith k3n64s2 and k3n64s1,
respectively. In addition, a CL with k1n64s1 is added to the
residual connection so that the input of residual block 2 can
be added to its output. Note that the number of zero padding
in CLs with kernel size 3 is one. The CLs with a kernel
size of 1 has no zero padding. Residual block 2 outputs the
64 × 32 × 32 feature mappings. Afterwards, the 64 × 32
× 32 feature mappings pass through residual block 3, 4, 5,
and 6, respectively. The 1024 × 2 × 2 feature mappings are
obtained after residual block 6. The 1024 × 2 × 2 feature
mappings pass through a PL (k2n1024) and the 1024× 1× 1
feature mappings is obtained. Finally, the 1024 × 1 × 1
feature mappings pass through three FCLs with channels
of 512, 256, m. Note that m is the number of the fault labels.
The cross-entropy function Lc [34] is used to calculate the
classification loss. Finally, the proposed model outputs the
fault diagnosis results.

C. FAULT DIAGNOSIS PROCEDURE
The flowchart of REB fault diagnosis process is presented
in Figure 4. The specific diagnosis procedure is as shown as
follows:

Step 1: Collect the REB raw signals.
Step 2: Convert the raw signals to IFMs.
Step 3: Prepare the training, validation, and testing sam-

ples. The training samples are used to train the fault diagnosis
model. The validation samples are applied to select the opti-
mal hyper-parameters. The performance of the trained model
is evaluated on the testing samples.

Step 4: Built the fault diagnosis model and initialize
weights and bias.

Step 5: Train the fault diagnosis using the training samples
and calculate the cross-entropy loss.

Step 6: Evaluate the trained model using the validation
samples. If the condition is not meted, the fault diagnosis
model will continue to update the model parameters, weights,
and bias until an optimal trained model that meets the condi-
tion is generated.

Step 7: Conduct fault diagnosis on testing samples using
the optimal fault diagnosis model.

FIGURE 4. Flowchart of the REB fault diagnosis process.

IV. EXPERIMENTAL INVESTIGATION
A. DATA SOURCE DESCRIPTION
The Paderborn university bearing dataset was proposed
in 2016 by Christian Lessmeier et al. in Paderborn university
[35]. There is a wide distribution of bearing damages in this
dataset. The data from artificial and real damages are col-
lected. Not only vibration signal but also current signals are
collected. The Paderborn university bearing dataset contains
a massive amount of data and various fault categories. This
subsection gives a brief introduction. A detailed description
can be found in [35].

The test rig consists of an electric motor, a torque-
measurement shaft, a rolling bearing test module, a fly-
wheel, and a load motor, as shown in Figure 5. There are
three categories of REBs used in the test rig. Some are
healthy, and others sustain artificial and real damages. Each
REB was run 20 times under each different load, as shown
in Table 2. In each time, the current and vibration signals
were collected lasting approximately 4 s at a rate of 64kHz
and 256000 points are collected. There are artificial inner
ring damage (AIRD), artificial outer ring damage (AORD),
real inner ring damage (RIRD), and real outer ring dam-
age (RORD) on the Paderborn university bearing dataset.
Table 3 summarizes the different fault categories and their
datasets.

B. DATA PROCESSING
The size of the signal segment should be carefully cho-
sen. A too-long segment will increase the complexity of the
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FIGURE 5. Experiment setup of the test rig. (1) Electric motor; (2)
torque-measurement shaft; (3) rolling bearing test module; (4) flywheel;
(5) load motor.

TABLE 2. Operating conditions of REBs.

TABLE 3. Categorization of the Paderborn university bearing dataset.

classifier model, while a too-short segment will fail to capture
localized feature of REB signals. Besides, the size should be
a square number for converting signal segments into the input
feature mappings. In this study, the vibration signal and two-
phase current signals are used. We divide each type of signal
into 139200 segments. Each segment contains 4096 points.
Then each segment is converted into a 64×64 IFM using the
proposed signal-to-IFMs method We obtain 139200 groups
of IFMs are converted from the raw data. They are randomly
split into 60% for the training dataset, 20% for the vali-
dation dataset, and 20% for testing dataset. The proportion
of healthy and faulty samples in each of these datasets is
equal. Figure 6 shows the results of converted IFMs under the
condition of rotational speed (900 rpm), load torch (0.7 Nm),
and radial force (1000 N).

C. COMPARED METHODS
Various compared methods are used for REB fault diagnosis.
They mainly contain conventional ML methods, and DL
approaches.

(1) The traditional ML methods. We choose the SVM and
multi-layer perceptron (MLP) as the compared methods. The
15 statistical features in the time and frequency domains
are selected from vibration signal as the statistic features,

FIGURE 6. Converted IFMs under the condition of rotational speed
(900 rpm), load torch (0.7 Nm), and radial force (1000 N).

as shown in Figure 7 [36]. In SVM, the penalty factor is set
to 2, and the kernel function parameter is set to 2. In MLP,
BP algorithm added momentum factor, and adaptive learning
rate is used as learning algorithm. We use a three-layer MLP
model. The number of neurons in the input layer is 15; the
number of the nodes in the output layer equals to the fault
categories; the number of the neurons in the hidden layer is
12. The other parameters of MLP is as follows: hyperbolic
tangent transfer function for both hidden and output layer
neurons; the learning rate: 0.01; momentum constant:0.9;
ratio to increase learning rate:1.05; ratio to decrease learning
rate:0.7; and maximum performance increase:1.04; perfor-
mance goal: 0.01.

(2) The DLmethods. DBN [37] and CNN [38] are selected
as the compared method. DBN contains two hidden layers
(25, 25). The number of the neurons in the input layer is 15
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FIGURE 7. Statistical features in the time and frequency domains.

TABLE 4. CNN architecture.

(15 statistic features that are same with statistic features of
traditional ML methods), and the number of the nodes in the
output layer equals to the fault category. In DBN, the learning
rate and momentum are set to 0.01 and 0.9. The CNN is
used as the fault classifier after IFMs; it contains four CLs,
four PLs, and two FCL, as shown in Table 4. The input of
CNN is the converted IFMs. The batch size is 32, and the
dropout rate is 0.5. One zero is added to the image borders.
The SGD optimizer is employed. The momentum factor is
0.9, and the weight decay is 1e-5. The learning rate is same
with the learning rate of proposed method.

V. FAULT DIAGNOSIS RESULT AND ANALYSIS
This study focuses to conduct the REB fault diagnosis on the
Paderborn university bearing dataset. The proposed model
and CNN are written in Python 3.7 using PyTorch. MLP,
SVM, and DBN are written in MATLAB 2018a. All methods
are run on Windows 10.

A. MODEL PARAMETER SELECTION
The proposed model parameters of the CL, PL, and FCL
have been given in Section III. The batch size is 32, and the

TABLE 5. Model learning rate of the proposed model.

dropout rate is 0.5. We also use the zero-padding technique to
solve the problem of dimension loss. The SGD optimizer is
employed. The momentum factor is 0.9, and the weight decay
is 1e-5. In this study, we detect the artificial, real, and mixed
damages. Learning rate is a hyper-parameter that affects per-
formance of deep learning networks. A high learning rate can
lead to divergent oscillations and miss the optimal final set of
weights; a low learning rate can lead to very slow reduction in
error and need more training epochs [39]. Different kinds of
fault dataset, such as, artificial, real, or mixed damage dataset,
has different optimal learning rate. The optimal learning rates
are selected by experiments. We test five learning rates from
0.001 to 0.02 in each kind of damages. The testing experi-
ments are repeated five times. Then, the optimal learning rate
is selected based on the accuracy of the training and validation
datasets. Table 5 shows the accuracies with different learning
rates. For artificial damages, the proposed model has the
optimal training and validation accuracy (99.76%, 99.63%)
when the learning rate is 0.01. For real damages, 99.99% and
99.68% are the best training and validation accuracy when the
learning rate is 0.001. For mixed damages, the best accuracies
are achieved when the learning rate is 0.001.

B. REB FAULT DIAGNOSIS FOR ARTIFICIAL DAMAGES
In this subsection, we detect all the artificial damages in the
REBs. We evaluate the proposed method on healthy dataset
(K001, K002, K003, K004, K005, K006), AIRD dataset
(KI01, KI03, KI05, KI07, KI08), and AORD dataset (KA01,
KA03, KA05, KA06, KA07, KA08, KA09). In these datasets,
there are two artificial damages (AIRD, AORD), and one
healthy condition. The testing experiments are repeated ten
times.

Firstly, we calculate the confusion matrices for the first
trial. Figure 8 represents the confusion matrix for all meth-
ods. We can see that the proposed method achieves the best
results. Then, we calculate training and testing accuracies of
proposed method for ten trials, as listed in Table 6. Finally,
we calculate the average training and testing accuracies for
all methods, as listed in Table 7. The average training accu-
racy with the proposed method is 99.81%; it is higher than
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FIGURE 8. The confusion matrices for artificial damages. (a) MLP; (b)SVM;
(c) DBN; (d) CNN; (e) proposed method.

TABLE 6. The training and testing accuracies for artificial damages using
the proposed method.

MLP, SVM, DBN, and CNN, which are 76.04%, 38.89%,
87.81%, and 95.89%, respectively. The average testing accu-
racy with the proposed method is 99.7%; it is higher than
other methods, which are 75.72%, 38.88%, 87.61%, and
94.58%, respectively. We can see that the proposed method
achieves the best results compared with other methods.

C. REB FAULT DIAGNOSIS FOR REAL DAMAGES
In this subsection, the proposed method is evaluated on all the
real damages datasets. There are two real damages (RIRD,
RORD) and one healthy condition in this case. Healthy
dataset (K001, K002, K003, K004, K005, K006), RIRD
dataset (KI04, KI14, KI16, KI17, KI18, KI21), RORD dataset

TABLE 7. The average accuracies for artificial damages.

FIGURE 9. The confusion matrices for real damages. (a) MLP; (b) SVM;
(c) DBN; (d) CNN; (e) proposed method.

(KA04, KA15, KA16, KA22, KA30) are used to conduct the
REB fault diagnosis.

Firstly, the confusion matrices for the first trial is calcu-
lated, as shown in Figure 9. The proposed method outper-
forms the other methods. Ten trials of the proposed method
are listed in Table 8. Table 9 gives the average training and
testing accuracies for all methods. The average training and
testing accuracies are 100% and 99.7% using the proposed
model, which is higher than 80.43% and 80.01%, 89.61%
and 89.38%, 90.53% and 90.52%, and 98.24% and 98.06%
using MLP, SVM, DBN, and CNN, respectively. We can see
that the proposed model achieves higher precision, recall, and
average accuracies than the other models.

D. REB FAULT DIAGNOSIS FOR MIXED DAMAGES
In subsection C and D of this section, we evaluate the pro-
posed method on the mixed damages. We further evaluate the
proposed model on all REB damages. Here, we identify five

VOLUME 8, 2020 180973



L. Hou et al.: IFMs-Based Deep ResNet for Fault Diagnosis of REB With Complicated Dataset

TABLE 8. The training and testing accuracies for real damages using the
proposed method.

TABLE 9. The average accuracies for real damages.

TABLE 10. The training and testing accuracies for mixed damages using
the proposed method.

REB working conditions (healthy, AIRD, AORD, RIRD, and
RORD). The testing experiments are repeated for ten times.

Figure 10 shows the confusion matrices of testing sam-
ples with different method for the first trial. It is found that
the recalls and precisions of the proposed model are higher
than other methods. Table 10 gives training, testing, average
accuracies, and standard deviation (Std) of ten trails using the
proposed method. Table 11 presents the average training and
testing accuracies for all methods. The average training accu-
racy with the proposed method is 99.92%; it is higher than
MLP, SVM, DBN, and CNN, which are 61.87%, 66.59%,
82.78%, and 97.15%, respectively. The testing accuracy with
the proposed method is 99.81%; it is higher than other
methods, which are 61.43%, 66.26%, 82.26%, and 96.67%,
respectively. The results show that the proposed approach
outperform other approaches.

Generally, the growing training sets can improve accu-
racy of deep learning methods under the same classification
categories [40]. There are two reasons why the proposed

FIGURE 10. The confusion matrices for mixed damages with different
methods. (a) MLP; (b)SVM; (c) DBN; (d) CNN; (e) proposed method.

TABLE 11. The average accuracies for mixed damages.

method (deep ResNet) outperforms on mixed damage case
than artificial and real damage cases. The main reason is that
the powerful pattern recognition and generalization ability of
deep ResNet. The deep ResNet can prevent gradient vanish-
ing and overfitting when the training samples and fault cat-
egories growing; it significantly improves the classification
accuracy [33], [41]–[43]. Another reason is that the mixed
damages consist of artificial and real damages. The fault
features extracted from artificial (or real) damage samples can
improve the fault diagnosis performance on real (or artificial)
damage samples. That is say, the generation ability of fault
classifier using mixed damage samples are improved to some
extent. These are the reasons why deep ResNet obtain better
training and testing accuracy on mixed damage as compared
to artificial and real damages. Other traditional deep learning
methods, such as CNN, may has different results. CNN has
lower pattern recognition and generalization ability compared
to ResNet; it suffer gradient vanishing problem due to lacking
of residual connections [33]. CNNmay result in low accuracy
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or overfitting when growing the training set and fault cate-
gories, such as using mixed fault samples. Although, the fault
features extracted from artificial (or real) damage samples can
improve the fault diagnosis performance of CNN on real (or
artificial) damage samples to some extent, the total generation
ability are reduced when conduct fault diagnosis on mixed
damages. For traditional machine learning methods, such as
MLP and SVM, their performance can significantly reduce
compared with DL methods, especially with the increase of
training dataset [30]. Hence, the traditional learning methods
obtain the lower accuracy than the DL methods on REB fault
diagnosis with the complicated dataset. All above analysis is
assuming that themachine and deep learning have the optimal
hyperparameters. Different results may be obtained if the sub-
optimal hyperparameters are selected on machine and deep
learning methods.

VI. CONCLUSION
In this study, we propose an input feature mappings-based
deep residual network to conduct detailed and comprehensive
fault diagnosis on REB with complicated bearing. Firstly,
we propose a new data preprocessingmethod to automatically
extract features from raw signals without predefined parame-
ters. Secondly, we use a deep ResNet as the fault classifier to
learn the discriminative features from IFMs. Finally, we eval-
uate the proposedmethod on the Paderborn university bearing
dataset. The proposed model outperforms other models.

However, the proposed method has some limitations.
Firstly, the proposed method is applied in supervised learn-
ing, which meaning humans must label the faults. If the
fault type is unknown, the model may be misclassification.
Secondly, the hyperparameters selection is still a challenge
for the proposedmodel. Our future works can be conducted as
follows. Firstly, we can introduce the unsupervised learning
method to the proposed model to diagnose unknown faults.
Secondly, other hyperparameters selectionmethods should be
proposed to further improved fault accuracy.
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