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ABSTRACT While recent approaches based on offline learning perform well in balancing the accuracy
and speed of tracking, it is still non-trivial to accommodate a pre-trained model to an unseen target. In fact,
online learning, which requires to capture specified target characteristics from one shot, is a unique attribute
of single object tracking. How to favorably bridge the gap between the offline and online learning is of
importance for tracking any unseen targets. In this work, in order to obtain sequence-specific information,
we propose an online lightweight network consisting of feature adapting layer and ridge regression layer. Its
key innovation is to interpret the ridge regression as one layer of the network. Furthermore, we integrate
cross-similarity into the Siamese network and train it offline in an end-to-end manner to acquire the
fine-grained local pattern of the target object. Through our effective fusion scheme for the offline and online

procedures, our method can achieve considerable improvements on prevalent benchmarks.

INDEX TERMS Cross-similarity, few-shot learning, online learning, Siamese network, visual tracking.

I. INTRODUCTION
Visual tracking aims to estimate the state of the target contin-
uously in the subsequent video frames with the solely prior
knowledge from the first frame. It has been widely studied
due to its applications in autonomous driving [1], [2], mobile
robot system [3]-[5], human-computer interaction [6], and
intelligent transportation [7]. The recent trend is to train con-
volutional neural networks (CNN) offline on some large-scale
datasets [8]-[10], which cover a variety of changes in target
and background. However, it is truly challenging to obtain
generic feature representations due to inconsistencies among
sequences. For example, objects of the same class can be fore-
ground in one sequence or background in another sequence.
On the other hand, online learning algorithms can capture
sequence-specific characteristics, but limited by the balance
of accuracy and speed. Therefore, it is meaningful and signif-
icant to bridge the gap between offline and online learning.
Over the past years, many trackers based on online learning
have been widely explored, among which the representative
approaches include sparse representing [11], dictionary learn-
ing [12], support vector machine [13], correlation filter (CF)
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[14], [15] and so on. These methods left such an indelible
mark on the tracking research community. Here, it is par-
ticularly worth mentioning that, CF-based algorithms have
attracted a lot of attention due to their competitive perfor-
mance. The essence of them is to online learn a template
filter in a Fourier domain utilizing the properties of the cir-
cular matrix with low computational load, and finally obtains
the response map by convolving with the search region.
Because of the mechanism of the online updating model,
such methods can effectively capture variations of target and
background during the tracking process. However, owing to
the cyclical shift of the central image patch, all samples
except the central one are born with undesired boundary
effects. Afterward, Danelljan et al. [16] proposed the SRDCF
to alleviate this problem using spatial regularization com-
ponent. Based on this effective constrain, many improved
trackers [15], [17] achieved more accurate performance but
sacrifice tracking speed. In addition, other trackers taking
advantage of reliability concept [18] and surrounding con-
text [19] also obtain comparable results. However, all of
the above methods focus on learning an observation model
online merely resorting to the traditional methods, which still
suffer from inevitable challenges including occlusion, scale,
deformation, etc.
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Contrary to the aforementioned approaches, many recent
methods based on training a CNN offline are flourishing in
the visual tracking realm. In particular, the Siamese network
based trackers [20] have attracted a lot of attention from
researchers with its ultra-fast tracking speed and promising
performance. This kind of method tracks the target from
the coming frame by offline learning a generically matching
function that is designed to cope with various challenges.
Its architecture is composed of two shared fully convolution
branches, which takes the template and search region as
inputs and predicts a response map to locate the target. For
instance, He ef al. [21] used a twofold Siamese network to
learn the semantic and appearance features simultaneously,
which can complement each other in a mutually beneficial
way. In order to enhance the discrimination capacity and
adaptability, Wang et al. [8] proposed residual attentional
Siamese network by making extensive use of different atten-
tion mechanisms: residual attention, channel attention, and
general attention. In the light of the outstanding performance
of the correlation filter, Valmadre et al. [22] integrated it into
the Siamese network and trained their CFNet in an end-to-end
manner. Based on the Siamese network, Lee [23] improved
the speed and accuracy of the tracking model by introducing
the estimation of scale and angle estimation, and Li et al.
[9] replaced AlexNet with ResNet and successfully trained a
ResNet-driven Siamese tracker with significant performance
gain. However, these trackers ignore the temporal information
and merely rely on feature representation learned offline to
conduct tracking. To address this problem, Yang and Chan
[24] trained LSTM offline to enable the Siamese network
to adaptively update the template. Zhu et al. [25] made use
of a pre-trained optical flow network to warp feature rep-
resentation in the previous frames, dynamically obtaining a
new template. And Guo et al. [26] thoughtfully suppressed
background distractors and learned target appearance vari-
ation via a fast transformation module. Nevertheless, these
trackers are committed to learning a fixed pattern of updating
template offline through abundantly annotated sequences.
When the tracking scenario is quite different from the training
domain, it will show unexpected performance since lacks the
ability to capture sequence-specific information. Therefore,
Danelljan et al. [27] introduced an online classification mod-
ule solved by an optimization strategy based on conjugate
gradient and Gauss-Newton. But it still struggles with some
challenging factors without the rectification of IoUNet [28].

Motivated by the above observations, in this paper, we pro-
pose a tracking approach that smoothly combines the merits
of online learning and offline learning. Our contributions
contain three aspects. Firstly, different from the existing
online learning based trackers, which resort to traditional
machine learning, we incorporate the ridge regression into
the convolution network for capturing the sequence-specific
information. Actually, our purpose is to treat standard ridge
regression as part of the convolution network and enable
a quick adaptation by means of its fast convergence [29].
In particular, we reformulate the online tracking as a few-shot
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problem and interpret the closed-form solution of the ridge
regression as one differentiable layer of the online network.
Secondly, in order to discriminate the target suffering from
multiple interferences in one sequence, we also integrate the
calculation of the cross similarity among patches into the
Siamese network to acquire some prior knowledge offline.
Our goal is to accomplish the procedure of the kernel-
ized ridge regression (KRR) mentioned in [30], and con-
struct a learnable kernel function based on local information.
As opposed to traditional patch based trackers, our approach
trains the whole network from end to end and considers
the structural relationship among all local patches. Finally,
to harness their combined strengths of online and offline
learning, we introduce an effective fusion scheme to narrow
the gap between them. Extensive experiments on prevalent
benchmarks show that bridging the gap between online and
offline learning is beneficial to generic visual tracking.

Il. METHODOLOGY

This section is organized as follows. Section II-A details the
online learning model consisting of feature adapting layer
and ridge regression layer. Section II-B introduces the offline
learning model with the dense cross-similarity. Section II-C
presents the effective fusion scheme.

A. ONLINE LEARNING

Considering that generic visual tracking requires the model to
possess the generalization ability to unseen objects, we adopt
an online learning algorithm to capture the sequence-specific
information when tracking a specified target. In contrast to
those methods that learn an observation model online based
on advanced machine learning algorithms [11]-[15], we aim
to realize a strong alliance between traditional classifier and
convolution network. Taking inspiration from few-shot learn-
ing [29], we interpret the ridge regression as one layer of
the online network to quickly adapt to any unseen categories
online.

In particular, as shown in Figure 1, our online learn-
ing model W is composed of two layers: feature adapting
layer (FAL) and ridge regression layer (RRL), which are
parameterized by w; and w; respectively. As for the w; of the
FAL, we use the standard 1 x 1 convolution kernel followed
by batch normalization (BN) and ReLL.U. Regarding the w;
of the RRL, we instead leverage the closed-form solution
of the ridge regression to learn it directly. More specifically,
the ridge regression is formulated as follows

w2 = argnc})izn IXwa=Y || + Allwz]*. ey

Its closed-form solution can be written as

wr=X'X+1E)" Xy, )

where each row of X € RM>*K is a sample represented by a

K -dimension feature vector, A is the factor for controlling the
regularization term, E is the identity matrix, and Y € RMx1
is the ground-truth label. To serve as a convolution kernel,
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corresponds to the initialization module in dashed box of the above figure. Finally, the rest elements of #{ are utilized for online

learning by Eq. (4).
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FIGURE 2. Offline learning architecture. The cross-similarity module first consumes a set of paired samples (¢(T), ¢(S;)), and produces a
response map with a learnable weight ypq. To leverage the local pattern, the final output is the weighted sum of the patch-based and
global response map. The global response map is generated directly using global feature.

we further reshape w; by the Reshape operation, i. e.,
wy» = Reshape((X "X 4+ AE)~1XTY). Here, the operation
Reshape : REX1 — RWXhxc projects a flattened vector
to a desired tensor (K w X h x ¢). And X is obtained
by sliding window on search regions, Y is its corresponding
label generated by Gaussian distribution. Mathematically, our
online model can be written as

V(H; w) = o2(w2 * o1(w1 x H)), 3)

where o {w1, wa}, o1 and o, are activation functions,
and H represents a search region’s feature extracted from a

VOLUME 8, 2020

CNN backbone. The output of W is a response map where the
location that the target lies in should have the highest value.
Because the proposed model needs updating parameters by
back-propagation, we adopt the weighted square error as
online loss, i. e.,
[H]
Lon = )_ Bill V(Hz: o) = Gill3.

i=1

“

where |H| is the element number of the search region col-
lection H, G;j is the ground-truth response map of the i-th
sample. In the first frame, we need to split the collection H to
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FIGURE 3. Visualization of response maps. (a) is the search region. (b)-(e) are generated by a global descriptor [20], our cross-similarity
based offline learning, our online learning and our final fusion, respectively.

two sets: one for initialization with Eq. (2) and the other one
for training model with Eq. (4). Subsequently, the collection
‘H serves as a memory bank and its elements are dynam-
ically replaced with a new one cropped from the current
frame using first-in first-out rule. Based on this dynamical H,
we update our online network every ten frames. In this way,
we can incorporate the ridge regression into the proposed
network. And it can be trained in an end-to-end manner
when the back-propagation of a batch of inverse matrices is
implemented.

B. OFFLINE LEARNING
Generally, individual sequence involves different challenges
including occlusion, blurring, cluster, deformation, illumi-
nation, and scale variation, etc. It is truly challenging for
online learning to quickly accommodate with various sce-
narios within limited samples cropped from the first frame.
Therefore, it is necessary to learn some common informa-
tion offline from abundant sequences as the result of its
indeed benefits to the general representation of any unseen
scenes. Recently, most trackers using deep networks focus
on extracting a global appearance descriptor and are then
combined with other techniques such as attention [8], cor-
relation filter [22], and LSTM [24]. However, for generic
visual tracking, a global descriptor from the deep network is
easily subject to non-rigid deformation and partial occlusion,
as shown in Figure 3 (b). In this work, we consider the
local pattern similarities between the template and candidate
instance utilizing the Siamese network. Moreover, different
from those traditional patch-based methods [31], [32], which
rely more on pre-trained or hand-crafted features and ignore
the relationship between local patches, we aim to incorporate
the philosophy of patch-based trackers to a deep network and
accomplish this whole procedure in an end-to-end manner.
At first, we review fully convolutional Siamese network
(SiamFC [20]) briefly. SiamFC aims to learn a generically
applicable matching function @ and finally output a response
map. Its model is as follows

O(T, S) = ¢(T) * P(S) + b, &)

where T and § are tracked target patch (template) and search
region respectively, ¢ is the feature extractor, » represents the
standard convolution operation, every elements of the matrix
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tis 1, and b is an adjusting bias. Supposing that S; is one
instance cropped from search region S, SiamFC actually cal-
culates the similarity between T and S; via learning a kernel
function (T, S;) = (¢(T) © ¢(S;) + b). Here ©® denotes the
element-wise multiplication. Therefore, its training loss can
be rewritten as

M
1
0 =argmgln§;£(yi,ki), (©)
i=

where y; € {—1, 1} is the label, k; is the short form of
K(T,S;), M is the number of instances, £ is the logistic
loss, and @ is the parameters of ¢. In practice, for generic
visual tracking, a learnable kernel function can project sam-
ples into a more discriminatory space when compared with
the hand-crafted kernel function such as Gaussian kernel
and polynomial kernel. However, this kernel function /C of
SiamFC starts with a holistic view which cannot capture some
local pattern.

In this work, inspired by the consideration of spatial lay-
outs [30], we propose a Siamese architecture for calculat-
ing the dense cross-similarity, which can be also thought of
as a novel kernel function exploiting detailed information
when compared with the above SiamFC. Specially, in cross-
similarity module, we divide the template 7 into P patches
and each instance S; into Q patches. Given the respective fea-
ture representation ¢(7") and ¢(S;), our kernel value between
the template 7 and instance S; can be calculated by

P 0
k=" vl o eI, (7

p=lg=1
where y,,, represents the weight of a paired patches consisting
of the p-th patch of T and the g-th patch of S;. More con-
cretely, for each paired ¢(T) and ¢(S;), our cross-similarity
module conducts patch-based convolution, yielding response
maps. Then, with the learnable parameter y,,, we calculate
the weighted sum to mine the relationship among all local

patches. The proposed pipeline is shown in Figure 2.

C. FUSION SCHEME

In order to make up for the difference between online and
offline learning, we present an effective fusion scheme in
this section. Our goal is to make full use of the consistency
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FIGURE 4. Self-contrast comparisons on the TB50 and OTB100. The results on TB50 are shown in the first row, and OTB100 in the last row. The
trackers in the precision plots (first column) are ranked by DP under a given threshold (20), and in the success plot (second column) are ranked

by AUC.

knowledge that offline learning and online learning have
mastered. This can be reflected in the fact that the response
map generated by fusing their respective one has an unimodal
characteristic. Furthermore, its essence is to measure the
quality of fusion response map. To do this, we model the
following objective

min A =& MBIR” + BRT ) + £2(8% + B2),

B1.82
st.pr+p=1 a<p <b ®

where R°" and R% are response maps produced by online
and offline respectively, 81 and B, are weight coefficients, &;
and & are balance factors. Here, M is the confidence margin
[33], M(R) = —(R(zt )" Zlﬁét R(t)log(R(1)), where R(t,) is
the peak value, u is the power. The lower the value of this
objective function A, the better the quality of its correspond-
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ing response map. The regularization term of &(B7 + B3)
is to balance the weights of R* and R . For fast speed,
we jointly consider scale variation and solve it in a discrete
manner. Algorithm 1 shows its details.

Ill. EXPERIMENTS

A. IMPLEMENT DETAILS

We conducted experiments with PyTorch and Python2.7 on a
PC equipped with a GTX 1080Ti, 32GB RAM, and 4.00 GHz
Intel Core 17-4790K CPU.

To train the parameters w; and w, of the online network,
we first generated the collection A in the first frame with
the help of some augmentation operations, such as shift-
ing, scaling, rotating, blurring, etc. This collection initially
includes 20 search regions and appends new one periodi-
cally. The size of each region is 255 x 255. For initializing
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Algorithm 1 Fusion Scheme
Require: Online and offline response maps in different
scale: (R}, (R}, s = 1,2, 3
Ensure: Final response map: R
. A <~ inf; R < 0;
2: for B; € [a, b] do
3: forse{l,2,3}do

4: B2 < 1—Bi;

s Ry« IR+ B R

6: A <« calculate by M(Ry);
7 A< EA+EBT+ B
8: if A < A then

9: A« A;

10: R < Ry;

11: end if

12:  end for

13: end for

TABLE 1. Self-contrast of online learning. We report the value of
AUC/DP@20 [38]. Here, DP@20 is the location precision at threshold 20.
The best results are bold.

Backbones TB-50 OTB-100
Online-RRL ~ Online-CONV  Online-RRL  Online-CONV
AlexNet 54.0/69.8% 30.0/41.3% 59.6/74.8% 35.8/47.7%
ResNet-18  56.9/74.6% 39.9/54.6% 60.9/77.5% 41.7/55.5%
ResNet-50  57.0/76.4% 45.9/61.3% 61.9/79.7% 49.2/63.6%

w2, we fed 3 search regions which have same content but
different scale into Eq. (2). For initializing w;, we adopted
Xavier initialization [34]. And the online model utilizes
ResNet [35] pre-trained on ImageNet as its backbone to
extract features. Finally, the online learning problem is
solved by ADAM optimizer [36] with learning rate = 1073,
batch size = 17 and epoch = 100. During tracking, H
is treated as the memory bank and dynamically updated
using first-in first-out rule when the number of its ele-
ments reaches 64. And we fine-tuned w; and w; every ten
frames.

As for our offline network, we used Siamese network
whose backbone is AlexNet to learn patch-based prior knowl-
edge. Its architecture is the same as SiamFC, but we insert
the proposed cross-similarity module into the top of SiamFC.
The sizes of the template and search region are 127 x 127 and
255 x 255 respectively. The training set is ILSVRC2015-VID
[37]. And we trained this offline network using SGD opti-
mizer with learning rate = 1073, batch size = 8 and
epoch = 30.

B. DATASETS AND METRICS

We comprehensively tested tracking performance on multiple
datasets including VOT2018 [39], UAV123 [40], GOT-10k
[41], TB50 and OTB100 [38]. On VOT2018, the expected
average overlap (EAO), accuracy (A) and Robust (R) are
utilized to measure tracking results. Please refer to [39] for
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FIGURE 5. The AUC of different frequency of updating online model. “0”
means no update for online model.

the details of these three metrics. On TB50 and OTB100,
the tracking results are reported on two plots: success plot and
precision plot. For success plot, the area under curve (AUC) is
used to rank the evaluated trackers. For precision plot, the dis-
tance precision (DP) rate at a certain threshold (20 pixels)
is utilized to rank the evaluated trackers. On GOT-10k,
the metrics are AO and SR. Here, AO is the average value
of overlap rates between tracking results and ground-truths
overall frames, and SR is the percentage of successfully
tracked frames where overlap rates are above a threshold.
On UAV 123, we use the AUC as its metric.

C. ABLATION STUDIES
To demonstrate the effectiveness of different modules,

we carefully designed some self-contrast experiments and
tested them on both TB50 and OTB100 benchmarks.

1) JOINTLY OR NOT

We investigated the impact of bridging the gap between
online and offline learning. In Figure 4, Online-only repre-
sents a variant that only uses the online model mentioned
in Section 2.1. Offline-only conducts tracking only by the
offline model mentioned in Section 2.2. And JONF is the
proposed tracker that combines offline learning and online
learning. As we can see, according to the AUC on TB50 and
OTB100, JONF achieves superior performances when com-
pared with Online-only and Offline-only. The main reasons
are as follows. Offline model has learned some common rep-
resentation capabilities under various scenario but lacks the
discrimination of a specified instance, so it is easily disturbed
by similar objects and obstructions. Online model focuses
on classifying samples which are acquired from the tracked
sequence but leads to poor performance when tracking drift
happens. Eventually, benefiting from our fusion strategy,
these two models can achieve complementary advantages,
which highlights the necessity of making up the difference
between online and offline learning.

2) RRL OR NOT
In order to verify the validation of our ridge regression layer
proposed in Section 2.1, we test their performances with or

VOLUME 8, 2020
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FIGURE 6. State-of-the-art comparisons on the TB50 and OTB100. The results on TB50 are shown in the first row, and OTB100 in the last row.
The trackers in the precision plots (first column) are ranked by DP under a given threshold (20), and in the success plot (second column) are

ranked by AUC.

without RRL. In Table 1, Online-RRL represents our tracker
with RRL. Online-CONV is the variant that replaces the
RRL with standard 2D convolution. The results in Table 1
show that it is effective to interpret the closed-form of ridge
regression as part of the online network.

3) BACKBONE

We also studied the effect of different backbones used in
online learning. In particular, three pre-trianed CNN back-
bones were used to extract features: AlexNet, ResNet-18
and ResNet50. As shown in Table 1, ResNet-50 gets
the best performances and ResNet-18 is at the second
place. However, their relative improvements are slight.
For instance, JONF-RRL using ResNet-50 only obtains
0.01 and 0.02 improvements when compared to ResNet-18
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and AlexNet. This illustrates that, the depth increment of
backbone is benefit to extract more discriminative feature, but
has a slight influence on our online model.

4) RELATIONSHIP ypq

We designed two solutions to consider the relationship y,q
among local patches in Eq. 7. Offline-only assigns every local
patch of T equal confidence while treating local patches of
S; differently. That is, y14 = y2q = ... = ypg but yp1 #
Y2 # ... # ¥po. Offline-only2 directly learns y,, using
2D convolution kernel without any constrains. As shown
in Figure 4, Offline-only is superior to Offline-only2. The
reason is that the template 7 is a reliable cue, and equal
confidence can ensure that every local pattern of the template
gets the attention it deserves.
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Ground-truth JONEF (ours) SiamFC

DaSiamRPN

= CFNet SRDCF

FIGURE 7. Visual tracking results on OTB benchmark. We show some representative sequences that involve the challenges of occlusion,
background clutters, blur, out-of-plane rotation, and fast motion. The bounding boxes with different color correspond to different trackers. Frame

number is shown on the left-top of each image.

5) UPDATE FREQUENCY

Considering the update frequency factor affects catching
the information of the target from different video frames,
we design different experiments in order to research the
update frequency of the online model. Firstly, we only
initialize w; from FAL and w; from RRL by the first
frame. Secondly we update online model every 5, 10,
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15 frames with ADAM optimizer and learning rate =
1073, epoch = 2, batch size = 8. Figure 5 shows that
updating model is very important for improving track-
ing performance. Frequent updating make online model
unstable due to interference terms, while slow updating
maybe lead to drifting because of appe-arance variation and
deformation.
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TABLE 2. The performance comparison between the proposed online (and offline) algorithm and its corresponding recent online (and offline)
approaches. The AUC metric on OTB100 is reported tersely. Our results are highlighted in bold.

. Online-only KCF SRDCF CSR-DCF  Staple  ACFN LMCF
Online methods
ours [14] [16] [18] [42] [13] [43]
61.9% 47.6% 59.8% 58.5% 578%  57.1% 58.0%
. Offline-ony ~ SiamFC  SiamFC-tri DSiam CFNet  SINT  StructSiam
Offline methods
ours [20] [44] [26] [22] [45] [46]
60.5% 58.2% 59.0% 56.1% 58.6%  58.2% 62.1%

TABLE 3. State-of-the-art comparison on the VOT2018 benchmark in terms of EAO, A and R. Here, A and R are accuracy and robustness, respectively. Our

results are highlighted in bold.

JONF ECO CCOT SiamRPN DSiam SiamFC CSR-DCF  SA-Siam

[15] [17] [47] [26] [20] [18] [21]

EAO1T 0319 0.280 0.267 0.383 0.196 0.188 0.256 0.286

A1 0.467 0484 0494 0.586 0.512 0.503 0.491 0.533

R 0297 0276 0318 0.276 0.646 0.585 0.356 0.337

TABLE 4. State-of-the-art comparison on the UAV123 dataset in terms of AUC score.
JONF ECO|[15] CCOT[17] MDNet[48] SRDCF[16] Struck[13]  SiamRPN [47]
AUC(%)t  54.0 53.7 51.7 52.8 47.3 38.1 57.1

D. STATE-OF-THE-ART COMPARISON
In this section, we compared our JONF with state-of-the-art
trackers on some public benchmarks.

1) OTB [38]

Figure 6 shows the comparison results with some state-of-
the-art methods on TB50 and OTB100. Overall, the proposed
JONF obtains competitive performance. On OTB100, our
JONF achieves the best performance (82.2/66.7%). Specif-
ically, it is superior to SA-Siam [21], DaSiamRPN [26],
and MemTrack [24]. Moreover, it surpasses the ATOM
(80.4/66.7%) in DP@20 while achieving competitive results
in AUC.

For comprehensive evaluation, the visualization track-
ing results from some representative sequences are shown
in Figure 7, where the target objects suffer from occlu-
sion, background clutters, blur, out-of-plane rotation, and
fast motion. As we can see, the proposed JONF obtains
considerably stable results on these sequences when com-
pared with SiamFC [20], SRDCF [16], CFNet [22], and
DaSiamRPN [49]. Specifically, as shown in the second row
of Figure 7, DaSiamRPN drifts to the background due to out-
of-plane rotation, whereas JONF can track the target object
successfully.

We also compared the proposed online (and offline) algo-
rithm with its corresponding recent online (and offline)
approaches. For online learning methods, we took into
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consideration some representative CF-based trackers includ-
ing KCF [14], SRDCF [16], CSR-DCF [18], Staple [50],
ACFN [42], and LMCEF [43]. As shown in Table 2, Our online
learning method (denoted as online-only) achieves 61.7%
according to AUC, which surpasses all of aforementioned
CF-based trackers. On the other hand, because our offline
learning method (denoted as offline-only) takes SiamFC [20]
as the baseline, we thus compared it with some representative
approaches based on the Siamese network including CFNet
[22], SiamFC-tri [44], DSiam [26], SINT [45], and Struct-
Siam [13]. Table 2 shows that our offline-only is better than
these Siamese network based trackers except StructSiam.
Note that, this work concentrates on bridging the gap between
offline and online learning, our offline learning model is
trained without the adjustment of hyper-parameters and extra
dataset like Youtube-BB.

2) VOT2018 [39]

Table 3 tersely reports the expected average overlap (EAO),
accuracy (A), and Robust (R) of some advanced trackers
on VOT2018. Overall, the proposed JONF ranks second.
In particular, according to the EAO, our JONF obtains
comparable performance when compared with SiamRPN.
Note that SiamRPN contains a regression branch for the
resulting bounding boxes which is more advantageous for
adjusting the target state in such a scale-varying dataset.
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TABLE 5. State-of-the-art comparison on the GOT-10k benchmark in terms of average overlap (AO), and success rates (SR) at overlap thresholds

of 0.5 and 0.75. Our results are highlighted in bold.

JONF ECO[15] CCOT[17] MDNet[48] SRDCF [16] SiamFC[20] BACF[19] CFNet [22]
AO(%) 1 39.1 31.6 325 29.9 23.6 34.8 26.0 27.0
SRo.5(%) 1 40.8 30.9 32.8 30.3 22.7 353 26.2 22.5
SRo.75(%) 1 114 11.1 10.7 9.9 94 9.8 10.1 7.2

Moreover, the JONF has a considerable improvement against
ECO [15], DSiam [26], and CSR-DCF [18].

3) GOT-10k [41]

This benchmark provides wide coverage of moving objects
in the wild. It does not publish the ground-truth of the test
set, and requires researchers to upload the test results to
the server to avoid excessive hyper-parameter adjustment.
Table 5 shows the comparison results on GOT-10k. Accord-
ing to the AO, SRy s and SRy 75, JONF (39.1/40.8/11.4) con-
siderably outperforms other online learning based methods,
such as CCOT [17] and MDNet [48].

4) UAV123 [40]

UAV123 is designed for a specific tracking task whose
sequences are sampled from the view of unmanned aerial
vehicles. We also evaluated the proposed method to demon-
strate its generalization ability. Table 4 presents the AUC
score on the UAV123. SiamRPN has the best performance
and our JONF ranks in the second place. The main rea-
sons are that 1) many targets in the wild suffer from
scale changing, and the trackers with the state estima-
tion branch like SiamRPN have an obvious advantage over
one determined only by response map; 2) more anno-
tated dataset (i. e., Youtube-BB) was utilized in addition to
ILSVRC2015-VID during training.

IV. CONCLUSION

We proposed a novel method for making up for the differ-
ence between online and offline learning. For online learn-
ing, we interpreted the closed-form solution of the ridge
regression as part of our lightweight network to enable quick
adaption for unseen objects. For offline learning, we applied
the philosophy of KRR based on cross-similarity into the
Siamese network and accomplished this procedure in an end-
to-end manner. And an effective fusion scheme was presented
to bridge their gap. The ablation studies prove the validation
of each component, and comprehensive experiments show
that our approach achieved considerable improvements on
multiple public benchmarks.
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